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Abstract

How can a mobile robot measure the area of a closed region that is

beyond its immediate sensing range? This problem, which we name as

blind area measurement, is inspired from scout worker ants who assess

potential nest cavities. We first review the insect studies that have shown

that these scouts, who work in dark, seem to assess arbitrary closed spaces

and reliably reject nest sites that are small for the colony. We briefly

describe the hypothesis that these scouts use “Buffon’s needle method” to

measure the area of the nest. Then we evaluate and analyze this method

for mobile robots to measure large closed regions. We use a simulated

mobile robot system to evaluate the performance of the method through

systematic experiments. The results showed that the method can reliably

measure the area of large and rather open, closed regions regardless of

their shape and compactness. Moreover, the method’s performance seems

to be undisturbed by the existence of objects and by partial barriers placed

inside these regions. Finally, at a smaller scale, we partially verified some

of these results on a real mobile robot platform.

1 Introduction

Insects provide fascinating examples of how seemingly complex problems can be
solved with simple autonomous agents equipped with extremely limited sens-
ing, computation, and actuation capabilities[2]. Biological studies revealed that
utilization of stigmery[7], indirect communication through environment, often
opens the way for finding simpler solutions to seemingly complex problems. An
indicative example of stigmergic behavior comes from foraging ants. When an
ant finds food, it lays pheromone on its way to its nest. The pheromone laid in
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Figure 1 should be here.

Figure 1: Buffon’s needle method. If a needle is dropped at random on a
a plane with equally spaced parallel lines, what is the probability that the
needle will intersect one of these lines? This problem, proposed by Comte
George de Buffon in 1773, is considered to be the first problem in the field of
geometric probability. In 1777, Buffon proved that the probability of intersection
is p = 2l/πd, where l is the length of the needle and d ≥ l is the spacing between
the lines. This formula allows one to estimate the value of π by making repeated
experiments. If the needle is thrown N times, and in n of these throws the needle
intersects a line, then p∗ = n/N is an unbiased estimate of p and π∗ = 2l/p∗d is
the corresponding estimate for π [14]. Buffon’s needle method can be adapted
to measure space. It can be shown that the area of a planar surface can be
estimated by A = 2SL/πN where N is the number of intersections between two
sets of lines of length S and L twisted into definite shapes on the plane [13].

the environment acts as an attractant and leads the ants leaving the nest to the
location of the food.

Although stigmergy is often discussed as a mechanism to coordinate the
behavior of a swarm of agents, stigmergic communication applies to single agents
as well. In the foraging ant example discussed above, even if there is a single ant
in the nest, stigmergic communication still exists. Upon returning to its nest,
the ant itself will be able to return to the location of the food at its subsequent
foraging trip. By laying a trail in the environment, the ant no longer needs
to keep track of the location of the food or the trail information. Therefore,
through stigmergic communication, the ant affords to solve its problem with
limited perceptual and computational capability.

The idea of minimizing robot complexity by utilizing stigmergic communica-
tion is a promising approach that has not yet been fully studied. In this paper,
we study the problem of how the area of large closed regions can be measured
by a simple mobile robot using stigmergy. Although there have been quite a
number of studies[3, 8, 20] on area coverage of arbitrary closed regions by robots
using stigmergy, to the best of our knowledge, the question of how the areas of
such regions can be measured has not yet been addressed.

Both the problem of area measurement and its solution are inspired from
ants. In the next section, we first describe the nest assessment (where the
area of the nest is one criteria) behavior of ant scouts, briefly summarize the
experimental results, and the hypothesis of how these scouts are measuring the
area of a potential nest.

2 Nest Assessment in Leptothorax albipennis

Scout ants in colonies of Leptothorax albipennis, a small monomorphic myr-
micine ant species inhabiting small flat crevices in rocks, search and evaluate
potential nest sites when their current nest becomes uninhabitable. Mallon and
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Franks[9] observed that these scouts tend to make more than one visit to a new
site before they attempt to initiate an emigration of the entire colony. During
each visit, the scouts spent a considerable part of their time exploring the in-
ternal periphery of the site, while making seemingly random explorations of the
central part of the nest.

