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Introduction

• Modeling dependencies in input; no 
longer iid 
• Sequences:  
– Temporal: In speech; phonemes in a word 

(dictionary), words in a sentence (syntax, 
semantics of the language).  
• In handwriting, pen movements 

– Spatial: In a DNA sequence; base pairs



Introduction

• Modeling dependencies in input; no 
longer iid 
• Sequences:  
– A sequence can be characterized as being 

generated by a parametric random process
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Discrete Markov Process

• Consider a system as with  
N states: S1, S2, ..., SN  State at “time” t, qt = Si

• First-order Markov
P(qt+1=Sj | qt=Si, qt-1=Sk ,...) = P(qt+1=Sj | qt=Si) 

• Transition probabilities 
  aij ≡ P(qt+1=Sj | qt=Si)       aij ≥ 0 and Σj=1

N aij=1
• Initial probabilities 
      πi ≡ P(q1=Si)         Σj=1

N πi=1



Stochastic Automation

• Transition probabilities 
  aij ≡ P(qt+1=Sj | qt=Si)       aij ≥ 0 and Σj=1

N aij=1
• Initial probabilities 
      πi ≡ P(q1=Si)         Σj=1

N πi=1
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Observable Markov model

• The states are observable 
– At any time t we know qt

– Having an observation sequence  
O = Q = {q1q2 …. qT}

15.2 Discrete Markov Processes 365
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Figure 15.1 Example of a Markov model with three states. This is a stochastic
automaton where πi is the probability that the system starts in state Si , and aij
is the probability that the system moves from state Si to state Sj .

satisfying

N
∑

i=1

πi = 1(15.5)

Π = [πi] is a vector of N elements that sum to 1.
In an observable Markov model, the states are observable. At any timeobservable Markov

model t , we know qt , and as the system moves from one state to another, we
get an observation sequence that is a sequence of states. The output of
the process is the set of states at each instant of time where each state
corresponds to a physical observable event.

We have an observation sequence O that is the state sequence O = Q =
{q1q2 · · ·qT }, whose probability is given as

P(O = Q|A,Π) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.6)

πq1 is the probability that the first state is q1, aq1q2 is the probability of
going from q1 to q2, and so on. We multiply these probabilities to get the
probability of the whole sequence.

Let us now see an example (Rabiner and Juang 1986) to help us demon-
strate. Assume we have N urns where each urn contains balls of only one
color. So there is an urn of red balls, another of blue balls, and so forth.
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 S1: red, S2: blue, S3: green

[ ]

{ }
( ) ( ) ( ) ( ) ( )

048080304050

801010
206020
303040

302050

3313111

3313111

3311

.....                 
                 

|||,|
,,,

...

...

...
       .,.,.

=⋅⋅⋅=

⋅⋅⋅=

⋅⋅⋅=Π

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==Π

aaa
SSPSSPSSPSPOP

SSSSO

T

π

A

A



Example: Balls and Urns

• Learning 
– Given K example sequences of length T

Example: Balls and Urns

• Learning
– Given K example sequences of length T

{ }
{ }

( )

{ }
{ }

( )
( )å å

å å

å

=

= +

=

==
=

=

=
==

k

T-

t i
k
t

k

T-

t j
k
ti

k
t

i

ji
ij

k i
k

i
i

Sq

SqSq

S
SS

a

K
SqS

1

1

1

1 1

1

1

1

1

 and 
    

 from stransition
 to  from stransition

sequences
   withstarting  sequences

#
#ˆ

#
#p̂



Example: Balls and Urns

• Learning 
– Given K example sequences of length T

{ }
{ }

( )

{ }
{ }

( )
( )å å

å å

å

=

= +

=

==
=

=

=
==

k

T-

t i
k
t

k

T-

t j
k
ti

k
t

i

ji
ij

k i
k

i
i

Sq

SqSq

S
SS

a

K
SqS

1

1

1

1 1

1

1

1

1

 and 
    

 from stransition
 to  from stransition

sequences
   withstarting  sequences

#
#ˆ

#
#p̂



Hidden Markov models

Introduction 
Discrete Markov process 

Observable Markov model 
Hidden Markov model (HMM) 

Solving HMMs

21



Hidden Markov Models

• States are not observable 

• Discrete observations {v1,v2,...,vM} are 
recorded 
– A probabilistic function of the state



Hidden Markov Models

• States are not observable 

• Discrete observations {v1,v2,...,vM} are 
recorded 
– A probabilistic function of the state 

• Emission probabilities 
– Observation that we observe  

vm , m = 1, . . . , M in state Sj 

  bj(m) ≡ P(Ot=vm | qt=Sj)



Hidden Markov Models

• States are not observable 

• Discrete observations {v1,v2,...,vM} are recorded 

• Emission probabilities 
– Observation that we observe  

vm , m = 1, . . . , M in state Sj 

  bj(m) ≡ P(Ot=vm | qt=Sj)

• The state sequence Q is not observed  
– but it should be inferred from the observation 

sequence O 
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• In each urn, there are balls of different colors, 
but with different probabilities. 
– For each observation sequence, there are multiple 

state sequences 

– bj(m) ≡ P(Ot=vm | qt=Sj) denotes the probability of 

drawing a ball of color m from urn j 



Example: Balls and Urns

• In each urn, there are balls of different colors, 
but with different probabilities. 
– For each observation sequence, there are multiple 

state sequences 

– bj(m) ≡ P(Ot=vm | qt=Sj) denotes the probability of 

drawing a ball of color m from urn j
– We again observe a sequence of ball colors but 

without knowing the sequence of urns from which 
the balls were drawn 



Example: Balls and Urns

• In each urn, there are balls of different colors, 
but with different probabilities. 
– The observable model is a special case of the 

hidden model  

– where M = N  

– and bj(m) is 1 if j =m and 0 otherwise 



Example: Balls and Urns

• In each urn, there are balls of different colors, 
but with different probabilities. 
– For the same observation sequence O, there may 

be many possible state sequences Q that could 
have generated O 



Elements of an HMM

• N: Number of states

• M: Number of observation symbols

368 15 Hidden Markov Models

1 1 11
a11 a11 a11 a11

N

i

1

N

i

2

N

i

T

N

i

T-1

O1

O2 OT-1

OT

π1

πi

πN

Figure 15.2 An HMM unfolded in time as a lattice (or trellis) showing all the
possible trajectories. One path, shown in thicker lines, is the actual (unknown)
state trajectory that generated the observation sequence.

and 0 otherwise. But in the case of a hidden model, a ball could have been
picked from any urn. In this case, for the same observation sequence O,
there may be many possible state sequencesQ that could have generated
O (see figure 15.2).

