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Abstract

Computational models of visual processes with biologi-
cal inspiration - and even biological realism - are currently
of great interest in the computer vision community. This
paper provides a biologically plausible model of 2D shape
which incorporates intermediate layers of visual represen-
tation that have not previously been fully explored. We pro-
pose that endstopping and curvature cells are of great im-
portance for shape selectivity and show how their combi-
nation can lead to shape selective neurons. This shape rep-
resentation model provides a highly accurate fit with neu-
ral data from [17] and provides comparable results with
real-world images to current computer vision systems. The
conclusion is that such intermediate representations may
no longer require a learning approach as a bridge be-
tween early representations based on Gabor or Difference
of Gaussian filters (that are not learned since they are well-
understood) and later representations closer to object rep-
resentations that still can benefit from a learning methodol-

0gy.

1. Introduction

In this paper we present a biologically plausible model
for shape representation. Curvature is considered an impor-
tant component in order to achieve object recognition in the
brain, along with corners, edges, color, texture and other
important features [3]. A group of studies has shown that
neurons in visual area V4 in monkeys are involved with an-
alyzing curvature [16, 17]. In the hierarchical object recog-
nition pathway, V4 is the area just before the inferotemporal
cortex (IT), where object recognition is achieved [21].

2D shapes (closed contours) are an important feature for
recognizing objects [3]. Shapes are composed of straight
lines, corners, junctions and curves. Curvature has been
present in many methods and algorithms that achieve object
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Figure 1. The hierarchy of 2D shape processing.

recognition (e.g., [14, 7]). But until recently there was no
substantial proof that the biological visual system analyzes
curvature in areas that are involved in the object recognition
pathway, such as V4 [16, 17] and IT [1]. In addtition to this,
there is evidence that endstopped neurons present in area V2
[22] are selective to contours [6, 5]. These works provide
the intellectual foundation for the research described in this

paper.

2. Hierarchical modeling of Shape

This section explains the details of the model. A sum-
mary of the architecture is briefly described as follows (Fig-
ure 1): V1 is composed of simple cells whose receptive
fields are linear filters with the functional form of Differ-
ences of Gaussians and of complex cells that are the result
of the summation of spatially displaced simple cells. V2
contains endstopped cells which respond to variations of
straightness which are the input for local curvature selec-
tive neurons. Then, shape-selective neurons (V4) respond



to curvature configurations with respect to their position in
the neuron’s receptive field. Each type of cell is described
next in detail.

2.1. Simple cells

For the modeling of simple cells Gabor filters [13] and
Difference of Gaussians have been shown to provide a good
fit, although a better fit to neuronal responses has been
found with Difference of Gaussians [11]. We implemented
both types but we obtained better results using the Differ-
ence of Gaussians formulation for our model (Figure 1a):
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where o, is the height and o,, and o, are the width
of each Gaussian function. 6 is their orientation. For our
experiments, we used 12 orientations and 4 different sizes,
this gives a total of 48 types of V1 model simple neurons.
The 4 different sizes will be used for curvature estimation
as explained next.

2.2. Complex cells

In our model, a complex cell is the sum of 5 laterally
displaced model simple cells (Figure 1b) as follows from
[20]. The model complex cell response is given by [5]:

Rox = ZQ‘M&‘) 2
i=1

R; is the response of the ith cell and ¢; is its
weight.Model cells are Gaussian weighted with position,
with weight inversely proportional to the distance to the
center. ¢ is a rectification function, where any value less
than O is set to 0. Cells are proportionally shifted by their
Difference of Gaussians parameters, so that the cell sepa-
ration is related to the size (S) and aspect ratio (A) of the
component model simple cells along their preferred orien-
tation:

separation =

2A )

2.3. Endstopped cells

Endstopped cells - also known as hypercomplex - were
fully described by Orban and colleagues [15]. They
showed that endstopped cells had different properties from
orientation-selective cells and provided a description of
those properties as well as a detailed study on the end-zone
inhibitory areas that were part of such cells.
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Figure 2. Response of the model endstopped cells to differ-
ent radius of curvatures. Simple cell sizes were a)40, b)80,
¢)100 and d)120 pixels. 0,=(10,20,25,30), 0,=(2.5,4,3.3,3),
Oz0=2.5X0z,, ca1 = cq2 =(0.7,0.8,1,2), cc = 1.

