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Abstract

The concept of affordances, with its empha-
sis to the interactions between the robot and
the environment, is highly relevant for epige-
netic robotics. However, the use of the con-
cept in robotics has been rather rudimentary,
mostly confined to an inspiration source. In
this paper, we present a new formalization of
the concept, based partially on the recent for-
malizations proposed in Ecological Psychology
and Linguistics, which provide a framework for
robot control, learning and planning. We argue
that affordances, as relations within the robot-
environment system, can be seen from three dif-
ferent perspectives; namely agent, observer and
environmental. We argue that affordance rela-
tions can be learned from the interactions of the
robot within its environment. The formalism ar-
gues that the interactions of the robot, can be
represented as a nested triple of the form (effect,
(entity, behavior)) indicating that the behavior
applied in an environment perceived as the en-
tity, would produce a perceivable effect. It is sug-
gested that these nested triples of raw sensory-
motor data obtained from different interactions
can be used to form four different equivalence
classes towards the formation of affordance re-
lations. We present three studies implement-
ing certain aspects of the formalism on a mo-
bile robot moving in an environment filled with
different types of objects. Specifically, we show
that, (1) the formation of the entity equivalence
classes corresponds to the perceptual learning of
affordances, (2) the formation of effect equiva-
lence classes, followed by the formation of entity
equivalence classes can lead to the development
of goal-directed behaviors from a set of primi-
tive ones, and (3) the formed equivalence classes
and relations provide support for planning and
deliberation.

1. Introduction

J.J. Gibson (Gibson, 1986) introduced the concept of
affordances to refer to the action possibilities offered to
the organism by its environment. For instance, a hor-
izontal and rigid surface affords walk-ability, a small

object below a certain weight affords throw-ability, for
a human. He argued that affordances point both to the
environment as well as to the organism implying their
complementarity. Although J.J. Gibson conceived the
concept in his quest to develop a “theory of informa-
tion pick-up” as a new theory of perception, affordances
has influenced studies ranging from Human-Computer
Interaction to Autonomous Robotics.

The concept of affordances has been a misty
one since its conception (which may have con-
tributed positively to its influence over a wide-range
of fields). A number of formalizations have been
proposed to clarify its meaning. To summarize
briefly (see (Şahin et al., 2007) for a complete re-
view), Turvey(Turvey, 1992) defined affordances as
“dispositions” in the environment that get actualized
through the interaction of the organism. Different
from Turvey’s formalism, which attached affordances
to the environment, Stoffregen (Stoffregen, 2003) and
Chemero (Chemero, 2003) defined affordances as a re-
lation within the organism-environment system. Inde-
pendent from these formalizations in Ecological Psy-
chology, Steedman (Steedman, 2002) formalized affor-
dances in Linguistics by providing an explicit link to
action possibilities offered by the environment, and by
proposing the use of the concept in planning.

The concept of affordances, with its implicit but
central emphasis to the interactions between the or-
ganism and the environment, is highly relevant to
the developmental/epigenetic robotics as has already
been noted (Lungarella et al., 2003). Developmen-
tal robotics treats affordances as a higher level con-
cept, which a developing cognitive agent learns by
interacting with its environment. There are stud-
ies that exploit how affordances reflect to learn-
ing (MacDorman, 2000), tool-use (Stoytchev, 2005), or
decision-making (Cos-Aguilera et al., 2003). The stud-
ies that focus on learning mainly tackles two major as-
pects. In one aspect, affordance learning is referred to
as the learning of consequences of a certain action in a
given situation (Stoytchev, 2005). In the other, studies
focus on the learning of invariant properties of environ-
ments that afford a certain action (MacDorman, 2000),
(Fritz et al., 2006). Studies in this latter group also re-
late these properties to the consequences of applying an
action, but these are in terms of internal values of the
agent, rather than changes in the environment.