Mugford et al.[13] found no significant differences between the duration of
the visits to nests of different sizes. Mallon and Franks[9] observed that during
their second visits, the scouts “briefly but significantly slow down” as they
cross their first visit trails. They suggested that the scouts lay an individual-
specific pheromone trail during their first visit, and that they use the intersection
frequency of their path with this pheromone trail during their subsequent visits
to estimate the floor area of the nest. They pointed out that, this strategy
is consistent with the Buffon’s needle method (see Figure 1), and tested this
hypothesis by tracing the visits of scouts to different potential nest sites in the
laboratory environment. Apart from the Buffon’s needle method, they have
also tested whether the ants use the internal perimeter of the nest, and the
‘mean, free-path-length algorithm’ to assess the size of the nests. However, the
experiments showed that (1) scouts were able to choose a standard-size nest
over a half-size one with the same internal perimeter and, (2) a partial barrier
placed inside a standard-size nest did not affect the assessment of the nest.

3 Related Work

Despite the experimental results obtained from ants and the theoretical results
derived in computational geometry, the use of Buffon’s needle method in the
measurement of large closed regions still begs a constructivist analysis. In [17],
we proposed that exploration behavior of the scouts contained at least two
sub-behaviors; wall following and random exploration. We then constructed a
mobile robot simulation through which we had studied the dynamics of the nest
assessment process, and proved that the two sub-behaviors were conflicting; that
is the wall following behavior improves the periphery checking of the nest while
impairing area measurement, whereas the opposite being true for the random
exploration behavior. In [16], we repeated the nest assessment experiments
of ant scouts with a simulated mobile robot and showed that the results are
indeed in aggreement. Both of these studies were conducted with the goal of
improving our understanding of the behaviors of the ant scouts and aimed to
confirm the Buffon’s needle hypothesis in a constructive way. In [10], Marshall
et al. studied whether there were any evolutionary advantages over making two
visits into the same nest than a single visit where both trail laying and sensing
is done concurrently. Based on their preliminary simulation results, they were
not able to determine the superiority of one strategy over the other.

This paper takes an constructivist view of the problem: How can a mobile
robot measure the area of a closed region that is beyond its immediate sensing
range? This problem resembles to the challenge faced a blind person (lacking
a complete view of the region being measured) trying to estimate the area of a
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Figure 2 should be here.

Figure 2: Sketch of the Khepera robot model. The circle represents the body
(diameter 5.34cm). The two elongated rectangles placed on the left and right
part of the body denote the wheels of the robot. The small rectangles around
the body shows the placement of the infrared proximity sensors. The blobs
emanating from the six front sensors (the two sensors placed at the back are
not used) show the approximate sensing range. The concentric circles drawn at
the center of the robot indicate the pheromone nozzle and detector.

large room using his hands (short-range sensing) only. Therefore we call it, as
the problem of blind area measurement. Here, the term blindness denotes that
the person (agent) cannot “see” the whole region (either because it is too large
or because of objects that occlude a complete view), and that he has to use only
his local and short range sensing abilities.

The blind area measurement problem poses interesting questions to someone
who wishes to utilize the method on a mobile robot. In this paper we tackle
some of these questions such as: How should the exploration behavior of the
robot be? What’s the performance of Buffon’s needle method for different types
of regions? How does the thickness of the pheromone and the duration of the
visit affect the area measurement? Our results presented here are extended from
our earlier work that was presented in [6].

In the rest of the paper, we first describe the experimental setup and the
implementation of the Buffon’s needle method on a simulated mobile robot.
Section 6 describes the experiments conducted and presents the results. In
Section 7, we presented results of experiments with a physical mobile robot to
partially verify some of the results obtained in simulations. We review mapping
and area coverage, as two related approaches that can be applied to the blind
area measurement problem, in Section 8 and experimentally compare the per-
formance of an area coverage method with that of Buffon’s needle method. In
the last section, we summarize the arguments supported by the experiments,
and outline future directions for the research.

4 Experimental setup

We have chosen Webots (Cyberbotics, Switzerland) as the simulation platform
and used a robot model which simulates the Khepera[12] miniature robot (K-
Team, Switzerland). The simulated robot model, whose sensory readings are
sampled from a real robot[11], is widely accepted as realistic. The robot has
eight infrared distance sensors as sketched in Figure 2, however only the six
sensors placed in the front are utilized. The robot is also equipped with a
virtual “pheromone nozzle” and a virtual “pheromone detector”, both located
at the center of the body, the former for laying and the latter for detecting the
pheromone in the simulated environment.
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Figure 3 should be here.