Degree of curvature. Model endstopped cells provide us
with a coarse curvature estimation so that we can divide
contours into curvature classes. For the design of the model
endstopped cells we followed the work of [5]:

Rps = ®[c.d(R:) — (carp(Rar) + ca29(Ra2))]
“)

1—e—R/P

P = 1+1/Te—E/e

Ce , cq1 and cgo are the gains for the center and displaced
cells. R., R41 and R4o are the responses of the center and
the two displaced cells. The center cell is a model simple
cell and the displaced cells are model complex cells ¢ and
® are rectification functions. In our experiments, for equa-
tion 4, I'=0.01 and p is the maximum response of the set
of neurons for a given scale divided by 8.5, a factor that
provided a good normalization aproximation for this recti-
fication. Displaced cells are shifted 1/2 of their receptive
field size.

The center simple cell has an excitatory effect while the
two complex cells have an inhibitory effect (Figure 1c). The
response show a good selectivity to curvature, this aspect
is due to the inhibitory effect of the displaced cells, which
we may note are wider than the center cell, following [15].
Model endstopped cells provide us with a coarse curvature
estimation as shown in Figure 2.

Direction endstopped neurons. We refer to direction as
the direction of the normal to the curve. The same model
endstopped cells are used adding a rotated component on
each displaced complex cell with opposite directions (e.g.
45° and 135° for the 0° model endstopped neurons, Fig.
Ic). These cells provide valuable information in order to
compute convexity/concavity at a later stage. Two types of
model direction cells are used, and we will use the term sign
to specify if the curvature is in one direction or the opposite,
positive or negative. These different directions are obtained
by changing the order of the displaced subtracted neurons
(e.g. Fig 3a vs Fig 3d). If the orientations of the displaced
cells lie between the tangent to the curve and the normal



to the curve (in the positive direction within the coordinate
system), then the sign is defined as positive, the neuron’s
response is [2y, otherwise sign is defined as negative and
its response is R_:

R+ = ¢[CC¢(RC) - (cd145 ¢(Rd145) + Ca2,55 ¢(Rd2135))}

R_ = ¢[CC¢(RC) - (Cd1135¢(Rd1135) + Cd245¢(Rd245)2]5)
where ¢ , cq1 and cgo are the gains for the center and dis-
placed cells as before. R, Rq1and R4 are the responses of
center and displaced cells. The difference here is that the
displaced cells are at different orientations of the preferred
center simple celll, for the positive sign model endstopped
neuron, the displaced model complex neuron dI is at 45°,
while the model complex component d2 is at 135°. Fig.3e
shows the response of direction selective cells over a circu-
lar shape for direction positive vs negative.

2.4. Local curvature cells

Curvature cells are obtained due to the neural conver-
gence of the two types of model endstopped cells. By com-
bining model endstopped cells and model direction end-
stopped cells responses (Figure 1d), we obtain twice the
number of curvature classes than the number of model end-
stopped cells. For example, if we have four types of model
endstopped cells, through the use of the direction of curva-
ture of those cells we obtain eight curvature classes.

Rcurv, = RES{, m(R—O— > R—)
(6)
RCUT”U1'+H - RESi m(R* > R+)

where 7 is the number of model endstopped cell types,
REgs, is the response of the model endstopped cell i and
Ry, R_ are the responses of the model direction selective
endstopped neurons. Curvature is obtained directly as the
pattern of different responses of local curvature neurons.
Independently of the degree of curvature and direction of
curvature, a local curvature neuron will always provide a
response which will be higher or lower depending on its
curvature selectivity (see Figure 2).

