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Selective Tuning (ST) presents a framework for modeling attention and in this work we show how
it performs in covert visual search tasks by comparing its performance to human performance. Two
implementations of ST have been developed. The Object Recognition Model recognizes and attends
to simple objects formed by the conjunction of various features and the Motion Model recognizes and
attends to motion patterns. The validity of the Object Recognition Model was first tested by successfully
duplicating the results of Nagy and Sanchez. A second experiment was aimed at an evaluation of the
model’s performance against the observed continuum of search slopes for feature-conjunction searches
of varying difficulty. The Motion Model was tested against two experiments dealing with searches in
the visual motion domain. A simple odd-man-out search for counter-clockwise rotating octagons among
identical clockwise rotating octagons produced linear increase in search time with the increase of set
size. The second experiment was similar to one described by Thorton and Gilden. The results from both
implementations agreed with the psychophysical data from the simulated experiments. We conclude that
ST provides a valid explanatory mechanism for human covert visual search performance, an explanation
going far beyond the conventional saliency map based explanations.
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1. Introduction

The breadth of functionality associated with atten-
tional processing can easily be seen in several
overviews (e.g. Refs. 1, 2). One of the most studied
topics and with a very significant literature is that
of visual search. Visual search experiments formed
the basis and motivation for the earliest of the influ-
ential models (e.g. Refs. 3, 4). Yet, no satisfactory
explanation of how the network of neurons that com-
prise the visual cortex performs this task exists. Cer-
tainly, no computational explanation or model exists
either.

In a visual search experiment, the task is to look
for a target defined by one or more features among
a set of distractors that are different from the tar-
get but may share one or more features with it.

When target and distractors are the same except
for one feature, it is commonly known as feature
visual search and the target seems to pop-out (e.g.
a red vertical bar among a set of green vertical
bars). When there are two different kinds of dis-
tractors and the target shares a feature with each
one of the two types of distractors, this search
is referred as conjunction search and it requires
more time to find the target (e.g. Look for a red
vertical bar among red horizontal bars and green
vertical ones). Decades of psychophysical experi-
mentation have analyzed response-time (RT) as a
function of the number of distractors for most of
the different features under thousands of different
situations.5
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The analysis of RT× size slopes has been widely
used to propose different theories on how the brain
works for such tasks. One of the most influential
was the Feature Integration Theory,3 which proposed
that feature search was the result of a parallel pro-
cess while a conjunction search was the result of a
serial search. More recent models6,7 have rejected
that hypothesis, proposing a visual search continuum
directly related to the similarity among target and
distractors.

Some recent models of attention8,9 have been
compared to human eye movement tracks -overt
attention- as validation; but this is not the same as
visual search data which is almost exclusively covert,
with no eye movement. Visual attention involves
much more than simply the selection of next loca-
tion to fixate the eyes or camera system, regardless
of the fact that the vast majority of all computational
approaches to attention focus on this issue exclu-
sively. That humans are able to attend to different
locations in their visual field without eye movements
has been known since Ref. 8. Further, eye move-
ments require a shift of visual attention to precede
them to their goal, Ref. 1 surveys relevant experi-
mental work).

Attentional models have matured sufficiently so
that this broader problem of attention can now be
confronted. This paper makes several steps towards
the development of such an explanation expanding
the Selective Tuning model11,12 and comparing per-
formance with existing visual search psychophysical
performance. This is done with simple colored shape
stimuli as well as with motion stimuli.

The rest of the paper is organized as follows: Sec-
tion 2 describes the Object Recognition model with
its two main pathways, shape analysis and color anal-
ysis, and tests the model with visual search experi-
ments. Section 3 deals with testing the Motion Model
in the case of moving targets from a set of distractors
in different conditions. We finally present our conclu-
sions in Sec. 4. The results of both implementations
of the Selective Tuning11,12 model is compared with
psychophysical experiments extracted from the liter-
ature, obtaining comparable results to those.

2. Object Recognition Model

Given a scene with several objects, the model’s pur-
pose is to find a particular object that has been pre-
sented previously.

Fig. 1. Architecture of shape pathway.

The model structure is a two-pathway pyramid
with information flowing from the input to the top
of the pyramid and from the top to the bottom pro-
viding feedback. Each one of the two pathways ana-
lyze the visual input in a different way, one extracts
color information, while the other extracts informa-
tion about the shape of the objects (Fig. 1).