In (Fitzpatrick et al., 2003), learning of object affor-
dances in a developmental framework is studied. The
main vision set forth in this work is that a robot can
learn about what it can do with an object only by act-
ing on it, ‘playing’ with it, and observing the effects in
the environment. In the study, after applying each of
its actions on different objects several times, the robot
learns about the roll-ability affordance of these objects,
by observing the changes in the environment during the
application of the actions.

In a recent study(Papudesi and Huber, 2006), an ar-
tificial agent is used to represent the state of the world
internally as behavioral affordances and goals. For each
action in its repertoire, the agent has outcome pre-
dictors that correspond to preconditions for the ac-
tion, and outcome indicators that correspond to post-
conditions for the action. These predictors and indi-
cators are used to represent the internal state of the
agent.

Despite the interest, the use of the concept in robotics
is mostly confined to an inspiration source. More-
over, a closer look to these studies reveals that their
use are based on different and sometimes contradictory
façades of this concept and that most studies cite only
J.J. Gibson’s studies published in 70’s and 80’s. In
the MACS project1, we, as roboticists, are interested
in how the concept of affordances can change our views
towards the control of autonomous robots. Towards
this end, we have formalized affordances, outlined its
implications towards robot control(Şahin et al., 2007)
and have started evaluating these implication on real
robots.

2. Formalizing Affordances

One major axis of discussions on affordances is on
where to place them. In the existing formalisms, af-
fordances are either placed in the environment as ex-
tended properties that are perceivable by the agent
(Turvey, 1992), or, they are said to be a proper-
ties of the agent-environment system (Stoffregen, 2003,
Chemero, 2003). But for the roboticist who aims to
build an agent that uses affordances, it is needed to
view affordances from the perspective of the agent.
Therefore the existing formalisms do not prove to be
directly useful for the roboticist. That is why we need
a new formalism which makes it possible to view af-
fordances from the perspective of the agent and conse-
quently from the perspective of robot control.

We also believe that the source of the current con-
fusion on the discussion of affordances is due to the
existence of three – not one! – perspectives to view
affordances. In most discussions, authors, including
J.J. Gibson himself, often pose their arguments from
different perspectives, neglecting to explicitly mention
the perspective that they are using. The three different

1URL: http://macs-eu.org, (FP6-IST-004381).

Figure 1: Three perspectives to view affordances. In this

hypothetical scene (adapted from Erich Rome’s slide depict-

ing a similar scene), the (robot) dog is interacting with a

ball,and this interaction is being observed by a human(oid).

perspectives of affordances can be described using the
scene in Fig. 1. In this scene, a dog is interacting with
the ball, and this interaction is being observed by a hu-
man who is not part of the dog-ball system. Here, the
dog is said to have the agent role, whereas the human is
said to have the observer role. We denote the ball as the
environment. We propose that the affordances in this
ecology can be seen from three different perspectives:
agent, environmental, and observer perspectives.

Agent perspective: In this perspective, the agent
interacts with environment and discovers the affor-
dances in its ecology. The affordance relationships re-
side within the agent interacting in the environment
through his own behaviors. In Fig. 1, the dog would
“say”: “I have push-ability affordance”, upon seeing
the ball. This view is the most essential one to be ex-
plored for using affordances in robotics.

Environmental perspective: The view of affor-
dances through this perspective attaches affordances
over the environment as extended properties that are
perceivable by the agents. In our scene, when queried
to list all of its affordances, the ball would say: “I of-
fer, push-ability (to a dog), throw-ability (to a human),
. . . ”. In most of the discussions of affordances, includ-
ing some of J.J. Gibson’s own, this view is implicitly
used, causing much of the existing confusion.

Observer perspective: The third view of affor-
dances, which we call the observer perspective, is used
when the interaction of an agent with the environment
is observed by a third party. In our scene, the human
would say: “There is push-ability affordance” in the
dog-ball system.