To summarize and formalize, an HMM has the following elements:

1. N : Number of states in the model

S = {S1, S2, . . . , SN}

2. M : Number of distinct observation symbols in the alphabet

V = {v1, v2, . . . , vM}

3. State transition probabilities:

A = [aij] where aij ≡ P(qt+1 = Sj|qt = Si)

4. Observation probabilities:

B = [bj(m)] where bj(m) ≡ P(Ot = vm|qt = Sj)
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• N: Number of states

• M: Number of observation symbols

• A = [aij]: N by N state transition probability matrix

• B = bj(m): N by M observation probability matrix

• Π = [πi]: N by 1 initial state probability vector

Elements of an HMM
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5. Initial state probabilities:

Π = [πi] where πi ≡ P(q1 = Si)

N and M are implicitly defined in the other parameters so λ = (A,B,Π)
is taken as the parameter set of an HMM. Given λ, the model can be
used to generate an arbitrary number of observation sequences of arbi-
trary length, but as usual, we are interested in the other direction, that of
estimating the parameters of the model given a training set of sequences.

15.4 Three Basic Problems of HMMs

Given a number of sequences of observations, we are interested in three
problems:

1. Given a model λ, we would like to evaluate the probability of any given
observation sequence, O = {O1O2 · · ·OT }, namely, P(O|λ).

2. Given a model λ and an observation sequence O, we would like to find
out the state sequence Q = {q1q2 · · ·qT }, which has the highest prob-
ability of generating O; namely, we want to find Q∗ that maximizes
P(Q|O,λ).

3. Given a training set of observation sequences, X = {Ok}k, we would
like to learn the model that maximizes the probability of generating
X ; namely, we want to find λ∗ that maximizes P(X|λ).

Let us see solutions to these one by one, with each solution used to
solve the next problem, until we get to calculating λ or learning a model
from data.

15.5 Evaluation Problem

Given an observation sequence O = {O1O2 · · ·OT } and a state sequence
Q = {q1q2 · · ·qT}, the probability of observing O given the state se-
quence Q is simply

P(O|Q,λ) =
T
∏

t=1

P(Ot |qt ,λ) = bq1(O1) · bq2(O2) · · ·bqT (OT )(15.11)



Elements of an HMM

• A = [aij]: N by N state transition probability matrix

• B = bj(m): N by M observation probability matrix

• Π = [πi]: N by 1 initial state probability vector

λ = (A, B, Π), parameter set of HMM
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Three basic problems of HMMs

• Given a number of sequences of observations, we are 
interested in: 
1. Evaluation  

Given λ, and O, calculate P (O | λ) 

2. State sequence 

Given λ, and O, find Q* such that  

  P (Q* | O, λ ) = maxQ P (Q | O , λ )  

3. Learning  

Given X = {Ok}k, find λ* such that  
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1. Evaluation

• Given an observation sequence O = {O1 O2 · · · OT } 
and a state sequence Q = {q1q2 · · · qT }, the 
probability of observing O given the state sequence Q 
is 
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1|qt+1 = Sj, qt = Si,λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)
=

∑

j

P(Ot+1|qt+1 = Sj,λ)
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procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
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αt(i) explains the first t observations and ends in state Si . We multiply
this by the probability aij to move to state Sj , and because there are
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1|qt+1 = Sj, qt = Si,λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)
=

∑

j

P(Ot+1|qt+1 = Sj,λ)
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
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j
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=

∑
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P(Ot+1|qt+1 = Sj,λ)
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)

=
∑
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P(Ot+1|qt+1 = Sj, qt = Si,λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)
=

∑

j

P(Ot+1|qt+1 = Sj,λ)
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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αt(i) explains the first t observations and ends in state Si . We multiply
this by the probability aij to move to state Sj , and because there are

15.5 Evaluation Problem 371

N

i

1

j
aij i

1

j

N

aij

(a) Forward (b) Backward 
t t +1 t+1t

αi βj

Ot+1
Ot+1

Figure 15.3 Forward-backward procedure: (a) computation of αt (j) and (b)
computation of βt (i).

= P(O1 · · ·Ot+1|qt+1 = Sj ,λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot |qt+1 = Sj,λ)P(Ot+1|qt+1 = Sj,λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot, qt+1 = Sj|λ)P(Ot+1|qt+1 = Sj,λ)
= P(Ot+1|qt+1 = Sj,λ)

∑

i

P(O1 · · ·Ot, qt = Si, qt+1 = Sj|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot, qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot |qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot, qt = Si|λ)P(qt+1 = Sj|qt = Si,λ)

=





N
∑

i=1

αt(i)aij



bj(Ot+1)(15.16)

αt(i) explains the first t observations and ends in state Si . We multiply
this by the probability aij to move to state Sj , and because there are

15.5 Evaluation Problem 371

N

i

1

j
aij i

1

j

N

aij

(a) Forward (b) Backward 
t t +1 t+1t

αi βj

Ot+1
Ot+1

Figure 15.3 Forward-backward procedure: (a) computation of αt (j) and (b)
computation of βt (i).