The model mimics the human visual pathway
for object recognition, simulating four visual areas:
LGN, V1, V4 and IT. Each area is organized into fea-
ture maps and each feature map encodes the visual
field in a unique way. The model comprises a total
of 22 feature maps.

Information first flows from the input to area
LGN and V1. LGN extracts three color feature
maps (red, green and blue). V1 is composed
of edge detectors organized in 8 feature planes
(each containing neurons tuned to one of 8 direc-
tions). Two additional feature maps in V1 com-
pute center-surround color differences from the LGN
color feature maps. Information from V1 flows to
V4, which comprises 8 feature maps for curva-
ture. Finally, IT neurons encode a representation
of the whole object based on curvature and color
differences.

Our strategy follows the sequence of events in a
human visual search experiment, that is, a subject
is first shown the target on a blank display, then is
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shown the test display to be searched. Similarly, the
system is first shown the target and extracts a repre-
sentation of it. This representation is used to bias the
subsequent search when the test display is presented.
When the test display is presented, biased shape and
color analysis proceed in parallel in a feed-forward
manner, then the Selective Tuning11 feedback atten-
tive process is applied. The different stages of pro-
cessing are explained in more detail in the following
sections.

2.1. Shape analysis

The shape processing pathway (Fig. 1) is inspired by
Pasupahy and Connor.13 Visual Area V1 contains
neurons that perform edge analysis. Gabor filters14

are used with 8 different orientations:

G(x, y) = e−(a2x′+b2y′) × e−(j2pfx′)

x′ = xcos(q) + ysin(q)

y′ = −xsin(q) + ycos(q)

(1)

where α and β are the sharpness of the Gaus-
sian major and minor axis, with values of 1 and
0.25 in our case; f is the frequency and θ is the
orientation.

The size of the neuron’s receptive field is 16× 16
pixels. The output of V1 neurons is 8 feature planes,
representing edges at 8 orientations. Non-maximal
suppression15 is applied in order to reduce the Gabor
filter output to a 1-2 pixel wide images as a pre-
processing for the next visual layer. The output from
V1 neurons feeds into V4.

V4 neurons compute curvature values based on
orientation changes from groups of adjacent V1 neu-
rons. For example, if a V1 neuron in a V4 receptive
field had its highest response for θ = 0 and another
adjacent one had a high response for θ = π/4, we
would have a corner. If both orientations were equal,
it would correspond to a straight line.

Curvature for V4 is then defined as:

curv = min(|θ1 − θ2| , 2π − |θ1 − θ2|)
curv ∈ [0, π)

(2)

where θ1 and θ2 are the orientations of two V1 cells.
A value of π can be added to θ1 and/or θ2 depending
on the neurons’ relative positions inside the V4 recep-
tive field due to the fact that the same Gabor filter
orientation can account for two different angles. The

Fig. 2. Shape analysis on target stimulus. Left (bottom-
up): Edges are extracted in V1 at each different orien-
tation, then in V4 curvatures are calculated, finally IT
computes the curvature×position representation13 Right
(top-down bias): From such a representation, in V4 fea-
ture planes that do not have values of curvature corre-
sponding to the object are inhibited (black), and in these
V4 feature planes, neurons that are not at the proper
location are inhibited as well. In V1, neurons that do not
contribute to those V4 feature planes are also inhibited,
only allowing the Gabor filters corresponding to the ori-
entations that feed into the non-inhibited V4 neurons.

activation value of the V4 neuron is the summed acti-
vations from the V1 neurons used to obtain the cur-
vature. V4 neurons receptive field comprise groups
of 4 × 4 V1 neurons.

V4 neurons’ output is 8 2D feature maps that
encode for the difference of curvature among groups
of V1 neurons. This output feeds into IT at the very
top of the hierarchy (Fig. 2). The receptive fields of
IT neurons comprise an area of 32 × 32 V4 neurons
(that is, 128× 128 pixels). The center of mass is cal-
culated for every group of V4 neurons as the mean of
the V4 neuron coordinates where responses are dif-
ferent from zero. Then, at each angular position (in
10 deg bins), its curvature is computed in agreement
with the representation proposed by Ref. 13, obtain-
ing a histogram-like representation for IT neurons
where one axis correspond to the angular position
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(λ) and the other coordinate is the curvature curv
for that position (Fig. 2):

λ = round




tan−1

0
@ y − centroidy

x − centroidx

1
A∗18

π




IT (λ) = curv

(3)

The term 18/π is for the angular position to be
in 10 deg bins.