We propose that affordances are relations within the
agent-environment system. Our formalization is based
on relation instances of the form (effect, (entity, behav-
ior)), meaning that there exists a potential to generate
a certain effect when the behavior is applied on the en-
tity by the agent. These relation instances are acquired
through the interaction of the agent with its environ-
ment. The entity represents the state of the environ-
ment (including the perceptual state of the agent) as
perceived by the agent. The behavior represents the
physical embodiment of the interaction of the agent



with the environment, and effect is the result of such
an interaction. For instance, the lift-ability affordance
implicitly assumes that, when the lift behavior is ap-
plied on a stone, it produces the effect lifted, meaning
that the stone’s position, as perceived by the agent, is
elevated.

A single (effect, (entity, behavior)) relation instance is
acquired through a single interaction with the environ-
ment. But this single instance does not constitute an
affordance relation by itself, since it does not have any
predictive ability over future interactions. Affordances
should be relations with predictive abilities. This is
achieved by building four types of equivalence classes.

Entity equivalence: The class of entities which
support the generation of the same effect upon the ap-
plication of a certain behavior is called an entity equiv-
alence class. For instance, our robot can achieve the
effect lifted, by applying the lift behavior on a black-
can, or a blue-can. These relation instances can then
be compacted by a mechanism that operates on the
class to produce the (perceptual) invariants of the en-
tity equivalence class as:

(lifted, (<*-can>, lift))

where <*-can> denotes the derived invariants of the
entity equivalence class.

In this particular example, <*-can> means “cans of
any color” that can be lifted upon the application of lift
behavior. Such invariants, create a general relationship,
enabling the robot to predict the effect of the lift be-
havior applied on a novel object, like a green-can. Such
a capability offers great flexibility to a robot. When in
need, the robot can search and find entities that would
support a desired affordance.

Behavior equivalence: Maintaining a fair treat-
ment of the action aspect of affordances, the same
equivalence concept can be generalized to the behav-
ior as well. For instance, our robot can lift a can using
its lift-with-right-hand behavior. However, if the same
effect can be achieved with its lift-with-left-hand behav-
ior, then these two behaviors are said to be behaviorally
equivalent. This relation can be represented as:

(lifted, (<*-can>,<lift-with-*-hand>))

where <lift-with-*-hand> denotes the invariants of the
behavior equivalence class

Similar to the entity equivalence, the use of behavioral
equivalence will bring in a flexibility for the agent. For
instance, a humanoid robot which lifted a can with one
of its arms, loses its ability to lift another can. However,
through behavioral equivalence it can immediately have
a “change of plan” and accomplish lifting using its other
hand.

Affordance equivalence: Taking the discussion
one step further, we come to the concept of affordance
equivalence. Affordances like traversability, are obtain-
able by “walking across a road” or “swimming across a

river” as

(traversed,

{

(<road >,<walk >)
(<river >,<swim >)

}

)

That is, a desired effect can be accomplished through
different (entity, behavior) relations.

Effect equivalence: The concepts of entity, behav-
ior and affordance equivalence classes implicitly relied
on the assumption that the agent, somehow, has effect
equivalence. For instance, applying the lift behavior on
a blue-can would generate the effect of “a blue blob ris-
ing in view”. If the robot applies the same behavior
to a red-can, then the generated effect will be “a red
blob rising in view”. If the robot wants to join the
two relation instances learned from these experiments,
it has to know whether the two effects are equivalent
or not. In this sense, all the three equivalences rely on
the existence of effect equivalence classes.

Finally, based on the discussion presented above, we
propose a formal definition of an affordance as follows.
An affordance (agent perspective) is an acquired rela-
tion between a certain <effect> and a certain <(entity,
behavior)> tuple such that when the agent applies a
(entity, behavior) within <(entity, behavior)>, an ef-
fect within <effect> is generated.

3. Experiments towards Affordance-

based Robot Control

We believe that the proposed formalism lays out a good
framework over which the concept of affordance can be
utilized for robot control.In the rest of the paper we
present three experiments conducted in this framework.