Figure 3: Eight set of arenas used in the experiments: (a) circular arenas, (b)
square arenas, (c) elliptic arenas, (d) standard size arenas with vertical barrier,
(e) standard size arenas with cross barriers, (f) ring shaped arena, (g) plus
shaped arena, (h) circular arena with small obstacles. In f, g, and h dashed
circles show standard size arena. The dark small circles placed in the arenas
indicate the relative size of the robot.

4.1 The arenas

Eight different set of arenas, shown in Figure 3, are used in our experiments.
Arenas do not have an entrance (i.e. they have a closed boundary) in order to
remove the possibility of the robot leaving the arena prematurely. Real nests,
natural or the ones used in laboratory experiments of ants, have at least one
entrance [9]. Arena walls and any obstacles inside the arenas are modeled using
extruded geometric shapes. The diameter of the robot is taken as the unit
of distance measurement. In each visit, the robot began its exploration from
the central bottom part of the arena. The initial position of the robot was
kept constant (∼ 0.83 units away from arena boundary) except that its initial
orientation was varied within ±15 degrees of the wall.

Figure 3(a), shows the circular arenas used in our experiments. The diameter
of the smallest circular arena is approximately ten times the body length of the
robot. The largest arena is ten times wider than the smallest one, and other eight
arenas have sizes in between. A circular arena with diameter 100 units is taken
as the standard size arena. Ten square arenas in (b) are selected in such a way
that area of each square arena is equal to the area of its circular counterpart.
Figure 3(c), shows the standard size arena and three elliptical arenas having
same area as the standard size arena but with different eccentricities (0.968,
0.994, and 0.998 respectively). The arenas in (d,e) are standard size arenas with
| and + type partial barriers placed at the center. The length of the barriers
(in horizontal and vertical directions) is varied. The arenas in Figure 3(f, g, h)
also have same area as the standard size arena but are ring shaped, plus shaped
and circular with small obstacles inside respectively.

4.2 Exploration behavior

Using the six front sensors, we designed an exploration behavior that is modified
from the ones implemented in our earlier works[16, 17]. The behavior lies within
the spirit of Braitenberg’s behaviors[1] with noise added to motor activations,
and short-term time dependency included to avoid abrupt changes in robot’s
movement. The reason behind this modification is that, Braitenberg’s original
obstacle avoidance algorithm moves the robot like a ping-pong ball in the en-
vironment, driving it on almost straight lines in free space, and bouncing from
the objects like a ball. As a result the exploration trails tends to concentrate
on certain bands in the environment and therefore, the original algorithm is not
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very suitable for the Buffon’s needle method. Details of the implementation of
the exploration behavior is given below.

The robot is controlled by setting the speed of its left and right wheels (ml

and mr), which are calculated as

ml = (1 − |r̄|) ∗ 0.25 − r̄

mr = (1 − |r̄|) ∗ 0.25 + r̄.

where r̄ denotes the tendency to turn. When r̄ = 0, the robot moves forward.
It turns left when r̄ = 1, and right when r̄ = −1. Here, r̄ is defined as

r̄ =















sign(wr − wl) ∗ n̄ :
∑

4

i=1
Ii > 2.7 ∨ I0 > 0.95 ∨ I5 > 0.95

−1 : r + n < −1
r + n : −1 < r + n < 1

1 : r + n > 1

where n is a random number between −0.4 and 0.4, n̄ is a random number
between 0.3 and 1.0, wl, wr represent the ‘perceived presence’ of the wall on
the right and left side respectively, r is defined as the value of the ‘rotational
activation’, and Ii denotes the infrared readings, with a value between 0 (no
object) and 1 (very close object), where 0 < i < 5 is the index. In this formula,
the first row dictates that if the robot is very close to objects, indicated by
the high infrared readings around the robot, then the robot would make a turn
of random size in its current turning direction. This condition prevents any
collisions that may happen due to the random component of the behavior. The
third row adds a random turning direction to robot’s current turning direction.
The second and the fourth row merely clamps the turning component into [−1 :
+1] range.

The change in r is calculated as

∆r = −0.9r + 0.3(1 − r)(wl + 1.5I4 + 1.2I3) − 0.3(1 + r)(wr + 1.5I1 + 1.2I2) .

