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Abstract. Many think attention needs an executive to allocate resources. 
Although the cortex exhibits substantial plasticity, dynamic allocation of 
neurons seems outside its capability. Suppose instead that the processing 
structure is fixed, but can be ‘tuned’ to task needs. The only resource that can 
be allocated is time. How can this fixed structure be used over periods of time 
longer than one feed-forward pass? Can the Selective Tuning model provide the 
answer? This short paper has one goal, that of explaining a single figure (Fig.1), 
that puts forward the proposal that by using multiple passes of the visual 
processing hierarchy, both bottom-up and top-down, and using task information 
to tune the processing prior to each pass, we can explain the different 
recognition behaviors that human vision exhibits. To accomplish this, four 
different kinds of binding processes are introduced and are tied directly to 
specific recognition tasks and their time course. 

1   Introduction 

Topics like visual attention, recognition, or binding command a large, conflicting 
literature. For example, the nature of the attentional influence has been debated for a 
long time. Among the more interesting observations are those of James (1980) 
“everyone knows what attention is...” juxtaposed with that of Pillsbury (1908) 
“attention is in disarray” and Sutherland’s (1998) “after many thousands of 
experiments, we know only marginally more about attention than about the interior of 
a black hole”.  Even Marr, basically discounted the importance of attention by not 
considering the time intervals of perception where attentive effects appear. When 
describing grouping processes and the full primal sketch, he says, ”our approach 
requires that the discrimination be made quickly - to be safe, in less than 160ms - and 
that a clear psychophysical boundary be present” (Marr 1982, p.96). Not only is the 
number of experimental investigations enormous, but also the number of different 
models, theories and perspectives is large. Attention has been viewed as early 
selection (Broadbent 1958), using attenuator theory (Treisman 1964), as a late 
selection process (Norman 1968, Deutsch & Deutsch 1963), as a result of neural 
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synchrony (Milner 1974), using the metaphor of a spotlight (Shulman et al. 1979), 
within the feature integration theory (Treisman & Gelade, 1980), as an object-based 
phenomenon (Duncan 1984), using the zoom lens metaphor (Eriksen & St. James 
1986), as a pre-motor theory subserving eye movements (Rizzollati et al. 1987), as 
biased competition (Duncan & Desimone 1995), as feature similarity gain (Treue & 
Martinez-Trujillo 1999), and more. 

Within all of these different viewpoints, the only real constant seems to be that 
attentional phenomena seem to be due to inherent limits in processing capacity in the 
brain (Tsotsos 1990). But even this does not constrain a solution. Even if we all agree 
that there is a processing limit, what is its nature? How does it lead to the mechanisms 
in the brain that produce the phenomena observed experimentally? 

We suggest that the terms attention, recognition and binding have become so 
loaded that they mask the true problems; each may be decomposed into smaller, 
easier problems. For example, consider the observations that different recognition 
tasks require different processing times. Detection and categorization seem to take 
about 150ms, identification takes about 65ms longer, localization of a stimulus so that 
detection can be expressed through a saccade or pointing action takes 200ms or more, 
and harder tasks such as detection in clutter, transparent motion or difficult 
conjunctions take even longer.  

We propose that the process of binding visual features to objects in each of these 
tasks differs and that different sorts of binding actions take different amounts of 
processing time. Some require attention, others do not. We introduce a novel set of 
four binding processes: convergence, partial and full recurrence, and iterative binding. 
These are tied to different recognition tasks: detection or categorization, 
identification, localization and hard detection. The Selective Tuning model (Tsotsos 
1990; Tsotsos et al. 1995), through its execution time course and due to its inherent 
tuning functionality, provides much of the computational substrate for these types of 
binding, recognition and attentive modulation.  

2   The Stages of Recognition 

Which knife can one use to carve ‘recognition’ into manageable slices? There are 
many possibilities. Should those slices be different brain areas, each responsible for 
different sub-tasks? Should those slices be different tasks? What about varying 
feature, object or scene complexity? The argument made by this paper is that the same 
neural machinery of the visual cortex is used for any of these dimensions (admittedly, 
some areas perhaps more involved than others) and that the most effective way of 
carving up the problem is to cut along the dimension of time. That is, different tasks 
are known to take different amounts of processing time even though they require the 
same neural machinery for that processing. 