The first experiment explores the formation of entity
equivalence classes. The basic idea in the experiment
stems from E.J. Gibson’s studies on perceptual learn-
ing. She suggests that learning of affordances is “dis-
covering distinctive features and invariant properties of
things and events” (Gibson, 2000), “discovering the in-
formation that specifies an affordance” (Gibson, 2003).
She defines this method as “narrowing down from a
vast manifold of (perceptual) information to the mini-
mal, optimal information that specifies the affordance
of an event, object, or layout” (Gibson, 2003). In our
study, finding the relevant features and invariant prop-
erties that specify whether a behavior will succeed or
not in an environment, corresponds to building the en-
tity equivalence classes. In the experiment, the robot
interacts with the environment by executing its behav-
iors and checks whether the execution of the behavior
succeeds or not. Based on these experiences, it deter-
mines the features in the environment that are useful
in predicting its behaviors’ success. In other words,
the robot learns to perceive the environment in terms
of the features that predict whether its behaviors will
succeed or not. The idea is similar to function-based-
object-recognition, however in this study the features



that specify the functionality of the entities in the en-
vironment are learned by the robot through interaction
rather than hard-coded into the robot by an expert.

The second experiment extends the first by adding
the formation of effect equivalence classes. The robot
achieves this by randomly performing unintentional
primitive behaviors and discovering the changes it can
consistently create in the environment. These changes
are then associated with the executed behaviors and
the situation in which the behavior is executed in. This
corresponds to linking effect equivalence classes with be-
havior and entity equivalence classes, which is the for-
mation of affordance relations. Using these relations
the robot can execute its primitive behaviors purpose-
fully, to achieve a goal. This approach can again be re-
lated to E.J. Gibson’s discussion on child development
and affordances. She points out that babies use ex-
ploratory activities, such as mouthing, reaching, shak-
ing to gain the perceptual data needed to learn the af-
fordances in the environment, and that these activities
bring about “information about changes in the world
that the action produces” (Gibson, 2000). As develop-
ment proceeds, exploratory activities become performa-
tory and controlled, executed with a goal. Likewise, our
robot develops purposeful goal-directed behaviors from
unintentional primitive behaviors within the framework
proposed by the formalism.

In the third experiment, the learned affordance rela-
tions are used in planning. The <entity> and <behav-
ior> components in the learned relations, can be con-
sidered to correspond to the pre-condition and action
components in classical planning systems. This link be-
tween affordances and the planning problem was noted
earlier (Amant, 1999, Steedman, 2002), however, these
studies assumed the existence of symbols. Opposing
to this, we suggest that the information that pertains
to the interaction of the agent with its environment
be learned by the robot in the form of affordance rela-
tions. These relations can later be used in planning.
The categorization of raw sensory-motor perceptions
into equivalence classes, as described in the previous
paragraph, can be considered as a symbol formation
process. In this sense, our planning approach is based
on self-acquired symbols. We present a preliminary ap-
plication of these ideas.

Before going into the details of these experiments we
present the experimental framework common to all the
experiments.

3.1 Experimental framework

In our experiments we investigate the interactions of a
wheeled robot moving in an environment cluttered with
different objects. The environment contains four types
of simple objects: rectangular boxes ( ), spherical
objects ( ) and cylindrical objects, either in upright
position ( ) or lying on the ground ( ). When
contacted by the robot, these objects either roll away

Figure 2: Phases of perception and content of the feature

vector. Distance and shape features are extracted from the

scanner range image. Also two displacement values, trans-

lation and orientation, are extracted from the encoders.

or block the robot’s motion.

The robotic platform used in this study is Kurt3D,
a medium-sized, differential drive mobile robot, and its
physics-based simulator MACSim whose sensor and ac-
tuator models are calibrated against their real counter-
parts.

In each experiment the robot has a repertoire of prim-
itive behaviors each generating a certain displacement
or rotation, unless the motion is obstructed by an ob-
stacle. The robot interacts with the environment by
performing one of its primitive behaviors and perceiv-
ing the environment both before and after the execution
of each behavior.