All neuron relative sizes were chosen to corre-
spond closely to the neurophysiological measured
sizes16 considering a distance of 30 cm (usual psy-
chophysical distance) to a 1280× 1024 display. Neu-
rons’ receptive fields are overlapped.

2.2. Color analysis

The processing of color follows a centre-surround
analysis.17 A first layer (LGN) extract 3 feature maps
for red (R), green (G) and blue (B) responses. In
the upper layer (V1), surround values for red-green
(RG), green-red (RG), blue-yellow (BY) and yellow-
blue (YB) are extracted following most models (e.g
Ref. 8):

RG =
(R − G)

Luminance

BY =
(B − Y )

Luminance

(4)

RG feature plane also accounts for GR differ-
ences, the same applies to the BY feature plane.

As in the Shape analysis, color neurons at every
level of the hierarchy are also inhibited if they do not
share the values corresponding to center-surround
and color activations of the target.

2.3. The bias stage

After the representation of the object shape is
obtained, V4 and V1 layers are biased (Fig. 2 right).
In V4 only neurons that are not in the proper angu-
lar position and in the desired curvature feature
planes are completely inhibited. For those V4 neu-
rons not completely inhibited, a partial inhibition
will be applied to those ones that are further apart
to the object’s center of mass, inhibition in this case
is linearly proportional to the Euclidean distance to
the object’s center. At a lower level, the neurons
inhibited in V1 correspond to those whose orienta-
tion values were related to the curvature inhibited
V4 neurons.

2.4. Recognition

Before the presentation of the test display, the net-
work is biased to expect the target stimulus. The
point of this bias is to speed up search; it has been
shown that advance knowledge of the target indeed
speeds up detection in a test display.18−20 However,
erroneous knowledge of the target slows down over-
all search.21 The processing is first biased by the
presented object or target representation at the dif-
ferent visual layers of the network so that after the
first feed-forward pass of processing the test display
only locations with the desired target features will
be considered. Then, the search begins after a feed-
forward activation by considering the best matching
IT neuron from the possible candidates containing
non-biased features.

To determine how close is the shape to the
desired shape, distance to the target IT histogram
is computed, for this distance we used cummulative
distance. This distance is very common for comput-
ing distances between histograms and it is used here
due to the similar representation of IT neurons to a
histogram:

d(p, q) =

√√√√L−1∑
i=0

(
i∑

u=0

pu −
i∑

u=0

qu

)2

(5)

The activation of the neuron is inversely propor-
tional to d. Both activation values for color and shape
∈ [0, 1] and the activation of the candidate IT neu-
ron is the addition of both values. Even though the
object can be in the receptive field of the highest
activated IT neuron, due to its large receptive field
and even after the bias, it can accommodate other
objects (that may even disturb the firing values of
the IT neuron). Information is further filtered in the
lower layers (V4, V1) by computing winner-take-all
in a hierarchical fashion.11 The WTA processes in
V4 are grouped by curvature angle. There is a sep-
arate WTA process for each 10 deg bin (as deter-
mined by Eq. 2), i.e. a V4 neuron will only compete
with neurons in the same bin. In V1 only those neu-
rons connected with the V4 winners are considered,
and the same process is applied when going from V1
to the image, finding the contour of the candidate
object. Figure 3 shows an example of this process.
Inhibition of return was implemented in by blank-
ing the part of the input image corresponding to the
analyzed object.
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Fig. 3. Analysis of a scene (bottom): find the square.
Left: V1 layer extracts edges, V4 neurons compute cur-
vature. Here, inside the IT neuron receptive field (RF)
lays the square and part of an object of no interest (rect-
angle). Right: V1 and V4 layers after attention. Layers
in the hierarchy are first biased and information is later
filtered through a winner take all process (See Ref. 11 for
a full explanation). Thanks to this process, information
is filtered such that the object of interest (square) is the
only object that remains inside the IT neuron RF.