2.5. Shape-selective neurons

Our Shape cells integrate the responses from the model
local curvature neurons. The proposed response of a
model’s Shape neuron is:

Rshape = Z?:l ciRcuTUz‘ (/\)
(7N
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where R, is the response of the ith model curva-
ture neuron from the set of all possible n model curvature
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Figure 3. Direction selective neurons. Endstopped configuration of
cells whose curve’s normal direction selectivity is in the direction
of the solid line (a), if the normal is in the direction of the dashed
line, it is inhibited; (b), (c) and (d) show other configurations, e)
An example of a circle, positive sign corresponds to the curve in
blue. Negative sign is shown in red.

neurons at the preferred curvature direction () inside the
Shape neuron receptive field, and ¢; is a Gaussian weight
that would account for partial excitation depending on the
selective curvature in distance - angular position (Figure
le).

3. Experiments

We performed two sets of experiments. In the first set
we study the capability of our model Shape-selective neu-
rons to represent complete shapes as aggregates of bound-
ary fragments in curvature x angular position domain. In a
second set of experiments we examine the performance of
our model for classifying real world images.

3.1. The curvature x angular position representa-
tion

Pasupathy and Connor [17] recorded from neurons in
area V4 of the macaque monkey. The response pattern was
quantified by using a 2D Gaussian tuning function. We
wanted first to test the capability of our model to encode
curvature in the Curvature X angular position representa-
tion proposed by Pasupathy and colleages and we compare
our model’s performance against the results from [17].

3.1.1 Methods

Experiments were run in Matlab in a Mac G5 PowerPC
computer. The input to the model is a gray-value im-
age. Images used are 400x400 pixels, a shape would span
300x300 pixels and correspond to the stimuli used in the
aforementioned study.

Simple cells comprised 4 scales and 12 orientations.
Sizes were 40, 60, 88 and 120 pixels, their corresponding
values of o, were 10, 15, 22 and 30; 0,,,=5.7, 4.3, 4 and 4;
0z,=2.5%05;,. Complex cells were obtained as explained
before. For the integration into model endstopped neurons,
the values of gain ¢ (Equation 4) for displaced neurons cq;



= cq2 were, from the smaller to the larger cell: 1.5, 1.25,
1, 3, c. = 1 for all centre cells. For the chosen parameters,
cells respond (considering 90% of their maximum value) to
the following ranges of curvature radius: 6 to 11, 25 to 52,
48 to 77 and 140 to 300+ pixels. The 4 types of model end-
stopped neurons and the curvature direction selective neu-
rons lead to eight curvatures.

The stimuli from [17] contains boundary elements that
include sharp convex angles, and medium and high convex
and concave curvatures. The combination of these bound-
ary elements gave rise to 49 different stimuli (Figure 4, left
icons). Neuronal responses from [17] are reported using
convex and concave curvatures. The method to compute
convexity/concavity uses our model endstopped direction
neurons and the centroid of the object i.e., the center of
mass of the region. Following this strategy, 8 polar regions
are considered in increments of 45°. E.g. the first area (0° to
45°) is convex provided model direction neurons are to the
left, any other condition means it is concave. For each area,
the direction of its model neuron is considered in order to
be convex or concave and a map of convexity and concav-
ity is obtained based on the model neurons directions and
the polar area they belong to relative to the centroid of the
object.

The 4 types of model endstopped neurons and the cur-
vature direction selective neurons lead to eight curvatures.
In order to compare with [17] we transformed the curvature
radius pixels to which our model endstopped neurons were
selective into the squashed curvature values used by Pasu-
pathy and colleagues. Pasupathy and Connor’s stimuli use
higher values for convexities than concavities (their range of
curvatures is 1 (convex) to -0.3 (concave)), for this reason
we took the higher values of the ranges for the convex con-
tours provided before (radius=11, 52, 77, 301 pixels), and
the lower values for the concave contours (radius=6, 25,
48, 140 pixels). We transformed the pixel values into cur-
vature values considering the resolution of the screen and
that the definition of curvature is I/radius. We finally used
the squashed curvature equation found in [17]:

, 2.0

¢ = e 1.0 (8)