The robot perceives its environment through its 3D
scanner, which is based on a SICK LMS 200 2D scan-
ner, rotated vertically with an RC-servo motor. It uses
the range images from the scanner to extract a set of
features which consists the robot’s perception of the
environment. The feature set also contains two fea-
tures obtained from its encoders. To obtain the scan-
ner features, the range image is down-scaled to reduce
the noise and split into uniform grids. For each grid,
a number of distance and shape related features are
extracted. The distance related features are the clos-
est, furthest, and mean distances within the grid. The
shape related features are computed from the normal
vectors in the grid. The direction of each normal vec-
tor is represented using two angle channels ϕ and θ,
in latitude and longitude respectively and two angu-
lar histograms are computed. The frequency values of
these histograms are used as the shape related features
(Fig. 2).

3.2 Perceptual Learning

In the first experiment we investigate how the percep-
tual features that specifies an affordance can be learned
by the robot through interaction with the environment.
Specifically, we study how a mobile robot can learn to
perceive the traversability affordance in a room filled



Figure 3: The relevant grids in the range image for three

of the actions. A grid is marked as relevant if any of the

features extracted from it were learned to be relevant.

with different objects. We define traversability as “the
ability to pass or move over, along, or through”. Hence,
the environment is said to be traversable in a certain
direction if the robot moving in that direction is not
enforced to stop as a result of contact with an obstacle
(Uğur et al., 2007b).

The environment typically contains one or more ob-
jects, with arbitrary size, orientation and placement,
in the front of the robot. The process consists of
three phases: an interaction phase, during which the
robot accumulates a number of relation instances, a
learning phase in which entity equivalence classes are
learned from these instances, and an execution phase
for testing. In order to collect instances, the robot
perceives the initial environment and executes one of
the seven pre-coded movement behaviors, ranging from
turn-sharp-right to turn-sharp-left. It records whether
it was able to successfully traverse or not, based on the
change in its encoder values. The robot collects the
relation instances, where the entity is the initially per-
ceived feature vector, the behavior is the index of the
executed behavior(1-7), and the effect is 1 or 0 indicat-
ing success or failure.

In the learning phase the robot first selects the rele-
vant perceptual features using the ReliefF algorithm.
Using these relevant features, for each behavior, an
SVM classifier is trained, to learn the mapping from
feature space to the effects (success/fail). After learn-
ing, the robot can predict whether the environment af-
fords traversability for a given behavior, with around
95% success. As a result of learning a perceptual econ-
omy is achieved. Our analysis show that only 1% of the
raw feature vector is relevant for perceiving traversabil-
ity and that these relevant features are grouped on the
range image with respect to the direction of the move-
ment as shown in Fig. 3.

In this experiment, entity equivalence classes are dis-
covered by the trained classifiers whereas behavior and
effect equivalences are assumed to be pre-coded.

In a different setup, the trained robot is tested in an
environment inspired from Warren and Whang’s study
(Warren and Whang, 1987) on walking through aper-
tures. Warren and Whang studied the perception of

Figure 4: Three experiments for evaluating pass-through-

ability for the robot. In (a) the width of the aperture is

too narrow whereas in (b) it is wide enough to support the

pass-through-ability. (c) shows the case where the aperture

is slightly towards the right of the robot.

pass-through-ability affordance, where participants, en-
countered with apertures of varying width, were asked
whether the apertures afford walking through or not.
The results showed that the aperture-to-shoulder-width
ratio is a body-scaled constant for this affordance, and
that a critical point existed for the subject’s decision.
In a similar vein to these experiments, we placed two
box-shaped objects in front of the robot, and tested
the robot’s predictions of traversability affordance for
apertures with different widths. As shown in Figure 4,
the robot is able to correctly perceive the affordances
of pass-through-able apertures, where critical passable
width is clearly related to the robot’s width.