Much past experimental research has already provided what is needed. Consider 
the time course of events during a typical visual search experiment. An abstraction of 
this appears in the next paragraph. For each step, it is the same pair of eyes, the same 
retinal cells, the same, LGN, V1, V2 and so forth, that process the incoming stimuli. 
Each step in the processing pathway requires processing time; no step is instantaneous 
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or can be assumed so. In such experiments, the timings for each of the input arrays is 
manipulated presumably in order to investigate different phenomena.  

Consider the following characterization of the typical course of activities for an 
experiment investigating attention or recognition behavior: 

 
1. provide the subject with task information, including 
 - what are the cues if any 
 - what is the task and what criteria are used to judge a successful trial 
 - what sequence of events will the subject see 
2. attend fixation stimulus 
3. onset of stimulus array 
4. process stimulus array, perhaps including   
 - detect items in array 
 - attend to one or more items, re-applying  or modifying task guidance 

   in order to solve the task 
 - interpret item’s characteristics as required for the task 
5. respond to stimulus array using one of the following  
 - key press while continuing to fixate 
 - saccade to perceived location 
6. subject feedback on response 
7. onset of next stimulus array, using one or more of  
 - mask 
 - blank 
 - new stimuli to relate to previous 
 
There are many, many variations on this basic theme and this is where the 

ingenuity of the best experimentalists can shine. However, for those wishing to 
explain the experimental observations the sequence of actual events plays a more 
important role than has been acknowledged. A modeler cannot simply take the 
conclusion of the experiment as the basis of a model without also including the spatial 
and temporal environment of the experiment into account. This would only lead to 
models that do not reflect the reality of the experiment or do not generalize and thus 
produce useful predictions. 

3   Different Stages of Recognition 

If models are to be sensibly compared to results from human experimentation, the 
models must consider the same sequence of events as in the experiment and examples 
of such a sequence appeared in the previous section. 

Most models assume that a hierarchical sequence of computations defines the 
selectivity of a neuron. A feed-forward pass through the hierarchy would yield the 
strongest responding neurons if stimuli match existing neurons, or the strongest 
responding component neurons if stimuli are novel.  

But, the first set of computations to be performed, following the sequence 
presented in the previous section, is related to priming of the hierarchy of processing  
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areas. Task knowledge, such as fixation point, target/cue location, task success 
criteria, is applied to ‘tune’ the hierarchy (Posner et al. 1978). In experiments, it has 
been shown that such task guidance must be applied 300 to 100ms before stimulus 
onset to be effective (Müller & Rabbitt 1989). This informs us that significant 
processing time is required for this step alone. It is a sufficient amount of time to 
complete a top-down traversal of the full processing hierarchy. Figure 1 shows a 
proposed sequence of processing stages in visual recognition tasks. The first stage, the 
leftmost element of the figure, shows the priming stage. Once complete, the stimulus 
can be presented (the second element of the figure from the left). 

The third element of Fig. 1 represents the Detection/Categorization Task. 
Detecting whether or not a particular object is present in an image seems to take about 
150ms (Thorpe et al. 1996). This kind of ‘yes-no’ response can be called ‘pop-out’ in 
visual search with the added condition that the speed of response is the same 
regardless of number of distractors (Treisman & Gelade 1980). To name the object, or 
to categorize, also seems to take the same amount of time (Grill-Spector & Kanwisher 
2005; Evans & Treisman 2005). Interestingly, the median time required for a single 
feed-forward pass through the visual system is about 150ms (Bullier 2001). Thus, 
many conclude that a single feed-forward pass suffices for this visual task.  This first 
feed-forward pass is shown in the figure emphasizing the feed-forward divergence of 
neural connections and thus stimulus elements are ‘blurred’ progressively more in 
higher areas of the hierarchy. This task does not include location or location 
judgments, the need to manipulate, point, or other motor commands specific to the 
object and usually, all objects can be easily segmented. These are the kinds of stimuli 
Marr had in mind for his work as mentioned previously. 