2.5. Results

We tested the model’s behavior for different visual
search conditions. For these tests, we followed dif-
ferent psychophysical experiments and we compared
the results obtained from those works with the
results obtained from the model.

But before testing the model for visual search, we
performed a study on how the shape representation
works for a simple recognition of silhouette-kind of
objects.

2.5.1. Silhouette search

Pasupathy and Connor13 used simple icons to infer
how neurons responded to shapes. As a result, we
first tested the shape analysis component of our
model with 2D silhouettes.

To test the model the silhouette database from
Ref. 22 was used. The architecture was fed with dif-
ferent silhouettes of objects, animals, cars, planes,
etc. Then, scenes were constructed with such ele-
ment silhouettes and the response corresponding to
the scene IT neurons were evaluated. The IT neuron

from the scene with a closer response (in terms of dis-
tance) to the neurons representation in the database
was recognized as containing the object represented.

The test scene images were 512 × 512 pixels. IT
neuron’s receptive field were 128 × 128 as described
previously and there was an IT neuron every ten pix-
els starting from the coordinates (64, 64) until coor-
dinates (448, 448).

Figures 4 and 5 show different IT neurons and
the object corresponding to their highest response
(inside a dashed-line box). We show how the system
performs when the whole object is present (Fig. 4)
and in conditions when the objects are partially pre-
sented (Fig. 5). The system works pretty well in both
cases. Although the silhouette is usually at the center
of the neuron when training, the winning IT neuron
doesn’t need to have the object exactly at its cen-
ter, but we can see that this is usually the case in
accordance to Ref. 13. Figure 5a shows how the sys-
tem behaves when there is partial information about
the target objects in the scene. We can see that the
model finds correctly every object, even when infor-
mation is quite incomplete (e.g. the plane). Note that
in these cases the IT receptive field center is not so

Fig. 4. Example of silhouette recognition. Recognition
of complete objects. The dashed-line box correspond to
the winning IT neurons receptive with fields that corre-
spond to the silhouette being look for (shown in the small
continuous-line box close to it).
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(a) (b)

Fig. 5. Examples of silhouette recognition. (a) Recognition of partially presented silhouettes. (b) Recognition of scenes
with gaussian noise. The dashed-line box correspond to the winning IT neurons receptive with fields that correspond to
the silhouette being look for (shown in the small continuous-line box close to it).

close to the object’s center, while if it is in its full
shape that is usually the case (turtle).

In Fig. 5b we show how the representation per-
forms for a case with Gaussian noise (µ = 0, σ2 =
0.01). The representations shows to be quite robust
to noise. The only case where the winning neuron is
not the optimal, corresponds to the ray, but a neuron
very close to it corresponds to the winning neuron.

2.5.2. Efficiency in visual search

Recently, it has been shown that conjunction
searches (See Ref. 5 for a review) may exhibit shal-
lower slopes than those found by Ref. 3, and there
seems to exist a continuum from efficient to ineffi-
cient visual search. An interesting theory is the one
proposed by Ref. 6, they were the first to argue
that visual search is influenced by the similarity
between target and distractors, they stated that
visual search is harder when target and distractors
are more similar, but it is easier when this similarity
decreases, this theory have been supported by later
experiments.23,24

For so we decided to test the model first with
an experiment concerning the similarity hypothe-
sis. One that studies a fundamental basic feature
(color) and known in the psychophysical community
is Ref. 23, this is the experiment we first replicate.

In our second experiment we test the search con-
tinuum and we compare the performance of the
model for feature search, conjunction search and inef-
ficient search.

Feature search is a search where a target is distin-
guished from the distractors by a single feature such
as color, shape or orientation. In our second experi-
ment we will use the term feature search to refer to
a classical psychophysical feature search experiment
defined by its efficiency and for so, having a big dis-
similarity between target and distractors. As shown
in experiment 1, that feature search is efficient is not
always the case.

In conjunction search a target is defined by a con-
junction of two features. Finally, following Ref. 5, we
use the term inefficient search for those visual search
experiments that are more difficult than the classical
conjunction search. Let’s note that, strictly speaking,
inefficient search is also a conjunction search, but we
will use a different notation to distinguish it from the
classical conjunction search.

The sample was given as input in a 128 × 128
pixel image, and the scenes were 640 × 640 pixels.
In our first experiment we will test a known feature:
color, and how the model performs under two differ-
ent similarities of colored objects.