The first term on the right of the equation guarantees that when no wall is
perceived and the infrared readings are all zero, then any rotational activation
will decay to zero in time. The second term raises the rotational activation
towards 1 in proportion to the amount of wall perceived on the left side and
the infrared readings from the right side. The third term tries to pull down the
rotational activation to −1 in a similar way.

The variables, wl and wr, indicate the presence of the peripheral wall on the
left and right side of the robot respectively, and the change in them are defined
as

∆wl = −0.1wl − 0.7wl(I2 + I3)

∆wr = −0.1wr − 0.7wr(I2 + I3).

The first term on the left side causes the perceived presence of a wall to decay
to zero when no objects are sensed. The second term diminishes the perceived
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Figure 4 should be here.

Figure 4: Exploration patterns generated by the behavior for circular arenas of
(a) the smallest size, (b) the standard size, and (c) the largest size.

presence of any wall if the front sensors become active, to raise the priority
of avoidance. Even with obstacle avoidance in place, the robot can get stuck,
particularly when its is moving straight towards the wall. The first condition of
r̄ allows robot to escape from such situations by making steep turns away from
the obstacles blocking its course of movement.

The exploration behavior generates random exploration patterns within a
closed region. The robot moves in a random way, while avoiding any obstacles
(walls or barriers in our experiments) on its way, covering the whole arena over
the long run. Figure 4 shows exploration patterns for three different circular
arenas.

5 Buffon’s needle method

We evaluated the Buffon’s needle method, as observed in ant scouts, for blind
area measurement. In this method the robot makes two independent visits
to a arena using the pure random exploration behavior. The robot only lays
pheromone along its path during its first visit. During its second visit, the robot
senses the pheromone trail laid in its first visit without laying new pheromone
trail, and counts the number of intersections. The output of the pheromone sen-
sor (a binary value) is first filtered by a leaky integrator to remove any artefacts
that may have occurred due to a pixellized implementation of the pheromone
trail and then thresholded. Buffon’s count (BC) is defined as the number of
pheromone trail crossings (low-to-high transition of thresholded value).

For a given arena, three parameters affect the Buffon’s count: 1) the duration
of the first visit, 2) the duration of the second visit, and 3) the thickness of the
pheromone trail. For the experiments reported below, unless otherwise stated,

• the duration of the first and second visits are fixed to 50000 simulation
steps (the resulting trail length has a mean of 1680, and a variance of 0.76
units), and

• the width of the pheromone is taken as 0.1, i.e. one tenth of the body
length of the robot.

In order to discount the effect of the second visit, we define normalized
Buffon Count (nBC) as the Buffon count normalized by the length of the visit
in which pheromone sensing task is executed. In the rest of the discussion, nBC
is used as a measure for the area of the arena.

7



Figure 5 (a) should be here. Figure 5 (b) should be here.
(a) (b)

Figure 5: (a) The nBC values of the circular and square arenas are plotted
for different arena sizes. The error bars drawn indicate the interquartile range
for the nBC values. (b) The median nBC values of circular arenas are plotted
against median nBC of square arenas.

6 Experimental results

Using the experimental setup and Buffon’s needle method described in the previ-
ous section, we have conducted systematic experiments to evaluate this method
for blind area measurement. We have measured nBC 100 times for each of the
arenas shown in Figure 3.

6.1 Size

Figure 5(a,b) plots the median nBC values obtained from circular and square
arenas using the two-pass strategy. The error bars denote interquartiles, that is
the range in which 50% of the data lies, equally split on each side of the median.
In Figure 5(b), median nBC values measured from circular and square arenas
are plotted side-by-side for different sizes. Four points worth mentioning:

1. nBC values for square and circular arenas are approximately the same for
all sizes except the two smallest arenas. The nBC values of circular arenas
are plotted against median nBC of square arenas in Figure 5(b). As it can
be seen clearly, most of the points lie on the y = x line, and in Figure 5(a)
plots almost overlap for arenas of equal area showing that nBC is a good
measure of area for circular and square arenas.

2. The error bars, indicating the interquartile range of the nBC measure-
ments show that 50% of the measurements lie within a narrow band of
the median for a wide range of arena sizes. The plot clearly indicates that
nBC provides a robust measure for area.