To provide details about an object, such as identity (within-category identification) 
or type, requires additional processing time, 65ms or so (Grill-Spector & Kanwisher 
2005; Evans & Treisman 2005); this is the Identification Task and is represented by 
the fourth from the left element of Figure 1.  If the highest levels of the hierarchy can 
provide the basic category of the stimulus, such as ‘bird’, where are the details that 
allow one to determine the type of bird?  The sort of detail required would be size, 
color, shape, and so forth. These are clearly lower level visual features and thus they 
can only be found in earlier levels of the visual hierarchy. They can be accessed by 
looking at which feature neurons feed into those neurons that provided the category 
information. One way to achieve this is to traverse the hierarchy downwards, 
beginning with the category neuron and moving downwards through the needed 
feature maps. This downwards traversal is what requires the additional time observed. 
The extent of downward traversal is determined by the task, that is, the aspects of 
identification that are required. It is interesting to consider an additional impact of a 
partial downwards traversal. This traversal may be partial not only because of the task 
definition but also because the full traversal is interrupted and not allowed to 
complete either because new stimuli enter the system before there is enough time for 
completion or because not enough time is permitted due to other tasks. The result is 
that there is the potential for errors in localization and these may lead to the well-
known illusory conjunction phenomenon (Treisman & Schmidt 1982).  

If additional localization is required for description or a motor task, (pointing, 
saccade, etc..), then the top-down traversal process must be allowed to complete and 
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Fig. 1. The time course of visual recognition stages with types of visual binding required for 
each 

thus additional time is required. This is called the Localization Task. How much time? 
A single saccade seems to require 200ms (with a range of 100-300ms) of processing 
time (Becker 1991). A lever press response seems to need 250-450ms in monkey 
(Mehta et al. 2000). During this task, the temporal pattern of attentional modulation 
shows a distinct top-down pattern over a period of 35 - 350ms post-stimulus. The 
‘attentional dwell time’ needed for relevant objects to become available to influence 
behavior seems to be about 250ms (Duncan et al. 1994). Pointing to a target in 
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humans seems to need anywhere from 230 to 360ms (Gueye et al. 2002; Lünenburger 
& Hoffman 2003). Still, none of these experiments cleanly separate visual processing 
time from motor processing time; as a result, these results can only provide an 
encouraging guide for the basic claim of our model and further experimental work is 
needed. 

Behavior, i.e., an action relevant to the stimulus, requires localization. The location 
details are available only in the earliest layers of the visual processing hierarchy 
because that is where the finest spatial resolution of neural representation can be 
found. As a result, the top-down traversal initiated for the Identification Task must 
complete so that is reaches these earliest layers as shown in the figural element 
second from the right in Fig. 1. 

All of the above tasks as described can be characterized by stimuli that are well 
separated, can be easily segregated from the background, and are in an important 
sense, simple. In most real world scenes and many more complex experimental 
displays, even more time is needed. The Hard Recognition Task includes difficult 
conjunction searches, resolving illusory conjunctions, determining transparency, 
recognizing objects in cluttered scenes, and more (Treisman & Gelade 1980; 
Treisman & Schmidt 1982; Wolfe 1998; Schoenfeld et al. 2003). The final element of 
the figure, the rightmost element, depicts the start of a second feed-forward pass to 
illustrate this. The idea is that it is likely that several iterations of the entire process, 
feed-forward and feedback, may be required to solve difficult tasks. 

4   The Visual Feature Binding Problem 

Following Roskies (1999), the canonical example of binding is the one suggested by 
Rosenblatt in which one sort of visual feature, such as an object’s shape, must be 
correctly associated with another feature, such as its location, to provide a unified 
representation of that object. Such explicit association (“binding”) is particularly 
important when more than one visual object is present, in order to avoid incorrect 
combinations of features belonging to different objects, otherwise known as “illusory 
conjunctions” (Treisman & Schmidt 1982). Binding is a broad problem: visual 
binding, auditory binding, binding across time, cross-modal binding, cognitive 
binding of a percept to a concept, cross-modal identification and memory 
reconstruction. 