Summarizing, we first follow a known study23

about color similarities and compare our results with



1st Reading

July 20, 2007 15:33 00113

Attention and Visual Search 7

those of such study. In a second experiment we
study more deeply the continuum efficient-inefficient
search with Selective Tuning. We follow three known
experiments and as before, compare our results with
those.

Experiment 1: Color differences

Method : In this experiment we study how the model
performs in a color similarity search. We try here to
simulate experiment from Ref. 23, who showed that
feature search can be inefficient if the differences in
color are small. We used the CIE values from their
experiments converted to RGB with a fixed lumi-
nance (Y) of 0.25. The task is to find the redder
circle among 5, 10, 15, 20 and 25 distractors for two
conditions: small and large color differences. The tar-
get and distractors were randomly positioned on a
black background. The least mean squares method
was used to fit the straight line into the set of
points.

Results : An example is shown in Fig. 6 left,
where, when there are small differences between the
target and the distractors, a much larger number
of attentional shifts are needed to find the target.
Fig. 6 right shows how the number of attentional
shifts increases as the set size increases. This exper-
iment reports similar results to Ref. 23 where color
search is inefficient if color difference is small between
target and distractors (slope = 0.39) and efficient if
the difference is large (slope = 0.01).

Fig. 6. Visual Search Results. Left: Example where the target and distractors have small color differences, 10 shifts of
attention were needed to find the redder item (white outline). Right: The number of fixations as a function of set size.
Gray line: large color difference, black line: small color difference.

Experiment 2: Feature, conjunction and inefficient
search

Bichot and Schall25 showed that monkey visual search
reaction times are comparable to human, namely they
show that the conjunction of two different features
(shape and color) is steeper than feature search, but
shallower than what was obtained by Ref. 3. They
report slopes of 3.9ms/item. Searching for a rotated
T among rotated Ls, Ref. 26 reported that this search
was quite inefficient (20 msec/item), and less efficient
than conjunction searches. To find a T among Ls is
more inefficient than a conjunction search, which is
less efficient than a simple feature search.

Method : In this experiment we study how the
model performs in a simple feature search, a conjunc-
tion search and an inefficient search. Conjunction
search was similar to that of Ref. 25. The stimuli
were crosses and circles, red or green colored. The
task was to find a red circle among green circles and
red crosses, here we used 8, 12, 16, 18, 22 and 24 dis-
tractors. Feature search was a simplification of the
previous conjunction search, that is, to look for a
circle among crosses. For inefficient search, a rotated
T was to be found among Ls rotated at 0, 90 and
180 degrees, in this case we used 6, 9, 12, 15, 18 and
21 distractors. Analysis was the same as for previous
experiments.

Results : An example of searching for a T among
Ls is shown in Fig. 7 many atttentional shifts are
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Fig. 7. Inefficient search: Find the rotated T among 21
Ls, 14 fixations were needed to find the T .

Fig. 8. The number of shifts of attention as a function of
set size for feature search (light gray), conjunction search
(gray) and inefficient search (black).

needed to find the target. Figure 8 shows the number
of attentional shifts as the set size increases for the
feature search (find a circle among arrows), conjunc-
tion search (find a red circle among red arrows and
green circles) and inefficient search (find a rotated T

among Ls). The figure shows how the steepest fit-
ted line is the one corresponding to looking for a T

among Ls (inefficient search, slope of 0.49) experi-
ment, followed by conjunction search (slope of 0.36)

and feature search is practically flat (slope of 0.00).
These results are in accordance with the contin-
uum from efficient to inefficient search psychophysi-
cal experiments have shown (see 5 for a review).

Discussion

The above results show the ability of the Object
Recognition Model to perform visual search. The
reaction time is shown based on the number of
attentional shifts. We performed easy feature search,
difficult feature search, conjunction search and ineffi-
cient search. The results obtained seem to agree with
the increasing degrees of difficulty reported by psy-
chophysical data from 23, 25 and 26, whose experi-
ments were simulated above. Our experiments seem
to agree also with the proposal that search is more
efficient when objects are more dissimilar6 and the
continuum efficient-inefficient search found in the
literature.5

3. Motion Model

Here we present a short description of the Motion
Model and explain the main concepts and output
conventions in order to be able to explain the exper-
imental results. Mathematical details are omitted
since they have been published elsewhere.12