3. nBC values of the two smallest arenas (with area 348 and 1392 unit2) ob-
tained are lower than expected. This is due to the blending of trails (the
merging of multiple trails such that they are no longer distinguishable as
individual trails) in these two small arenas. Since the trail density at the
periphery is different for square and circular arenas (due to the interaction
between the boundary and the robot as produced by the exploration be-
havior), the amount of blending is different. As a consequence of the nBC
values for these two arena sizes show more discrepancy, which is marked
by the two slightly off-axis points in Figure 5(b).
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Figure 6 should be here.

Figure 6: Median nBC values versus compactness (r1/r2) for elliptic arenas.
The error bars indicate the interquartile range of nBC.

6.2 Shape

In the experiments reported above, we have shown that nBC promises itself as
a good measure for area. In order to evaluate the effect of shape when area is
kept constant, we evaluated nBC for the set of arenas shown in Figure 3(c-h),
where each arena covers the same area as the standard circular arena.

6.2.1 Compactness

Figure 6 plots the median nBC values for elliptic arenas obtained with respect
to compactness value defined as r1/r2 where r1 and r2 denote the large and
small radii of the ellipse. The baseline denotes the median nBC value for the
standard circular arena with compactness r1/r2 = 1. It can be seen that nBC
values remain approximately the same despite the change in the compactness of
the arena. As the arena becomes less compact, the variance in the nBC values
obtained using two-pass strategy increase (indicated by the growth in the error
bars) also affecting the median value. Also mean nBC values increase, possibly
due to different levels of blending at arena boundary.

6.2.2 Barriers and Irregular Shapes

The experiments reported so far have used convex arenas. In order to analyze
the affect of non-convexity, we conducted experiments on five sets of arenas
containing partial barriers and obstacles of irregular shape (Figure 3(d-h)).

Figure 7(a,b) plots the median nBC with respect to varying barrier length
(percentage of the arena diameter) for both types of barriers obtained using
two-pass strategy. Again, the baseline denotes the median nBC value for the
standard circular arena with no barriers. The plots clearly show that, the par-
tial barrier inside an arena has no significant affect on its size measurement.
The slight increase in nBC is possibly due to the non-zero size of the barriers.
Although the barriers, themselves, do not take up much space, the robot’s ex-
ploration behavior tends to keep the robot “a sensing distance away” from the
barriers, hence shrinking the area being explored.

We should note that, as the openings between the barriers and the walls
reduce down to a couple of robot’s diameter, it becomes more difficult for the
robot to pass from one lobe to the other, causing the robot to remain stuck in
some of the lobes. As a result of this, the variance the error bar corresponding
to the the largest barrier length is increased.

Figure 8 plots the median nBC values obtained for different arena types,
Figure 3(a,f-h). Areas of all three arenas are equal to the area of the standard

9



Figure 7 (a) should be here. Figure 7 (b) should be here.
(a) (b)

Figure 7: Median nBC values versus barrier length (percentage of the arena
diameter) are shown for arenas with (a) | and (b) + barriers. The error bars
indicate the interquartile values.

Figure 8 should be here.

Figure 8: Median nBC values measured from (a) standard, (b) ring shaped, (c)
plus shaped, and (d) circular arena containing small obstacles. The error bars
indicate the interquartile values.

arena. The plots clearly show that nBC remains almost invariant with respect
to arena shape.

6.3 Pheromone thickness

As mentioned before, the thickness of the pheromone trail being laid can affect
the value of nBC. Figure 9 plots the median nBC values of circular arenas
for different pheromone thickness values. It can be clearly seen that as the
thickness of the pheromone increases, blending (which can be seen by smaller-
than-expected nBC values for small arenas) affects larger arenas.

In the following section, we present our studies with a physical mobile robot.

7 Experiments with a physical robot

We used the Hemisson robot platform, see Figure 10, to conduct experiments
with a physical robot to partially verify some of these results obtained through
simulations.

The experiments are conducted in three different arenas, as shown in Figure
11. The areas of the arenas are 1m2, 2m2, and 4m2 respectively. The first and
second arenas are square shaped, and the last arena is a nonuniform hexagon
with a circular obstacle inside. The circle and the arrow inside indicate the initial
position and the orientation of the robot. Similar to the simulation experiments,
the arenas do not include any openings in order to prevent early escape of the
robot.

The Hemisson robot has the ability to hold a pen stuck at its center, allowing
it to leave a trail on the floor. It also has two infrared sensors facing the floor

Figure 9 should be here.