= P(O1 · · ·Ot+1|qt+1 = Sj ,λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot |qt+1 = Sj,λ)P(Ot+1|qt+1 = Sj,λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot, qt+1 = Sj|λ)P(Ot+1|qt+1 = Sj,λ)
= P(Ot+1|qt+1 = Sj,λ)

∑

i

P(O1 · · ·Ot, qt = Si, qt+1 = Sj|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot, qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot |qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot, qt = Si|λ)P(qt+1 = Sj|qt = Si,λ)

=





N
∑

i=1

αt(i)aij



bj(Ot+1)(15.16)

αt(i) explains the first t observations and ends in state Si . We multiply
this by the probability aij to move to state Sj , and because there are



1. Evaluation

Recursion

372 15 Hidden Markov Models

N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
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j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)

=
∑
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P(Ot+1|qt+1 = Sj, qt = Si,λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)
=

∑

j

P(Ot+1|qt+1 = Sj,λ)
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)

15.5 Evaluation Problem 371

N

i

1

j
aij i

1

j

N

aij

(a) Forward (b) Backward 
t t +1 t+1t

αi βj

Ot+1
Ot+1

Figure 15.3 Forward-backward procedure: (a) computation of αt (j) and (b)
computation of βt (i).

= P(O1 · · ·Ot+1|qt+1 = Sj ,λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot |qt+1 = Sj,λ)P(Ot+1|qt+1 = Sj,λ)P(qt+1 = Sj|λ)
= P(O1 · · ·Ot, qt+1 = Sj|λ)P(Ot+1|qt+1 = Sj,λ)
= P(Ot+1|qt+1 = Sj,λ)

∑

i

P(O1 · · ·Ot, qt = Si, qt+1 = Sj|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot, qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot |qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

= P(Ot+1|qt+1 = Sj,λ)
∑

i

P(O1 · · ·Ot, qt = Si|λ)P(qt+1 = Sj|qt = Si,λ)

=





N
∑

i=1

αt(i)aij



bj(Ot+1)(15.16)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1|qt+1 = Sj, qt = Si,λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)
=

∑

j

P(Ot+1|qt+1 = Sj,λ)
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
the model λ:

αt(i) ≡ P(O1 · · ·Ot , qt = Si|λ)(15.14)

The nice thing about this is that it can be calculated recursively by
accumulating results on the way.

! Initialization:

α1(i) ≡ P(O1, q1 = Si|λ)
= P(O1|q1 = Si,λ)P(q1 = Si|λ)
= πibi(O1)(15.15)

! Recursion (see figure 15.3a):

αt+1(j) ≡ P(O1 · · ·Ot+1, qt+1 = Sj|λ)
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)
=

∑

j

P(Ot+1 · · ·OT , qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1 · · ·OT |qt+1 = Sj, qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)

=
∑

j

P(Ot+1|qt+1 = Sj, qt = Si,λ)

P(Ot+2 · · ·OT |qt+1 = Sj , qt = Si,λ)P(qt+1 = Sj|qt = Si,λ)
=

∑

j

P(Ot+1|qt+1 = Sj,λ)
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

P(Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1) = πq1aq1q2 · · ·aqT−1qT(15.12)

Then the joint probability is

P(O,Q|λ) = P(q1)
T
∏

t=2

P(qt |qt−1)
T
∏

t=1

P(Ot |qt)

= πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT )(15.13)

We can compute P(O|λ) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(O|λ) =
∑

all possible Q
P(O,Q|λ)

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient
procedure to calculate P(O|λ), which is called the forward-backward pro-forward-backward

procedure cedure (see figure 15.3). It is based on the idea of dividing the observation
sequence into two parts: the first one starting from time 1 until time t ,
and the second one from time t + 1 until T .

We define the forward variable αt(i) as the probability of observing theforward variable

partial sequence {O1 · · ·Ot} until time t and being in Si at time t , given
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this by the probability aij to move to state Sj , and because there are
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N possible previous states, we need to sum up over all such possible
previous Si . bj(Ot+1) then is the probability we generate the (t + 1)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob-
ability of the observation sequence:

P(O|λ) =
N
∑

i=1

P(O, qT = Si|λ)

=
N
∑

i=1

αT (i)(15.17)

αT (i) is the probability of generating the full observation sequence and
ending up in state Si . We need to sum up over all such possible final
states.

Computing αt(i) is O(N2T), and this solves our first evaluation prob-
lem in a reasonable amount of time. We do not need it now but let us
similarly define the backward variable, βt (i), which is the probability ofbackward variable

being in Si at time t and observing the partial sequence Ot+1 · · ·OT :

βt (i) ≡ P(Ot+1 · · ·OT |qt = Si,λ)(15.18)

This can again be recursively computed as follows, this time going in
the backward direction:

! Initialization (arbitrarily to 1):

βT (i) = 1

! Recursion (see figure 15.3b):
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=
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5. Initial state probabilities:

Π = [πi] where πi ≡ P(q1 = Si)

N and M are implicitly defined in the other parameters so λ = (A,B,Π)
is taken as the parameter set of an HMM. Given λ, the model can be
used to generate an arbitrary number of observation sequences of arbi-
trary length, but as usual, we are interested in the other direction, that of
estimating the parameters of the model given a training set of sequences.

15.4 Three Basic Problems of HMMs

Given a number of sequences of observations, we are interested in three
problems:

1. Given a model λ, we would like to evaluate the probability of any given
observation sequence, O = {O1O2 · · ·OT }, namely, P(O|λ).

2. Given a model λ and an observation sequence O, we would like to find
out the state sequence Q = {q1q2 · · ·qT }, which has the highest prob-
ability of generating O; namely, we want to find Q∗ that maximizes
P(Q|O,λ).

3. Given a training set of observation sequences, X = {Ok}k, we would
like to learn the model that maximizes the probability of generating
X ; namely, we want to find λ∗ that maximizes P(X|λ).

Let us see solutions to these one by one, with each solution used to
solve the next problem, until we get to calculating λ or learning a model
from data.