After performing the preceeding transformations for
comparison purposes, eight curvature classes were consid-
ered: (1) Very high curvatures/corners, ¢ = 1, (2) High
convex curvatures, ¢ = 0.74, (3) Medium convex curva-
tures, ¢ = 0.45, (4) Low convex curvatures, ¢ = 0.17,
(5) Straight lines, ¢’ = 0.0, (6) Low concave curvatures,
¢ = —0.1, (7) Medium concave curvatures, , ¢’ = —0.3,
and (8) High concave curvatures, ¢’ = —0.4. To consider a
curvature as class 5 (Straight lines), its response to any cur-
vature cell is to be less than 20% the maximum curvature
cells response and have a high response to a simple neuron
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Figure 4. For every stimulus (left image within each of the 4
columns), Pasupathy and Connor’s fit (white curve, center) su-
perimposed summed population neural responses (colored values,
center) was compared to our model’s response (right), blue curve
on white background.
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(>50% maximum response).

The maximum curvature responses from model en-
stopped neurons were integrated at different angular posi-
tions (in 12° steps) with respect to the center of the object
and data was fitted using a spline in order to obtain a func-
tion to compare with [17].

3.1.2 Results

Figure 4 shows the results to all the stimuli from [!7]. For
each stimulus (left column of each panel), Pasupathy and
Connor’s results (colored graphs with white curves, cen-
ter column of each panel) are compared against our results
(blue curve on white background, right column of each
panel). It can be seen that the results are quite similiar to
those obtained for neurons in area V4 of the visual cortex.

We can see that our plots are not as smooth as the real
plots corresponding to the stimuli. At some angular posi-
tions our plots show small bumps this is an effect of sam-
pling (we use only 12 orientations), in fact those bumps
occur at those orientations and provides a limitation on
shape representation. Nevertheless, we observe here that
the model performs closely to neuronal data, fitting very
well in almost every case the Gaussian shape response pat-
tern (colored graph). The peaks of our model are highly
correlated to the cells response patterns.

We measured the difference between our model and the
veridical curvature functions (white curves in middle rows).
For such a task we averaged the Euclidean distance between



the four to eight angular position values provided by Pasu-
pathy and the results from our model in curvature and an-
gular position. Both terms were normalized to 1.

The worst case scenario would be one where the plot
provided by the model would be completely the opposite
from the curve in [17] (distance=1). The case where our
results completely overlap Pasupathy’s curve would mean
that Shape neurons have the same exact response pattern as
real cells (distance=0). The maximum error is 1 and a per-
fect match is 0. Total average error for all stimuli was 0.074
(stdev = 0.037). These results show that the proposed hi-
erarchichal representation based on endstopping to achieve
curvature provides very similar data to data from neurons
and curvatures, only 5 out of the 49 stimulus distances were
over 10% error (or 0.10 distance), and all of them were be-
low 19%. Most errors are on the range 0.02-0.08.

3.2. Test with real world images

Here we provide a preliminary test of our model on
real images. For the task we have selected eight databases
with clutter (Leaves from [&], cars back, faces, motorcy-
cles, leopards, bottles and airplanes from Caltech256 and
cars from [12]) used in previous Computer Vision studies.
The task was an object present/absent classification, where
the model has to detect if the object in question is present
in the image or not. We used the background database as
negative (absent) samples.

3.2.1 Methods

Images were resized to 240 pixels width and 160 pixels
height. Simple cells comprised 4 scales and 12 orientations.
Sizes were 20, 40, 60 and 80 pixels, their corresponding
values of o, were 5, 10, 15 and 20; o0, =1, 2, 2 and 2.7;
05,=2.5%04,. Complex cells were obtained as explained
before. For the integration into model endstopped neurons,
the values of gain ¢ (Equation 4) for displaced and cen-
ter neurons were cq; = cq2 = ¢. = 1. For each image the
Shape neuron pattern of responses was obtained, that is the
responses from the different local curvatures neurons (8 cur-
vature classes). Those values from local curvature neurons
responses were organized in radial bins of radius=10 pixels
at angular steps=4°. Those values were used to construct a
feature vector (2640 elements).