Figure 9: Median nBC values measured from circular arenas are plotted side-
by-side for different thickness of the pheromone trail. The error bars drawn
indicate the interquartile range for the nBC values.
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Figure 10 (a) should be here. Figure 10 (b) should be here.
(a) (b)

Figure 10: (a) The Hemisson robot is a small differential drive robot with a
diameter of 12cm (K-Team, Switzerland). (b) The sketch of the robot. On the
sketch, only the sensors and actuators used in experiments are shown. The two
elongated rectangles denote the wheels, the small black rectangles represent the
position, and the direction of the front infrared sensors. Emanating blobs from
the infrared sensors roughly indicate the sensing range of these sensors. The
circle at the center shows the position of the felt-pen.

Figure 11 should be here.

Figure 11: Three different arenas are used in experiments with the Hemisson
robot. The dark circle inside the largest area represents a circular obstacle. See
text for details.

for detecting lines. Unfortunately, our preliminary experiments showed that
the lines drawn by the robot on the floor are too thin to be detected by the
downward facing infrared sensors. Therefore the experiments were conducted
by having the robot visit a closed arena twice, leaving its trails with different
colored felt-pens. After the second visit, the number of intersections between
the two different trails were manually counted. Since the robot has no odometry
sensor, the trail length were not measured. Therefore the results presented in
this section are in units of BC rather than nBC.

We adapted the exploration behavior, described in Section 4.2, to the Hemis-
son robot. When compared with Khepera, whose simulated model is described
in Section 4, Hemisson is twice in size, and the locations of sensors are slightly
different. We conducted the experiments at night, with controlled uniform light-
ing in the environment due to the sensitivity of the infrared sensors to ambient
light in the environment. Each visit of the robot lasted 7 minutes. The trails left
after two visits of the robot in the arena, shown in Figure 12(a), can be seen in
Figure 12(b). Note that, the trails produced by the Hemisson are rather similar
to those produced by the simulated Khepera robot model, seen in Figure 12(c).

Figure 12 (a) should be here. Figure 12 (b) should be here. Figure 12 (c) should be here.
(a) (b) (c)

Figure 12: (a) A snapshot of the 4m2 arena after two visits. (b) A zoomed copy
of a partial view of the arena. The blue trail is laid down during the first visit
and the red trail during in the second visit. (c) A zoomed copy of a partial view
of the trails obtained in the simulated arena.
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Figure 13 (a) should be here. Figure 13 (b) should be here.
(a) (b)

Figure 13: (a) BCvalues from 5 experiments conducted with the real Hemisson
robot in arenas of size 1m2, 2m2, and 4m2. (b) BCvalues from 100 experi-
ments conducted with the simulated Khepera robot in arenas of size 0.198m2,
0.396m2 and 0.792m2. The relative size of the arenas with respect to the robot
sizes are kept constant, that is 1

122 = 0.198

5.342 . The error bars drawn indicate the
interquartile range for the BCvalues. Note that the BCvalues in (a) are consis-
tently smaller than the ones in (b). This is probably due to the different sensing
range characteristics of the two robots. Although we scaled the arenas with the
body size of the robot, it was not possible to do such a scaling for the proximity
ranges of the robots.

7.1 Results

We conducted five experiments with the Hemisson in each arena and counted
the BC. The results are plotted in Figure 13(a) which clearly shows that 1m2,
2m2, and 4m2 arenas are clearly distinguishable by the BC value. In order
to partially verify the validity of our results obtained from simulation, we also
conducted a similar experiment in using the simulated Khepera robot model.
In these simulations, the ratio of the length of the simulated arena to the radius
of the simulated Khepera robot was kept equal to the length of the actual arena
to the radius of Hemisson robot. The duration of the visits in simulation was
also chosen to produce trails of approximately equivalent length trails. For each
arena, we ran 100 simulations and plotted the result. The resulting BC values
are shown in Figure 13(b). It can be seen that, despite the use of completely
different robot platforms, real and simulated, the method can clearly distinguish
arenas with different sizes and shapes, producing similar BC values for both.
This results confirms our argument that the method is not specific to a certain
robot model, and provides robust area estimations.