15.5 Evaluation Problem

Given an observation sequence O = {O1O2 · · ·OT } and a state sequence
Q = {q1q2 · · ·qT}, the probability of observing O given the state se-
quence Q is simply

P(O|Q,λ) =
T
∏

t=1

P(Ot |qt ,λ) = bq1(O1) · bq2(O2) · · ·bqT (OT )(15.11)
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2. State sequence

• Find the state sequence Q = {q1q2 · · · qT } having the 
highest probability of generating the observation 
sequence O = {O1 O2 · · · OT }, given the model λ  

P (Q* | O, λ ) = maxQ P (Q | O , λ )



2. State sequence

P (Q* | O, λ ) = maxQ P (Q | O , λ )

• Let us define γt(i) as the probability of being in 

state Si at time t, given O and λ 

15.6 Finding the State Sequence 373

P(Ot+2 · · ·OT |qt+1 = Sj,λ)P(qt+1 = Sj|qt = Si,λ)

=
N
∑

j=1

aijbj(Ot+1)βt+1(j)(15.19)

When in state Si , we can go to N possible next states Sj , each with
probability aij . While there, we generate the (t + 1)st observation and
βt+1(j) explains all the observations after time t + 1, continuing from
there.

One word of caution about implementation is necessary here: Both αt
and βt values are calculated by multiplying small probabilities, and with
long sequences we risk getting underflow. To avoid this, at each time
step, we normalize αt (i) by multiplying it with

ct =
1

∑

j αt(j)

We also normalize βt (i) by multiplying it with the same ct (βt (i) do not
sum to 1). We cannot use equation 15.17 after normalization; instead, we
have (Rabiner 1989)

P(O|λ) = 1
∏

t ct
or logP(O|λ) = −

∑

t

log ct(15.20)

15.6 Finding the State Sequence

We now move on to the second problem, that of finding the state se-
quence Q = {q1q2 · · ·qT} having the highest probability of generating
the observation sequence O = {O1O2 · · ·OT }, given the model λ.

Let us define γt (i) as the probability of being in state Si at time t , given
O and λ, which can be computed as

γt (i) ≡ P(qt = Si|O,λ)(15.21)

= P(O|qt = Si,λ)P(qt = Si|λ)
P(O|λ)

= P(O1 · · ·Ot |qt = Si,λ)P(Ot+1 · · ·OT |qt = Si,λ)P(qt = Si|λ)
∑N
j=1 P(O, qt = Sj|λ)

= P(O1 · · ·Ot , qt = Si|λ)P(Ot+1 · · ·OT |qt = Si,λ)
∑N
j=1 P(O|qt = Sj,λ)P(qt = Sj|λ)

= αt(i)βt (i)
∑N
j=1αt(j)βt (j)

(15.22)
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2. State sequence

P (Q* | O, λ ) = maxQ P (Q | O , λ )
• Let us define γt(i) as the probability of being in 

state Si at time t, given O and λ

• Choose the state that has the highest probability 
• for each time step: qt

*= arg maxi γt(i)
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2. State sequence

• Choose the state that has the highest 
probability 

• for each time step: qt
*= arg maxi γt(i). NO 

• Viterbi Algorithm
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2. State sequence

• Viterbi Algorithm 

– Given state sequence Q = q1q2 · · · qT and 

observation sequence O = O1 · · · OT , we define 

δt(i) as the probability of the highest probability 

path at time t that accounts for the first t 
observations and ends in Si 
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Here we see how nicely αt(i) and βt (i) split the sequence between
them: the forward variable αt (i) explains the starting part of the se-
quence until time t and ends in Si , and the backward variable βt (i) takes
it from there and explains the ending part until time T .

The numerator αt(i)βt (i) explains the whole sequence given that at
time t , the system is in state Si . We need to normalize by dividing this
over all possible intermediate states that can be traversed at time t , and
guarantee that

∑

i γt (i) = 1.
To find the state sequence, for each time step t , we can choose the state

that has the highest probability:

q∗t = arg max
i
γt (i)(15.23)

but this may choose Si and Sj as the most probable states at time t and
t + 1 even when aij = 0. To find the single best state sequence (path), we
use the Viterbi algorithm, based on dynamic programming, which takesViterbi algorithm

such transition probabilities into account.
Given state sequence Q = q1q2 · · ·qT and observation sequence O =

O1 · · ·OT , we define δt (i) as the probability of the highest probability
path at time t that accounts for the first t observations and ends in Si :

δt(i) ≡ max
q1q2···qt−1

p(q1q2 · · ·qt−1, qt = Si,O1 · · ·Ot |λ)(15.24)

Then we can recursively calculate δt+1(i) and the optimal path can be
read by backtracking from T , choosing the most probable at each instant.
The algorithm is as follows:

1. Initialization:

δ1(i) = πibi(O1)

ψ1(i) = 0

2. Recursion:

δt(j) = max
i
δt−1(i)aij · bj(Ot)

ψt (j) = arg max
i
δt−1(i)aij

3. Termination:

p∗ = max
i
δT (i)

q∗T = arg max
i
δT (i)



2. State sequence

• Viterbi Algorithm 
– Initialization:  

  δ1(i) = πibi(O1) 
ψ1(i) = 0
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qT

*= argmaxi δT (i)
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t + 1 even when aij = 0. To find the single best state sequence (path), we
use the Viterbi algorithm, based on dynamic programming, which takesViterbi algorithm

such transition probabilities into account.
Given state sequence Q = q1q2 · · ·qT and observation sequence O =

O1 · · ·OT , we define δt (i) as the probability of the highest probability
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Figure 15.4 Computation of arc probabilities, ξt (i, j).

4. Path (state sequence) backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψt (j) keeps track of the state
that maximizes δt (j) at time t − 1, that is, the best previous state. The
Viterbi algorithm has the same complexity with the forward phase, where
instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the third problem, learning an HMM from data.
The approach is maximum likelihood, and we would like to calculate
λ∗ that maximizes the likelihood of the sample of training sequences,
X = {Ok}Kk=1, namely, P(X|λ). We start by defining a new variable that
will become handy later on.