In another setup, to investigate the generalization ca-
pability of the perceptual learning approach, we restrict
the types of objects in the interaction environment and
perform testing with novel objects. The robot inter-
acts only with lying cylinders, which may or may not
afford traversability to the robot depending on their
relative orientation. After learning, the robot is tested
with spheres, boxes and upright cylinders, objects that
it has not interacted with before. Yet the robot is
able to predict that boxes and upright cylinders were
non-traversible (both 100% success), and that spheres
are traversible (83% success). We claim that, in this
study, the robot learns “general relations” that pertain
to its physical interaction with the environment and
that these relations are used in making successful pre-
dictions about the traversability of novel objects.

The learning of affordances in these experiments typ-
ically requires a large set of training data obtained
from the interactions of the robot with its environ-
ment. Therefore, the learning process is not only
time-consuming and costly but it is also risky since
some of the interactions may inflict damage on the
robot. To overcome this issue, in a recent work
(Uğur et al., 2007a) we extended this learning system
with two new ideas. First, learning is conducted as
an on-line process rather than a batch process. It is
clear that a developing agent must be able to update its
knowledge about its interaction with the environment
continuously. Second, a curiosity measure provides the
robot the opportunity to select the most interesting in-



Figure 5: Three cases in which different goal-directed behav-

iors (traverse, avoid, approach) make use of different prim-

itive behaviors (move-forward, turn-right, turn-left).

teractions in the environment. Hence, the developing
agent does not perform unnecessary interactions when
it is confident that the interaction will not bring about
new knowledge, but instead chooses interesting interac-
tions. In this curiosity-driven learning phase, a curios-
ity band around the decision hyperplane of the SVM
is used to decide whether a given interaction oppor-
tunity is worth exploring or not. Specifically, if the
output of the SVM for a given percept lies within cu-
riosity band, indicating that the classifier is less certain
about the hypothesized effect of the interaction, the
robot goes ahead with the interaction, and skips if not.
This curiosity-driven approach results in a substantial
speed-up for the learning system.

3.3 Development of goal-directed behaviors

In this experiment we used the concept of affordances in
making the robot learn about its own capabilities. As
in E.J. Gibson’s account of behavioral development in
infants, we investigate the question of how goal-directed
behaviors can be achieved starting from unintentional
primitive behaviors.

Differing from the previous, in this experiment the
interaction environment contains a single object and
the robot has three primitive behaviors: move-forward,
turn-left, turn-right. Learning differs in that effects are
not represented as success/fail values, but instead, the
actual change created by the behavior is discovered by
the robot as the effect.

In the interaction phase, the robot perceives the en-
vironment before and after executing one of its primi-
tive behaviors, to collect relation instances. The initial
feature vector is the entity and the vectorial difference
between this final and initial features is the effect.

Learning consists of three steps. First, within the set
of relation instances of a behavior, similar effects are
grouped together to get a more general description of
the effects that the particular behavior can create. This
is achieved through a k-means clustering of the effect
instances of that primitive behavior and corresponds to
obtaining the effect equivalence classes in the formal-
ism. After clustering, each effect class is assigned an
effect-id and the effect prototype of the class is calcu-
lated. Next, the relevant perceptual features are se-
lected using the ReliefF algorithm and then an SVM
for each behavior is trained using these relevant fea-
tures, as to learn the mapping from feature space to
the effect-ids.

Goal-directed behaviors are achieved using the
learned relations as follows. Given the perception of
the environment, the trained classifiers can predict the
effect class that the behavior will produce. By com-
paring the effect prototype of the predicted classes for
each behavior, the robot can select the behavior that
will produce the most useful effect in achieving its goal.
We specify the goal as a criteria according to which all
effect classes are sorted. The robot executes the behav-
ior for which the predicted effect has higher priority
according to the goal.