Our experiments with the real robot aimed to provide partial verification
of the experiments conducted in simulation and therefore are limited. There
remains a number of practical and theoretical justifications for this approach.
First, laying a trail and detecting it are still competences that are difficult to
find in mobile robots. The most common form of laying trail has been through
sticking a pen to a mobile robot to mark the floor. Sensing the trail, which
tends to be rather thin, has proven to be a difficult task. In [15], a robot
was equipped with two arrays of proximeters to detect the trails laid. However,
such solutions are rather rudimentary, and that advances in this competency will
be driven mainly by marker/sensor technologies, rather than robotics. Second,
large regions, on the order of the ones that are used in simulation, are logistically
difficult/impossible to get access to. Third, as the first one on this problem, we
believe that, it is important to present a study that evaluates the method in its
most plain form without putting question marks due to implementation.
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8 Comparison with related approaches

The blind area measurement problem, posed in this paper, has not been explic-
itly studied by other methods, making it difficult to make performance compar-
isons. We believe that there are two lines of research that can be considered
relevant against the proposed method: map making and area coverage.

Mapping, which can be defined as creating a model of environment using
the sensor data collected during exploration, has been one of the fundamental
problems of autonomous robotics[18]. Existing mapping methods can be catego-
rized into three groups based on the type of the map that they generate: metric,
topological, and hybrid (combining metric and topological maps). In particular,
one can consider metric and hybrid mapping methods to make area estimations
of closed environments. However, to the best of our knowledge, most of the
mapping methods, like SLAM[4], rely on the existence of uniquely identifiable
landmarks in the environment. Therefore they will not be suitable in “dull are-
nas”, which do not contain such landmarks or landmark-like structures, that
were used in our studies. Mapping methods that match locally created maps[5]
(mostly by accumulating sensor readings using odometric measurements) as a
pattern on the global map being built, will not work either, again due to the
dullnes of the environmet. As a result, any mapping method will be reduced
down to the accumulation of sensor readings on a metric map, using odometric
information to position them. Such an approach, we claim, would not pro-
duce any meaningful results under realistic odometric errors. Also, using such
methods, it is not even guaranteed that the robot would ever stabilize its map.

Area coverage [3] is defined as the problem of sweeping a closed region with
a robot, by passing over (almost) all points of the region. It has many real world
applications, such as floor cleaning, lawn mowing, mine hunting, and surveil-
lance. The area coverage methods that are relevant to our discussion are the
ones designed for robots with simple sensing abilities, lacking self-localization.
The simplest class of such methods are known as Randomized Search (RS) [3]
method, i.e. the robot moves randomly in the environment sweeping the region
underneath its body. The Probabilistic Covering (PC) method presented and
analyzed in [19] is one good example. In these methods, one can estimate the
area of a region as the total area covered by the robot. However, this approach
has two main drawbacks; (i) complete coverage can not be guaranteed, and
(ii) it may take a long time since various parts of the region may be visited
repeatedly.

There are also more complex area coverage methods, such as Mark and Cover
(MAC), which systematically covers a closed region while avoiding previously
covered (marked) areas, or MAC-PC, a hybrid of MAC and PC methods[19].
Heuristic real-time search methods also enable one or a more robots to over-
come the limitations of randomized search method. Various real-time search
algorithms basicaly differ on how the value of new markings are determined and
more detailed discussion can be found in [3]. These methods, although proved
to provide a better performance, require more complex robots. The marking is
assumed to be multiple valued, rather than binary as in our approach, and the
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intensity of the marking being laid, depends on the sensing of existing markings.
Furthermore, the robot needs to sense not only the space that it currently oc-
cupies, but also its immediate vicinity to determine the direction of movement.

In the experiments described below, we compared the proposed method
against the RS area coverage method, since it would allow us to keep as many
aspects of the problem same as possible, for a fair comparison.

8.1 Comparison of Randomized Search with Buffon’s nee-

dle method

We compared the area estimation performance characteristics of RS area cov-
erage method with Buffon’s needle method. In RS, the robot explored the
environment using the same exploration algorithm, and the duration of the ex-
ploration is set to be equal to the the sum of two visits used in ours method.
Different from the robot model used in our method, we assumed that the robot
can sense and mark the whole region underneath its body, instead of a narrow
trail. In addition to this, the robot is assumed to mark only the “unmarked”
areas underneath its body and that the amount of marker used after the explo-
ration is taken as the area estimate.