3.1. Description

The Motion Model is a computational model of
attention that works in the motion domain. As input
it accepts a video stream in the form of sequences
of images and is able to detect, localize and classify
moving objects in the scene. The processing of infor-
mation is inspired by biological research and there-
fore the computational structure of the model mimics
some known properties of the monkey visual path-
way. There are four distinct areas of the cortex that
are simulated in the model: V1, MT, MST and 7a
(Fig. 9). All these areas are known to participate in
processing of visual information and specifically that
which is perceived as motion. The model consists of
694 feature maps each of which encodes the whole
visual field in a unique way. Those feature maps are
organized into the areas based on their properties
and areas are positioned in the form of a pyramid
with information flowing from the input to the top
of the pyramid and from the top back to the bottom
providing feedback.
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Fig. 9. Full hierarchy of the Motion Model. This shows the set of neural selectivities that comprise the entire pyramidal
hierarchy covering visual areas V1, MT, MST, and 7a. Each rectangle represents a single type of selectivity applied over
the full image at that level of the pyramid. The three rectangles at each direction represent the three speed selectivity
ranges in the model. Position of a square around the circle represents direction selectivity. In area V1 the neurons are
selective to 12 different directions and 3 different speeds (low, medium and high). Each area following area V1 has two
parts. One where neurons are tuned to direction and speed, much like in V1 (the translational pyramid on the right)
and the second part where neurons have more complex characteristics and are able to encode complex motion patterns,
such as rotation, expansion and contraction (the spiral pyramid on the left). Colored rectangles in area MT represent
particular angles between motion and speed gradient. MST units respond to complex patterns of motion. The 7a layers
represent translational motion, complex motion, both as in area MST, plus radial and rotation without direction in the
topmost set of six rectangles.

The internal architecture of the model is rather
complicated and full description of it is beyond the
scope of this paper (see Ref. 12). Here we present a
brief description. From the input images, information
channeled to area V1 which contains 36 feature
maps. Each of those feature maps contains topo-
graphically arranged neurons which are tuned to one
of the twelve directions and one of the three speeds.
Spatiotemporal filters are used to model the selec-
tivity of V1 neurons for speed and direction of local
motion. The feature maps are positioned in three
rings with twelve maps in each ring. The position
in the ring corresponds to the preferred speed of the
neurons (the outside ring represents high speed, mid-
dle ring — medium speed and the inside ring — low
speed) (Fig. 9).

Area V1 projects onto area MT. Starting from
area MT and on the processing is split into two pyra-
mids: one that processes translational motion (the

translational pyramid, Fig. 9 on the right) and the
other that processes complex motion such as expan-
sion, contraction and rotation (the spiral pyramid,
Fig. 9 on the left). Area MT (Fig. 10) contains 36
feature maps of the translational pyramid and 432
feature maps in the spiral pyramid. The translational
part of MT is in effect a blurred version V1 with
smaller size and larger receptive fields. The com-
plex motion part of MT, however, is a lot different
from V1.

The aspect that is important to the current dis-
cussion is how the model processes complex motion
patterns. Every point in the complex motion pat-
tern moves with a unique velocity (i.e. the direc-
tion or the magnitude or both are different for every
point). So as complex motion is processed by the
model many different feature maps are activated by
that motion. For example, the neurons of the area
V1 encode only simple linear motion in 12 different
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Fig. 10. The gradient part of MT is the largest area
in the entire hierarchy. It consists of 432 feature maps
and encodes every possible combination of 12 directions
of motion, 3 speeds and 12 angles between direction of
motion and the direction of the spatial derivative of local
velocities. Here different gray values represent different
different angles between local direction of motion and
the spatial derivative of local motion (velocity gradient).

directions. Therefore all of V1 will have some acti-
vation since there are points moving in each of 12
directions encoded by V1. Further, in MT the mov-
ing object is decomposed into regions of common
spatial derivatives of local velocity. The full repre-
sentation of the complex motion is thus the conjunc-
tion of different features in the spiral part of area
MT which encode different directions of motion but
with the same angle to the speed gradient. There-
fore the search for the target that exhibits complex
motion among the complex motion distractors can be
viewed as a conjunction search and can be expected
to produce serial-like performance.