We define ξt(i, j) as the probability of being in Si at time t and in Sj at
time t + 1, given the whole observation O and λ:

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)(15.25)

which can be computed as (see figure 15.4)

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)

= P(O|qt = Si, qt+1 = Sj,λ)P(qt = Si, qt+1 = Sj|λ)
P(O|λ)
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=
P(O|qt = Si, qt+1 = Sj,λ)P(qt+1 = Sj|qt = Si,λ)P(qt = Si|λ)

P(O|λ)

=
(

1

P(O|λ)

)

P(O1 · · ·Ot |qt = Si,λ)P(Ot+1|qt+1 = Sj,λ)

P(Ot+2 · · ·OT |qt+1 = Sj,λ)aijP(qt = Si|λ)

=
(

1

P(O|λ)

)

P(O1 · · ·Ot, qt = Si|λ)P(Ot+1|qt+1 = Sj,λ)

P(Ot+2 · · ·OT |qt+1 = Sj,λ)aij

= αt (i)bj(Ot+1)βt+1(j)aij
∑

k

∑

l P(qt = Sk, qt+1 = Sl,O|λ)

= αt(i)aijbj(Ot+1)βt+1(j)
∑

k

∑

l αt(k)aklbl(Ot+1)βt+1(l)
(15.26)

αt(i) explains the first t observations and ends in state Si at time t . We
move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t +1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can
be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next
states:

γt(i) =
N
∑

j=1

ξt(i, j)(15.27)

Note that if the Markov model were not hidden but observable, both
γt(i) and ξt (i, j)would be 0/1. In this case when they are not, we estimate
them with posterior probabilities that give us soft counts. This is just likesoft counts

the difference between supervised classification and unsupervised clus-
tering where we did and did not know the class labels, respectively. In
unsupervised clustering using EM (section 7.4), not knowing the class la-
bels, we estimated them first (in the E-step) and calculated the parameters
with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro-Baum-Welch

algorithm cedure. At each iteration, first in the E-step, we compute ξt(i, j) and γt (i)
values given the current λ = (A,B,Π), and then in the M-step, we re-
calculate λ given ξt(i, j) and γt (i). These two steps are alternated until
convergence during which, it has been shown, P(O|λ) never decreases.
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4. Path (state sequence) backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψt (j) keeps track of the state
that maximizes δt (j) at time t − 1, that is, the best previous state. The
Viterbi algorithm has the same complexity with the forward phase, where
instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the third problem, learning an HMM from data.
The approach is maximum likelihood, and we would like to calculate
λ∗ that maximizes the likelihood of the sample of training sequences,
X = {Ok}Kk=1, namely, P(X|λ). We start by defining a new variable that
will become handy later on.

We define ξt(i, j) as the probability of being in Si at time t and in Sj at
time t + 1, given the whole observation O and λ:

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)(15.25)

which can be computed as (see figure 15.4)

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)
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αt(i) explains the first t observations and ends in state Si at time t . We
move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t +1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can
be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next
states:

γt(i) =
N
∑

j=1

ξt(i, j)(15.27)

Note that if the Markov model were not hidden but observable, both
γt(i) and ξt (i, j)would be 0/1. In this case when they are not, we estimate
them with posterior probabilities that give us soft counts. This is just likesoft counts

the difference between supervised classification and unsupervised clus-
tering where we did and did not know the class labels, respectively. In
unsupervised clustering using EM (section 7.4), not knowing the class la-
bels, we estimated them first (in the E-step) and calculated the parameters
with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro-Baum-Welch

algorithm cedure. At each iteration, first in the E-step, we compute ξt(i, j) and γt (i)
values given the current λ = (A,B,Π), and then in the M-step, we re-
calculate λ given ξt(i, j) and γt (i). These two steps are alternated until
convergence during which, it has been shown, P(O|λ) never decreases.
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αt(i) explains the first t observations and ends in state Si at time t . We
move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t +1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can
be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next
states:

γt(i) =
N
∑

j=1

ξt(i, j)(15.27)

Note that if the Markov model were not hidden but observable, both
γt(i) and ξt (i, j)would be 0/1. In this case when they are not, we estimate
them with posterior probabilities that give us soft counts. This is just likesoft counts

the difference between supervised classification and unsupervised clus-
tering where we did and did not know the class labels, respectively. In
unsupervised clustering using EM (section 7.4), not knowing the class la-
bels, we estimated them first (in the E-step) and calculated the parameters
with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro-Baum-Welch

algorithm cedure. At each iteration, first in the E-step, we compute ξt(i, j) and γt (i)
values given the current λ = (A,B,Π), and then in the M-step, we re-
calculate λ given ξt(i, j) and γt (i). These two steps are alternated until
convergence during which, it has been shown, P(O|λ) never decreases.
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Figure 15.4 Computation of arc probabilities, ξt (i, j).

4. Path (state sequence) backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψt (j) keeps track of the state
that maximizes δt (j) at time t − 1, that is, the best previous state. The
Viterbi algorithm has the same complexity with the forward phase, where
instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the third problem, learning an HMM from data.
The approach is maximum likelihood, and we would like to calculate
λ∗ that maximizes the likelihood of the sample of training sequences,
X = {Ok}Kk=1, namely, P(X|λ). We start by defining a new variable that
will become handy later on.

We define ξt(i, j) as the probability of being in Si at time t and in Sj at
time t + 1, given the whole observation O and λ:

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)(15.25)

which can be computed as (see figure 15.4)

ξt(i, j) ≡ P(qt = Si, qt+1 = Sj|O,λ)

= P(O|qt = Si, qt+1 = Sj,λ)P(qt = Si, qt+1 = Sj|λ)
P(O|λ)
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Figure 15.4 Computation o f arc p robabilities, ξ t ( i, j ) .