In Buffon’s needle method, the area estimation is done through the mea-
surement of a unitless value nBC. This value needs to be translated into area
estimations, to be able to compare the results with those obtained from RS. An
example of the relationship between nBC and area can be seen in Figure 5(a).
This relationship indicates that, excluding the regions where blending occurs,
the relationship between nBC and the area can be obtained by fitting a curve
to the data points, based on the nBC values of a limited number of arenas of
different sizes. The area of an arbitrary arena can then be estimated using the
nBC measurement obtained by the robot.

We split the set of circular arenas into two disjoint groups; the first group
consists of arenas with diameters 30, 50, 70 and 90 units, and the second includes
arenas with diameters 40, 60, 80 and 100 units. Starting from a first visit trail
length of 168, at regular intervals (every 168 units), (i) nBC values of all arenas
are found, (ii) a function that maps nBC value to area is generated by fitting a
curve to nBC values of arenas in the the first group only, and (iii) area estimates
for the arenas in the second group are calculated using this function. In the curve
fitting phase, we obtained best results with two-term power equation, a + bxc.
We would like to note that, the use of data from other experiments and the curve
fitting step is needed only when one needs an absolute area estimation. This
process should be seen as an optional calibration step for the Buffon’s needle
method, rather than as a weakness.

Figure 14 plots the area estimates of the four arenas in the second group,
obtained both from the RS and our method, with respect to trail length. The
area estimates obtained from the area coverage method, shows that, one needs to
increase the trail length with the size of the arena being measured for a reliable
estimate. Real-time search algorithms that use admissible marking rules, such as
Learning Real-Time A*, are shown to have polynomial cover time with respect

14



Figure 14 (a) should be here. Figure 14 (b) should be here.
(a) (b)

Figure 14 (c) should be here. Figure 14 (d) should be here.
(c) (d)

Figure 14: Area estimations obtained from the RS method and the Buffon’s
needle method for four different arenas with radii (a) 40, (b) 60, (c) 80, and
(d) 100 units. In these plots, the vertical axis is the area whereas the horizontal
axis is the total trail length. The horizontal solid line drawn marks the actual
area of the arena.

to area. Algorithms with simpler but non-admissible update rules, such as node
counting, are also known to perform well in practice, although theoretically
their worst case behavior can be exponential[3]. Similarly, time requirement
of MAC is proved to increase linearly with area [20]. This means that even
if more complex models are employed, the area estimates obtained using area
coverage methods would depend on exploration time, at best linearly. On the
contrary, the results indicate that, Buffon’s needle method provides reliable area
estimates for even short trail lengths, showing little dependency to the size of
the arena. We believe that this makes it an appealing approach especially for
time critical applications. Finally, we would like to note that, Buffon’s needle
method would require a simpler robot for area measurement than any of the
area coverage methods.

9 Conclusions and Discussion

In this paper, we put forward the problem of blind area measurement as a
challenging problem for the mobile roboticists. We presented a simple generic
exploration behavior which is shown to generate trails that can be used for the
Buffon’s needle method on different simulated and real robot platforms. We
have conducted systematic experiments and analyzed the performance of the
method. We have also compared the performance of the method against the
Randomized Search area coverage method and identified the relative pros and
cons of the two methods.

The results obtained shows that the Buffon’s needle method provides a very
powerful, and robust way to measure closed regions. The experiments, con-
ducted in large and rather open arenas, indicate that nBC is a good measure of
area for such regions: nBC of a region is (i) independent of its shape, (ii) inde-
pendent of the compactness of the region, and (iii) independent of the barriers
(or objects) placed inside the region. However we should also make the limita-
tions of the method explicit. First, based on the results presented here, it is not
possible to generalize these claims to highly split regions such as a house with
many rooms. Area coverage methods briefly reviewed in Section 8, would prob-
ably be more appropriate to be used in such environments. Second, Buffon’s
needle method measures a unitless value, called nBC, and that an additional
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set of experiments are needed to convert this value into an area estimate. Al-
though, area coverage methods do not have such a conversion problem, it should
be noted that, the measurement of area based on the amount of marking used
by the robot would require an additional technical challenge for the approach.

We believe that there are many open questions with the method that needs
to be investigated such as: How should the length (duration) of the first visit
determined for maximum robustness? Can the first visit’s duration be deter-
mined on-line, that is during the visit? How can the Buffon’s needle method
be improved by making the exploration behavior influenced by the pheromone
that was laid before?
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