Three different goal-directed behaviors (traverse,
avoid and approach) are obtained in this way. The first
is based on traversability. This behavior is achieved
by giving higher priority to the effect classes whose
prototypes have a greater forward-displacement. We
achieved the avoid behavior by specifying the desired
effect as having a high increase in the mean distance
in the middle portion of the range image. This results
in a behavior where the robot avoids contact with any
object by turning away whenever something appears on
its front. When the desired effect is changed to a high
decrease in the mean distance, an approach behavior
emerges. The robot moves forward towards an object
on its front, and turns towards an object on its side,
to obtain the desired decrease. Fig. 5 shows how the
goal-directed behaviors react in different environments.

We have also tested the traverse and avoid behav-
iors by placing the robot in an environment randomly
filled with multiple objects, and the approach behav-
ior by making the robot follow an object. In the tra-
verse and avoid cases, the robot successfully explored
the environment. For the traverse behavior, the robot
also used the traversability affordance of the objects
by rolling away the traversable objects on its way, and
avoiding the non-traversable ones. Examples of these
trials can be seen in Fig. 6

3.4 Planning

In the second experiment, learned affordance relations
were used to predict the effects of primitive behaviors,
so that the appropriate behaviors could be selected in
different situations to obtain an overall goal-directed



(a) Traverse behavior (b) Avoid behavior (c) Approach behavior

Figure 6: Three different behaviors achieved using the same primitive behaviors. In (a), the robot wanders around perceiving

the traversability affordance in the environment. In (b), the robot displays typical obstacle-avoidance behavior, where it

avoids all the objects. In (c), an example path where the robot follows an object using its approach behavior is shown. The

plus signs mark the places that objects appear.

behavior. These predictions can also be used to esti-
mate the future entities that the robot will perceive
after the execution of different behaviors, simply by
adding the prototype of the predicted effect to the cur-
rently perceived entity. It is then possible to predict the
effects of behaviors over the estimated future environ-
ments, again using the learned relations. The robot
can estimate the total effect that a sequence of be-
haviors will create and it can predict the entity that
it will perceive after the execution of the sequence.
This constitutes the basic idea for using learned af-
fordance relations in planning sequences of behaviors
that lead to a desired goal. Note that, the goal can
either be specified as a total effect to be obtained or
a desired future state. The approach of using forward
chaining in affordance-based planning was proposed by
Steedman(Steedman, 2002).

We have tested the described method in the frame-
work presented in the previous section. The robot
starts by perceiving the present entity, and predicts
the effects that each of its primitive behaviors (move-
forward, turn-left, turn-right) will create. It estimates
the three future entities and proceeds by predicting the
effects of behaviors on those future entities and esti-
mating the next entities. This process can be viewed
as the breadth-first construction of a plan tree where
the branching factor is the number of possible primi-
tive behaviors. Meanwhile, the robot tests whether the
goal is satisfied by the entities in the attained states
or by the total effect of the sequence of behaviors that
leads to those states. Planning stops when a sequence
satisfies the goal.

In the example presented in Fig. 7 the robot is
initially faced with two different situations. Its goal
is specified as obtaining a positive change in the
translation-related encoder feature, corresponding to a
forward displacement of approximately 1 meter. In the
case where the robot is faced with a spherical object,
the prediction for the move-forward is an effect class

Figure 7: Two cases in which the robot generates differ-

ent plans, given the goal of achieving a total translational

displacement of a certain amount.

with a high forward translation. The effect prototype
also reflects the change in the position of the spherical
object which either rolls away from the robot’s path
or remains on its front. The estimated future entity is
therefore one in which a similar effect prototype will be
predicted for the move-forward behavior. Among other
paths in planning tree, ‘three times move-forward ’ is
the first that sums up to the desired change in the en-
coder feature. In the case where the robot is faced
with a box object, the prediction for move-forward is
an effect class with a low forward translation. The pre-
dicted effects for turning actions have no translation at
all, however they imply the change in the position of
the box in robot’s perceptive field. For instance, the
estimated future entity after two turn-lefts, is one in
which an object appears on the right of the range im-
age and a move-forward now predicts an effect with a
good forward translation. The obtained plan therefore
consists of two turns and three forward moves.