4. Path (state sequence) backtracking:

q∗
t = ψ t+ 1( q∗

t+ 1) , t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψ t ( j ) keeps track of the state
that maxim izes δt ( j ) at t ime t − 1, that is, the best previous state. The
Viterbi algor it hm has the same complexit y w it h the f orward phase, where
instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the th i rd problem, learning an HMM f rom data.
The approach is max imum likelihood, and we wou ld l ike t o calculate
λ∗ that maximizes the likelihood of the sample of training sequences,
X ={Ok } Kk= 1, namely, P (X |λ) . We star t by defining a new var iable that
wi l l become handy later on.
We define ξ t ( i, j ) as the probability o f being i n Si at t ime t and i n Sj at

t ime t + 1, given the whole observation O and λ :

ξ t ( i, j ) ≡ P (qt = Si , qt + 1 = Sj |O,λ)(15.25)

which can be computed as (see figure 15.4)

ξ t ( i, j ) ≡ P (qt = Si , qt + 1 = Sj |O,λ)

=
P (O |qt = Si , qt+ 1 = Sj , λ)P(qt = Si , qt + 1 = Sj |λ)

P (O |λ)
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αt(i) explains the first t observations and ends in state Si at time t . We
move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t +1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can
be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next
states:

γt(i) =
N
∑

j=1

ξt(i, j)(15.27)

Note that if the Markov model were not hidden but observable, both
γt(i) and ξt (i, j)would be 0/1. In this case when they are not, we estimate
them with posterior probabilities that give us soft counts. This is just likesoft counts

the difference between supervised classification and unsupervised clus-
tering where we did and did not know the class labels, respectively. In
unsupervised clustering using EM (section 7.4), not knowing the class la-
bels, we estimated them first (in the E-step) and calculated the parameters
with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro-Baum-Welch

algorithm cedure. At each iteration, first in the E-step, we compute ξt(i, j) and γt (i)
values given the current λ = (A,B,Π), and then in the M-step, we re-
calculate λ given ξt(i, j) and γt (i). These two steps are alternated until
convergence during which, it has been shown, P(O|λ) never decreases.
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αt(i) explains the first t observations and ends in state Si at time t . We
move on to state Sj with probability aij , generate the (t+1)st observation,
and continue from Sj at time t +1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can
be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next
states:

γt(i) =
N
∑

j=1

ξt(i, j)(15.27)

Note that if the Markov model were not hidden but observable, both
γt(i) and ξt (i, j)would be 0/1. In this case when they are not, we estimate
them with posterior probabilities that give us soft counts. This is just likesoft counts

the difference between supervised classification and unsupervised clus-
tering where we did and did not know the class labels, respectively. In
unsupervised clustering using EM (section 7.4), not knowing the class la-
bels, we estimated them first (in the E-step) and calculated the parameters
with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro-Baum-Welch

algorithm cedure. At each iteration, first in the E-step, we compute ξt(i, j) and γt (i)
values given the current λ = (A,B,Π), and then in the M-step, we re-
calculate λ given ξt(i, j) and γt (i). These two steps are alternated until
convergence during which, it has been shown, P(O|λ) never decreases.
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15.7 Lea rning Model Parameters 377

Assume indicator variables z ti as

zti =
1 if qt = Si
0 otherwise(15.28)

and

zti j =
1 if qt = Si and qt + 1 = Sj
0 otherwise(15.29)

These are 0/ 1 in the case of an observable Markov model and are hid-
den random variables i n the case of an HMM. In this latter case, we esti-
mate them i n the E-step as

E [z ti ] = γ t ( i)(15.30)
E [zti j] = ξ t ( i, j )

I n the M-step, we calculate the parameters given these estimated val-
ues. The expected number of transitions f r om Si t o Sj is t ξ t ( i, j ) and
the t otal number of transitions f r om Si is t γ t ( i) . The rat io of these two
gives us the probabili t y o f t ransition f rom Si t o Sj at any time:

â i j =
T− 1
t = 1 ξ t ( i, j )
T− 1
t = 1 γ t ( i)

(15.31)

Note that this is the same as equation 15.9, except that the actual counts
are replaced by estimated sof t counts.
The probabili t y o f observing vm i n Sj is the expected number of times

vm is observed when the system is i n Sj over the to tal number of t i mes
the system is i n Sj :

b̂j ( m) =
T
t = 1 γ t ( j )1( Ot = vm )

T
t = 1 γ t ( j )

(15.32)

When there are mult iple observation sequences

X ={Ok } Kk= 1

which we assume t o be independen t

P (X |λ) =
K

k= 1
P (Ok |λ)
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Figure 15.4 Computation o f arc p robabilities, ξ t ( i, j ) .

4. Path (state sequence) backtracking:

q∗
t = ψ t+ 1( q∗

t+ 1) , t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψ t ( j ) keeps track of the state
that maxim izes δt ( j ) at t ime t − 1, that is, the best previous state. The
Viterbi algor it hm has the same complexit y w it h the f orward phase, where
instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the th i rd problem, learning an HMM f rom data.
The approach is max imum likelihood, and we wou ld l ike t o calculate
λ∗ that maximizes the likelihood of the sample of training sequences,
X ={Ok } Kk= 1, namely, P (X |λ) . We star t by defi ning a new var iable that
wi l l become handy later on.
We define ξ t ( i, j ) as the probability o f being i n Si at t ime t and i n Sj at

t ime t + 1, given the whole observation O and λ :

ξ t ( i, j ) ≡ P (qt = Si , qt + 1 = Sj |O,λ)(15.25)

which can be computed as (see figure 15.4)

ξ t ( i, j ) ≡ P (qt = Si , qt + 1 = Sj |O,λ)

=
P (O |qt = Si , qt+ 1 = Sj , λ)P(qt = Si , qt + 1 = Sj |λ)

P (O |λ)
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∑

t ξt (i, j) and
the total number of transitions from Si is

∑

t γt (i). The ratio of these two
gives us the probability of transition from Si to Sj at any time:

âij =
∑T−1
t=1 ξt(i, j)
∑T−1
t=1 γt (i)

(15.31)

Note that this is the same as equation 15.9, except that the actual counts
are replaced by estimated soft counts.