Classical demonstrations of binding seem to rely on two things: the existence of 
representations in the brain that have no location information, and, representations of 
pure location for all stimuli. However, there is no evidence for a representation of 
location independent of any other information. Similarly, there is no evidence for a 
representation of feature without a receptive field. Nevertheless, location is partially 
abstracted away within a hierarchical representation as part of the solution to 
complexity (Tsotsos 1990). A single neuron receives converging inputs from many 
receptors and each receptor provides input for many neurons. Precise location is lost 
in such a network of diverging feed-forward paths yet increasingly larger convergence 
onto single neurons. How can location be recovered and connected to the right 
features and objects as binding seems to require? 
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We might begin by developing requirements for the solution of the binding 
problem. Define the binding task as requiring the solution of three sub-problems: 
Detection (is a given object/event present in the display?), Localization (location and 
spatial extent of detected object/event) and Attachment (explicit object/event links to 
its constituent components). We will be able to recognize a solution when an 
algorithm can correctly provide correct answers to the above, and this occurs in 
images that: a) contain more than one copy of a given feature each at different 
locations; b) contain more than one object/event each at different locations; and, c) 
contain objects/events that are composed of multiple features and share at least one 
feature type.  These constraints provide us with a way of designing solutions and 
testing them with well-defined success criteria. They also provide constraints on what 
kinds of stimuli and tasks actually require binding in the first place. They will be used 
in the next section to suggest solutions to the kinds of binding that the different stages 
of recognition require. Previous proposals for the binding problem (see Roskies 1999) 
have not dealt with such constraints on the definition of the problem and this points to 
the uniqueness of the present proposal. 

5   The Kinds of Binding Needed for the Stages of Recognition  

A novel set of four different binding processes are introduced that are claimed to 
suffice for solving the recognition tasks described above.  

Convergence Binding achieves the Detection/Categorization Task via hierarchical 
neural convergence, layer by layer, in order to determine the strongest responding 
neural representations at the highest layers of the processing hierarchy. This feed-
forward traversal follows the task-modulated neural pathways through the ‘tuned’ 
visual processing hierarchy. This is consistent with previous views on this problem 
(Treisman 1999; Reynolds & Desimone 1999).  This type of binding will suffice only 
when the abstraction achieved as a result of neural convergence does not obscure 
location or feature information that may be needed, and if stimulus elements do not 
lead to ambiguity at the higher levels due to the large receptive fields. That is, 
stimulus elements that fall within the larger receptive fields must not be too similar or 
otherwise interfere with the response of the neuron to its ideal tuning properties. Such 
interference may be thought of as ‘noise’ with the target stimulus being ‘signal’. 
Convergence binding provides neither method for reducing this noise nor a method 
for recovering precise location. According to the requirements for a binding solution, 
this is not strictly an example of binding; it is named so here for continuity with past 
literature. 

Full Recurrence Binding achieves the Localization Task.  If Convergence Binding 
is followed by a complete top-down traversal, attended stimuli in each feature map of 
the hierarchical representation can be localized. Recurrent (or feedback) traversals 
through the visual processing hierarchy ‘trace’ the pathways of neural activity that 
lead to the strongest responding neurons at the top of the hierarchy resulting from the 
feed-forward traversal. Even for the strongest responding neurons with very large 
receptive fields where a number of stimulus elements fall within that receptive field, 
the reason why that response is strong lies within that receptive field and can be 
found. 
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There is one more critical component of the top-down traversal, appearing on the 
figures as gray regions indicating areas of neural suppression or inhibition in the area 
surrounding the attended stimulus. This area is defined by the projection of the 
receptive field of the neuron that best describes the stimulus through the processing 
hierarchy. That is, it is the set of neural pathways that feed that neuron. The reason for 
this particular definition stems from the previous discussion on signal versus noise in 
the input scene.  Inputs corresponding to the stimulus most closely matching the 
tuning characteristics of the neuron form the signal while the remainder of the inputs 
is the noise. Any lateral connections are also considered as noise for this purpose. 
Thus, if it can be determined what those signal elements are, the remainder of the 
receptive field is suppressed, enhancing the overall signal-to-noise ratio of processing 
for that neuron. The method for achieving this was first described in (Tsotsos 1993) 
and fully detailed together with proofs of convergence and other properties in 
(Tsotsos et al. 1995). It is based on the assumption that the signal is defined by the 
strongest responses in each layer and within the receptive field of the neuron or 
neurons selected at the top of the hierarchy (again by strongest response).  