Area MST is located above MT. The transla-
tional part of MST contains 36 feature maps which
receive their inputs from corresponding feature maps

(a) (b) (c) (d)

Fig. 11. Typical output of the search task. (a) Input example: target moving clockwise, distractors counter-clockwise.
(a, b, c) The most conspicuous locations are attended first, the target is not found and the distractors are inhibited to
allow for the new location to be examined. (d) the search is terminated when the target is found.

in translational part of MT. The size of feature maps
of translational part of MST is smaller than that of
MT and the receptive fields of the neurons are larger.
The translational MST is essentially a blurred ver-
sion of translational MT. The spiral part of MST
receives its inputs from spiral MT maps it is able to
combine together similar gradient patterns in order
to determine if object in the scene exhibits rota-
tion, expansion, contraction or combination of those
motions. The spiral part of MST has 36 feature maps
also organized in three rings. Belonging to a ring
determines the speed of motion and the position
around the ring identifies the type of motion.

At the very top we have area 7a. Both transla-
tional and complex motion part of 7a have the same
conventions as those in MST but the size of each
feature map is smaller. 7a has 6 more feature maps,
three of those maps are tuned to rotational motion
and the other three to radial motion.

This hierarchy is used to process the image
sequences. As input enters the system the activations
of neurons are computed and propagated through the
pyramid to area 7a at the top. This results in bottom-
up data driven activation of 7a neurons. The most
salient location and feature map of the area 7a is
selected using one of the rules outlined in (Ref. 12).
This provides us with the knowledge of the type of
motion that takes place in the scene (identified by
the selected feature map) and also with a very course
spatial location of the motion. In order to localize the
motion pattern in the input image the neurons within
the receptive field of the winning neuron of area
7a participate in modified Winner-Take-All (WTA)
algorithm (Ref. 12) in order to obtain localization of
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the signal in area MST. Each winner in MST initial-
izes WTA process within its receptive field and this
process is repeated through the rest of the hierar-
chy until the motion pattern is localized in the input
image. The localized region is marked according to
the preset color coding scheme where each color cor-
responds to a different type of motion.

3.2. Motion visual search

To test the performance of the Motion Model we car-
ried out two experiments. First we examined how the
model performs a standard visual search task. Sec-
ondly we replicated one of the psychophysical exper-
iments by Ref. 27 that consisted of different moving
patterns at different locations (Figs. 12 and 13).

3.2.1. Singleton visual search

Method: In the experiment we examined how the
Motion Model performs a standard visual search
task. We used a singleton design where each trial
contained only one target and number of distrac-
tors was varied from trial to trial. Images of size
445 × 445 pixels contained one target and from 1
to 8 distractors. A typical input is shown on Fig. 11a
(the arrows depict the direction of rotation and were
not present in the input images). The target and dis-
tractor objects were identical textured octagons of
65 pixels in diameter. The target was rotating coun-
terclockwise and distractors were rotating clockwise
both with the angular speed of 3 deg/frame. The
target and the distractors were randomly positioned
on the white background without overlapping. Fig-
ure 11b, c and d show the progress of the search.
Instead of measuring the reaction time for finding

Fig. 12. Possible positions of the motion patterns in the
input images.

(a) (b) (c) (d)

Fig. 13. Motion patterns used in the experiment.
(a) counterclockwise rotation, (b) clockwise rotation,
(c) expansion and (d) contraction.

the target we counted the number of frames pro-
cessed by the model until the target was localized.
The least mean squares method was used to fit the
straight line into the set of points.

Results: Figure 14a shows how the time of detec-
tion of the target relates to the number of distractors
present in the scene. The position of the points on
the graph suggests a linear dependence. The straight
line fit of the points has a slope of 1.34 frames/item
and intersects with y-axis at 12.3 frames.

Discussion: We have shown in this chapter how
Motion Model performs a standard visual search
task. The equivalent of reaction time (RT) is
expressed in the number of frames needed to find
the target. The values appear to be linearly increas-
ing as we increase set size, which seems to be in
agreement with psychophysical data from Refs. 27
and 28. The typical output of the model is shown on
the Fig. 9. We can see that objects are selected in
groups rather than one at the time. This behavior
is caused by the fact that the model is attending to
the specific motion type at the specific spatial loca-
tion. The location is defined by the receptive field
of the winner neuron at the top of the pyramid.
Therefore, every object or part of an object that lies
within the attended receptive field and exhibits the
attended motion will be selected and processed in
parallel. Several other researchers proposed that mul-
tiple items can be processed in a single attentional
fixation, see review Ref. 5.