The probability of observing vm in Sj is the expected number of times
vm is observed when the system is in Sj over the total number of times
the system is in Sj :

b̂j(m) =
∑T
t=1 γt (j)1(Ot = vm)

∑T
t=1 γt (j)

(15.32)

When there are multiple observation sequences

X = {Ok}Kk=1

which we assume to be independent

P(X|λ) =
K
∏

k=1

P(Ok|λ)
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t=1 ξt(i, j)
∑T−1
t=1 γt (i)

(15.31)

Note that this is the same as equation 15.9, except that the actual counts
are replaced by estimated soft counts.

The probability of observing vm in Sj is the expected number of times
vm is observed when the system is in Sj over the total number of times
the system is in Sj :

b̂j(m) =
∑T
t=1 γt (j)1(Ot = vm)

∑T
t=1 γt (j)

(15.32)

When there are multiple observation sequences

X = {Ok}Kk=1

which we assume to be independent

P(X|λ) =
K
∏

k=1

P(Ok|λ)



• Baum-Welch algorithm 

– E-step computes ξt(i,j) and γt(i) 

– M-step re-calculate λ given ξt(i, j) and γt(i) 
• For multiple observation sequences

3. Learning
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Assume indicator variables z ti as

zti =
1 if qt = Si
0 otherwise(15.28)

and

zti j =
1 if qt = Si and qt + 1 = Sj
0 otherwise(15.29)

These are 0/ 1 in the case of an observable Markov model and are hid-
den random variables i n the case of an HMM. In this latter case, we esti-
mate them i n the E-step as

E [z ti ] = γ t ( i)(15.30)
E [zti j] = ξ t ( i, j )

I n the M-step, we calculate the parameters given these estimated val-
ues. The expected number of transitions f r om Si t o Sj is t ξ t ( i, j ) and
the t otal number of transitions f r om Si is t γ t ( i) . The rat io of these two
gives us the probabili t y o f t ransition f rom Si t o Sj at any time:

â i j =
T− 1
t = 1 ξ t ( i, j )
T− 1
t = 1 γ t ( i)

(15.31)

Note that this is the same as equation 15.9, except that the actual counts
are replaced by estimated sof t counts.
The probabili t y o f observing vm i n Sj is the expected number of times

vm is observed when the system is i n Sj over the to tal number of t i mes
the system is i n Sj :

b̂j ( m) =
T
t = 1 γ t ( j )1( Ot = vm )

T
t = 1 γ t ( j )

(15.32)

When there are mult iple observation sequences

X ={Ok } Kk= 1

which we assume t o be independen t

P (X |λ) =
K

k= 1
P (Ok |λ)
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Figure 15.4 Computation o f arc p robabilities, ξ t ( i, j ) .

4. Path (state sequence) backtracking:

q∗
t = ψ t+ 1( q∗

t+ 1) , t = T − 1, T − 2, . . . ,1

Using the lattice structure of figure 15.2, ψ t ( j ) keeps track of the state
that maxim izes δt ( j ) at t ime t − 1, that is, the best previous state. The
Viterbi algor it hm has the same complexit y w it h the f orward phase, where
instead of the sum, we take the maximum at each step.

15.7 Learning Model Parameters

We now move on to the th i rd problem, learning an HMM f rom data.
The approach is max imum likelihood, and we wou ld l ike t o calculate
λ∗ that maximizes the likelihood of the sample of training sequences,
X ={Ok } Kk= 1, namely, P (X |λ) . We star t by defi ning a new var iable that
wi l l become handy later on.
We define ξ t ( i, j ) as the probability o f being i n Si at t ime t and i n Sj at

t ime t + 1, given the whole observation O and λ :

ξ t ( i, j ) ≡ P (qt = Si , qt + 1 = Sj |O,λ)(15.25)

which can be computed as (see figure 15.4)

ξ t ( i, j ) ≡ P (qt = Si , qt + 1 = Sj |O,λ)

=
P (O |qt = Si , qt+ 1 = Sj , λ)P(qt = Si , qt + 1 = Sj |λ)
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the parameters are now averages over all observations in all sequences:

âij =
∑K
k=1

∑Tk−1
t=1 ξkt (i, j)

∑K
k=1

∑Tk−1
t=1 γkt (i)

(15.33)

b̂j(m) =
∑K
k=1

∑Tk
t=1 γ

k
t (j)1(O

k
t = vm)

∑K
k=1

∑Tk
t=1 γ

k
t (j)

π̂i =
∑K
k=1 γ

k
1(i)

K

15.8 Continuous Observations

In our discussion, we assumed discrete observations modeled as a multi-
nomial

P(Ot |qt = Sj ,λ) =
M
∏

m=1

bj(m)
rtm(15.34)

where

r tm =
{

1 if Ot = vm
0 otherwise

(15.35)

If the inputs are continuous, one possibility is to discretize them and
then use these discrete values as observations. Typically, a vector quan-
tizer (section 7.3) is used for this purpose of converting continuous val-
ues to the discrete index of the closest reference vector. For example,
in speech recognition, a word utterance is divided into short speech seg-
ments corresponding to phonemes or part of phonemes; after prepro-
cessing, these are discretized using a vector quantizer and an HMM is
then used to model a word utterance as a sequence of them.