That feature vector of pattern of responses was the in-
put to an Adaboost classifier (300 iterations). Training con-
sisted on presenting randomly half the images containing
the object (positive samples: 93 for leaves, 263 for cars
back, 258 for cars-MIT, 225 for faces, 95 for leopards, 50
for bottles, 413 for motorbikes and 537 for airplanes) and
half the background images (negative samples: 225 ran-
domly chosen images). The remaining images were used
to test the model (Same number as in training, but different
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Database

Model | Benchmark |Hanetal.|Serreetal.

84.2 % (Fergus)

Samples

Cars back 98.6 % 99.7 % 99.7 %

R | 969% | 754%(Leung) 95.1%
Faces .ﬂ ml m 89.2% | 90.3 % (Fergus)| 93.4% 98.2%
Leaves & & RK | 940% | 840% (Weben| 988% | 97.0%
Airplane “ﬁ*—- 92.8% | 93.6 % (Fergus)| 98.7 % 96.7 %
Leopards - S '('4 96.9 % | 88.0% (Fergus) [ 100 %
Motorbike 96.4% | 97.3% (Fergus) [ 953 % 98.0 %

Bottle 83.3% | 76.4% (Fergus) | 70.0 %

Figure 5. Results with real images.

randomly chosen images).

3.2.2 Results

We obtained the percentage of correctly classified images
(as containing objects or background). Results are shown
in Figure 5. The model outperforms classical systems such
as [23], [9] and [12] for most databases. Correct classifica-
tion were: 98.6% for cars back (1.9% false negatives and
0.9% false positives), 96.9% for cars-MIT (5% false nega-
tives and 0.9% false positives), 89.2% for faces (12% false
negatives and 10% false positives), 94.0% for leaves (10%
false negatives and 0.7% false positives), 96.9% for leop-
ards (4% false negatives and 2.6% false positives), 83.3%
for bottles (35% false negatives and 16.5% false positives)
and 92.8% for airplanes (5% false negatives and 1.2% false
positives). Results are similar as well to another biologicaly
inspired model [19], and the very recent Bag-of-features ap-
proach by [10].

4. Discussion

A model of intermediate representations and computa-
tions has been shown that bridges the gap between the com-
mon very early orientation representations found in most
categorization systems, and the higher level object level
representations. These representational levels have been
shown to not only provide very low error fit to real neuronal
data but also to perform comparably than current learned
representations. Because the process of learning is time-
consuming, this implies that our representation may be sub-
stituted for the currently learned intermediate representa-
tions, thus reducing both learning time and the number of
training samples required.

The differences between our model and other recent
models, e.g. [19, 2] are several. Whereas Serre, Cadieu
and colleagues define their cell types as combinations of
edge maximal responses successively over a number of hi-
erarchical layers (7 in [19]), here our neurons in each layer
compute quite different quantities. Our goal was to include
curvature computations directly, and not indirectly as Serre
et al. through the conjunctions of edges. Similarly, [2] used



a forward selection algorithm (greedy search) to determine
the subset of Gabor based subunits whose combination ap-
proximates curvature. These strategies do not explicitly
include either curvature or end-stopped units, both well-
known to exist in the visual cortex. Although a learning
approach is valuable when there is no other option, in the
case of these intermediate representations, there is sufficient
knowledge to directly model these cells (in the same way no
one “’learns” Gabor or DOG cells, because those functions
are well understood). However, except for the notable ex-
ception of [6], these intermediate cell representations have
not been adequately investigated computationally. This is
where our approach and that of Serre diverges and enables
our true representation of curvature and 2D shape.

To conclude, we have shown that is it is possible with
current enhanced knowledge of the neurophysiology of cur-
vature and shape detection, to develop new and effective
intermediate representations for object categorization sys-
tems. These reduce the load on learning procedures without
impacting performance but importantly, also provide a new
understanding of the nature of object representation.
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