However, the top-down process is complicated by the fact that each neuron within 
any layer may receive input from more than one feature representation. How do the 
different representations contribute to the selection? Different features may have 
different roles. For example, there are differing representations for many different 
values of object velocity however an object can only exhibit one velocity. These 
different representations can be considered as mutually exclusive, so the top-down 
search process must select one, the strongest. On the other hand, there are features 
that cooperate, such as the features that make up a face (nose, eyes, etc.). These 
contribute to the neuron in a weighted sum manner and the top-down search process 
much select appropriate elements from each. There may be other roles as well. The 
key here is that each neuron may have a complex set of inputs, specific to its tuning 
properties, and the top-down traversal must be specific to each. This is accomplished 
by allowing the choices to be made locally, at each level, as if there were a localized 
saliency representation for each neuron (Tsotsos et al. 2005). There is no global 
representation of saliency in this model. 

If the full recurrence binding process does not complete for any reason, this is 
called Partial Recurrence Binding. Partial recurrence binding can find the additional 
information needed to solve the Identification Task if it is represented in intermediate 
layers of the processing hierarchy. If this is not deployed directly due to task needs 
but is due to interruption, then this results in illusory conjunctions. A variety of 
different effects may be observed depending on when during the top-down traversal 
the process is interrupted.  

Iterative Binding is needed for the Hard Detection Task, i.e., discrimination, 
description, search, etc. Iterative Binding is defined as one of more Convergence 
Binding-Full Recurrence Binding cycles. The processing hierarchy may be tuned for 
the task before each traversal as appropriate. The iteration terminates when the task is 
satisfied.  This iterative feed-forward-feedback cycle was first described in Tsotsos 
1990. 

Simulations of this strategy show strong agreement with a variety of 
psychophysical and neurophysiologic experiments such as static visual searches of 
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varying difficulties, segregation of transparent dot pattern motions, surround 
inhibition, and more (Rothenstein & Tsotsos 2006; Rodriguez-Sanchez et al. 2006; 
Tsotsos et al. 2005; Tsotsos et al. 1995). In particular the surround inhibition 
prediction seems well supported by a variety of experimental studies (Cutzu & 
Tsotsos 2003: Hopf et al. 2005: Tombu & Tsotsos 2007). The top-down attentional 
modulation hypothesis also proposed by Selective Tuning has strong support (Mehta 
et al. 2000; O’Connor et al. 2002). 

6   Conclusion 

A novel view of how attention, visual feature binding, and recognition are inter-
related has been presented. It differs from any of those presented previously (Roskies 
1999). The greatest point of departure is that it provides a way to integrate binding by 
convergence with binding depending on attention. The visual binding problem is 
decomposed into four kinds of processes each being tied to one of the classes of 
recognition behaviors that have been investigated experimentally over the past 
decades that are defined by task and time course. This view differs from conventional 
wisdom that considers both binding and recognition as monolithic tasks. The 
decomposition has the promise of dividing and conquering these problems, and the 
Selective Tuning strategy previously presented is proposed as the computational 
substrate for their solution. There are three basic ideas behind this solution: 

   • top-down task directed priming before processing;  
   • feed-forward traversal through the ‘tuned’ visual processing hierarchy 

 following the task-modulated neural pathways; 
   • recurrent (or feedback) traversals through the visual processing hierarchy that 

 ‘trace’ the pathways of neural activity that lead to the strongest responding 
 neurons at the top of the hierarchy that result form the feed-forward traversal. 

These three basic steps are used in combination, and repeated, as needed to solve 
the given visual task. The details of how exactly these processes may be 
accomplished are detailed elsewhere (Tsotsos 1990; Tsotsos et al. 1995; Tsotsos et al. 
2005). In simulation with artificial as well as real images as input, the model exhibits  
good agreement with a wide variety of experimental observations.  

The model has a number of important characteristics: a particular time course of 
events during the recognition process covering the simplest to complex stimuli that 
can be directly compared with experimental time courses; an iterative use of the same 
visual processing hierarchy in order to deal with the most complex stimuli; iterative 
tuning of the same visual processing hierarchy specific to task requirements; 
suppressive surrounds due to attention that assist with difficult segmentations; a 
particular time course of events for recognition ranging from simple to complex 
recognition tasks; a top-down localization process for attended stimuli based on 
tracing feed-forward activations guided by localized saliency computations. Each of 
these may be considered a prediction for human or non-human primate vision. It 
would be very interesting to explore each. 
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