We remember that k-means used for vector quantization is the hard
version of a Gaussian mixture model:

p(Ot|qt = Sj ,λ) =
L
∑

l=1

P(Gl)p(Ot |qt = Sj,Gl ,λ)(15.36)

where

p(Ot|qt = Sj ,Gl ,λ) ∼N (µl ,Σl)(15.37)

and the observations are kept continuous. In this case of Gaussian mix-
tures, EM equations can be derived for the component parameters (with
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Assume indicator variables zti as

zti =
{

1 if qt = Si
0 otherwise

(15.28)

and

ztij =
{

1 if qt = Si and qt+1 = Sj
0 otherwise

(15.29)

These are 0/1 in the case of an observable Markov model and are hid-
den random variables in the case of an HMM. In this latter case, we esti-
mate them in the E-step as

E[zti ] = γt (i)(15.30)

E[ztij] = ξt (i, j)

In the M-step, we calculate the parameters given these estimated val-
ues. The expected number of transitions from Si to Sj is

∑

t ξt (i, j) and
the total number of transitions from Si is

∑

t γt (i). The ratio of these two
gives us the probability of transition from Si to Sj at any time:

âij =
∑T−1
t=1 ξt(i, j)
∑T−1
t=1 γt (i)

(15.31)

Note that this is the same as equation 15.9, except that the actual counts
are replaced by estimated soft counts.

The probability of observing vm in Sj is the expected number of times
vm is observed when the system is in Sj over the total number of times
the system is in Sj :

b̂j(m) =
∑T
t=1 γt (j)1(Ot = vm)

∑T
t=1 γt (j)

(15.32)

When there are multiple observation sequences

X = {Ok}Kk=1

which we assume to be independent

P(X|λ) =
K
∏

k=1

P(Ok|λ)
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(15.31)

Note that this is the same as equation 15.9, except that the actual counts
are replaced by estimated soft counts.

The probability of observing vm in Sj is the expected number of times
vm is observed when the system is in Sj over the total number of times
the system is in Sj :

b̂j(m) =
∑T
t=1 γt (j)1(Ot = vm)

∑T
t=1 γt (j)

(15.32)

When there are multiple observation sequences

X = {Ok}Kk=1

which we assume to be independent

P(X|λ) =
K
∏

k=1

P(Ok|λ)



• We have a set of HMMs, each one modeling 
the sequences belonging to one class 
– For example, in spoken word recognition, 

examples of each word train a separate model, λi.  

– Given a new word utterance O to classify, all of 
the separate word models are evaluated to 
calculate P(O|λi).  

– We then use Bayes’ rule to get the posterior 
probabilities 

Classification with HMMs
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a12
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Figure 15.5 Example of a left-to-right HMM.

Another factor that determines the complexity of an HMM is the num-
ber of states N . Because the states are hidden, their number is not known
and should be chosen before training. This is determined using prior in-
formation and can be fine-tuned by cross-validation, namely, by checking
the likelihood of validation sequences.

When used for classification, we have a set of HMMs, each one model-
ing the sequences belonging to one class. For example, in spoken word
recognition, examples of each word train a separate model, λi . Given a
new word utterance O to classify, all of the separate word models are
evaluated to calculate P(O|λi ). We then use Bayes’ rule to get the poste-
rior probabilities

P(λi|O) =
P(O|λi )P(λi)

∑

j P(O|λj )P(λj )
(15.42)

where P(λi) is the prior probability of word i. The utterance is assigned
to the word having the highest posterior. This is the likelihood-based
approach; there is also work on discriminative HMM trained directly to
maximize the posterior probabilities. When there are several pronuncia-
tions of the same word, these are defined as parallel paths in the HMM
for the word.

In the case of a continuous input like speech, the difficult task is that of
segmenting the signal into small discrete observations. Typically, phonesphones

are used that are taken as the primitive parts, and combining them,
longer sequences (e.g., words) are formed. Each phone is recognized in
parallel (by the vector quantizer), then the HMM is used to combine them
serially. If the speech primitives are simple, then the HMM becomes com-
plex and vice versa. In connected speech recognition where the words are
not uttered one by one with clear pauses between them, there is a hierar-
chy of HMMs at several levels; one combines phones to recognize words,



Exercise 1
• Prove the recursion expression for the 

forward-backward algorithm:
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Exercise 2

• Prove that for finding the state sequence
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P(Ot+2 · · ·OT |qt+1 = Sj,λ)P(qt+1 = Sj|qt = Si,λ)

=
N
∑

j=1

aijbj(Ot+1)βt+1(j)(15.19)

When in state Si , we can go to N possible next states Sj , each with
probability aij . While there, we generate the (t + 1)st observation and
βt+1(j) explains all the observations after time t + 1, continuing from
there.

One word of caution about implementation is necessary here: Both αt
and βt values are calculated by multiplying small probabilities, and with
long sequences we risk getting underflow. To avoid this, at each time
step, we normalize αt (i) by multiplying it with

ct =
1

∑

j αt(j)

We also normalize βt (i) by multiplying it with the same ct (βt (i) do not
sum to 1). We cannot use equation 15.17 after normalization; instead, we
have (Rabiner 1989)

P(O|λ) = 1
∏

t ct
or logP(O|λ) = −

∑

t

log ct(15.20)

15.6 Finding the State Sequence

We now move on to the second problem, that of finding the state se-
quence Q = {q1q2 · · ·qT} having the highest probability of generating
the observation sequence O = {O1O2 · · ·OT }, given the model λ.

Let us define γt (i) as the probability of being in state Si at time t , given
O and λ, which can be computed as

γt (i) ≡ P(qt = Si|O,λ)(15.21)

= P(O|qt = Si,λ)P(qt = Si|λ)
P(O|λ)

= P(O1 · · ·Ot |qt = Si,λ)P(Ot+1 · · ·OT |qt = Si,λ)P(qt = Si|λ)
∑N
j=1 P(O, qt = Sj|λ)

= P(O1 · · ·Ot , qt = Si|λ)P(Ot+1 · · ·OT |qt = Si,λ)
∑N
j=1 P(O|qt = Sj,λ)P(qt = Sj|λ)

= αt(i)βt (i)
∑N
j=1αt(j)βt (j)

(15.22)
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