4. Conclusion

We argue that concept of affordances can provide a gen-
eral framework for epigenetic robotics. To this end, we
presented a new formalization of the concept that we
have developed for robot control and presented three
studies towards the use of formalization on robots. Our
results indicate that, the formalism captured essential



aspects of the concept of affordances. In the first study,
the robot was able to learn the perceptual invariants of
the environment that were required for actualization of
an affordance. Through learning, the robot was able to
achieve perceptual economy, using only 1% of the per-
ceptual feature vector, and to directly perceive (that is,
without going through a modelling of the environment)
the affordances available in its environment. In the
second study, we showed that starting from a number
of primitive and exploratory behaviors, the robot can
successfully develop goal-directed behaviors. Finally,
in the third study, we have shown that the affordance
relations, learned by the robot, can be used for plan-
ning. These studies have provided preliminary results
towards the implications put forward by the formalism
and need to be extended. In particular, the formation
of behavioral equivalence classes, as well as the con-
current formation of multiple equivalence classes need
to be studied. Also, the current studies forms equiv-
alence classes at a single granularity level and do not
support the formation or use of classes at multiple gran-
ularity levels. We believe that, affordances provide a
good framework for developing a symbol system, which
can be used for planning, deliberation and communi-
cation. We would like to note that, the formalism has
also been extended to represent affordances from ob-
server (and although not useful, environmental) per-
spective using similar representations. The learning of
affordances from observer perspective is also potentially
useful for imitation, and communication.

In conclusion, this paper provides an integrated re-
view of our studies towards the use of affordances in
robot control. Although our work on the formaliza-
tion, and the first two experimental studies are either
in press or submitted, our study on the use of affor-
dances for planning, and the integrated review of the
experimental studies within the framework of the for-
malization is novel.
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Ücoluk, G. (2007). To afford or not to afford: From
a theory of affordances to an affordance-based con-
trol architecture. Adaptive Behavior. (in press).

Fitzpatrick, P., Metta, G., Natale, L., Rao, A.,
and Sandini, G. (2003). Learning about objects
through action -initial steps towards artificial cog-
nition. In Proc. of ICRA’03, pages 3140–3145.

Fritz, G., Paletta, L., Kumar, M., Dorffner, G., Brei-
thaupt, R., and Rome, E. (2006). Visual learning
of affordance based cues. In Proc. of the 9. Int.
Conf. on SAB, LNAI. Volume 4095., pages 52–64.

Gibson, E. (2000). Perceptual learning in devel-
opment: Some basic concepts. Ecological Psy.,
12(4):295–302.

Gibson, E. (2003). The world is so full of a number
of things:on specification and perceptual learning.
Ecological Psy., 15(4):283–288.

Gibson, J. (1986). The Ecological Approach to Visual
Perception. Lawrence Erlbaum Associates. Origi-
nally published in 1979.

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G.
(2003). Developmental robotics: a survey. Connec-
tion Science, 15(4):151–190.

MacDorman, K. (2000). Responding to affordances:
Learning and projecting a sensorimotor mapping.
In Proc. of ICRA’00, pages 3253–3259.

Papudesi, V. N. and Huber, M. (2006). Learning be-
haviorally grounded state representations for rein-
forcement learning agents. In Proc. of the 6th Int’l
Conference on Epigenetic Robotics.

Steedman, M. (2002). Plans, affordances, and combi-
natory grammar. Linguistics and Philosophy, 25.

Stoffregen, T. (2003). Affordances as properties of the
animal environment system. Ecological Psychology,
15(2):115–134.

Stoytchev, A. (2005). Behavior-grounded representa-
tion of tool affordances. In Proc. of ICRA’05, pages
18–22.

Turvey, M. (1992). Affordances and prospective con-
trol: an outline of the ontology. Ecological Psy-
chology, 4(3):173–187.
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