3.2.2. Thornton and gilden experiment

Method: In experiment we compared the perfor-
mance of the model with the human data by repro-
ducing the experiment described in Ref. 27. The
stimulus images consisted of a random noise back-
ground where every pixel was randomly assigned a
value between 0 and 255 on which a motion pat-
terns were superimposed. The motion patterns were
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(a) (b)

(c) (d)

Fig. 14. Search Results (a) standard visual search for the stimulus in Fig. 9, (b, c, d) the model’s performance on the
stimuli used in Ref. 27. The top half of each graph shows the output of the model and the bottom half of the graph.

also comprised of dots of random intensity. Each dot
was moved from frame to frame according to the
motion transformation and a circular aperture was
imposed on the motion patterns by repositioning the
dots which rolled off the circle back into the aperture.
The radius of the apertures was 43 pixels and the size
of the image was 300 by 300 pixels. There were four
positions where motion patterns could be placed, see
Fig. 12.

For each type of motion there were six trial blocks
with ten trails in each block. The number of tar-
gets and distractors was varied between blocks. The
blocks contained either 1 target and 0 distractors,
1 target and 1 distractor, 1 target and 3 distrac-
tors, 2 targets and 0 distractors, 2 targets and 2
distractors or 4 targets and 0 distractors. The only

difference between targets and distractors was the
direction of motion. So for clockwise rotating tar-
gets the distractors were rotating counterclockwise
and for expanding targets distractors were contract-
ing and so on. After the motion patterns were placed
on the background the whole image was smoothed by
Gaussian filter with σ = 0.75. The types of motion
patterns used in the experiment are shown on Fig. 12.
The reaction time is expressed in terms of the num-
ber of frames needed to find the target.

Results : Figure 14b, c and d show the results of
the experiment. The three graphs depict the model’s
performance on the stimuli used in Ref. 27. The top
half of each graph shows the output of the model and
the bottom half of the graph is the data reported
by Ref. 27. The complex motion patterns produce
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nearly linear dependence on the set size. The rotating
motion shows the steepest slope among the complex
motions which is in agreement with the human data.

Discussion: The results of this experiment show
a lot of similarities between the output of the model
and human performance on the visual search task.
Although, no direct quantitative comparison can be
done we can see that qualitative similarity is defi-
nitely present. The complex motion patterns seem
to be handled by the model in a manner comparable
to the human visual system. In the case of contrac-
tion, expansion and curl there is no decline in the
RT as the number of targets increases, and there is
a nearly linear rise of response times as the num-
ber of distractors increases. The curl patterns have
the largest slope compared to other complex motions
which is also in agreement with psychophysical data.
Overall the comparison is qualitatively correct, an
encouraging sign for the biological plausibility of the
model.

4. Conclusions

Here we have shown how the Selective Tuning model
can account for the visual search observations of a
significant set of psychophysical experiments have
been presented. Two very different set of stimuli
have been used to test the model, one correspond-
ing to colored shape objects while the other dealt
with motion patterns. In each case, both feature sin-
gleton and feature conjunction image items can be
correctly handled.

The model can also differentiate the differ-
ent types of visual search experiments that have
appeared along the years, showing a different effi-
ciency no only between feature and conjunction
searches but also more difficult searches (inefficient
visual search) as the one described in Ref. 26. The
behavior of the model agrees with well established
models of visual search,5,6 accounting for a contin-
uum efficient-inefficient search related to the similar-
ity between target and distractors.

The work is in stark difference to other seemingly
related research (such as Refs. 8 and 9). Here the per-
formance comparison is not eye movement based as
in Ref. 8. They model bottom-up saliency and can-
not include top-down effects of general knowledge
while at the same time use tracking data that is con-
founded by such knowledge. Reference 9 also model
bottom-up recognition with no need for attention

and thus have no natural mechanism for serial search
through a collection of stimulus items in a display.
The contribution in this paper of mechanisms that
can provide an explanation for visual search perfor-
mance has the promise of enhancing performance of
recognition algorithms in complex scenes.
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