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Abstract— The aim of this paper is to propose a system
where complex affordance learning is bootstrapped through
using pre-learned basic-affordances as additional inputs of the
complex affordance predictors or as cues in selecting the next
objects to explore during learning. In the first stage, the robot
learns affordances in the form of developing classifiers that
predict effect categories given object features for different
discrete actions applicable to single objects. These predictions
are later added to robot’s feature set as higher-level affordance
features. In the second stage, the robot learns more complex
multi-object affordances using object and affordance features.
We first applied our idea in an artificial interaction database
which includes discrete actions, several manually coded object
categories, and actions effects. Finally, we validated our boot-
strapping approach in a real robot with poke and stack actions.
We expected to obtain higher performance with affordance-
features especially in small training datasets as the object-
robot-environment dynamics should have already been partially
learned and encoded in affordances. The experiment results
showed that complex affordance learning significantly speeds up
with predictors that are bootstrapped with affordance-features
compared to predictors that use low-level features such as shape
descriptors. We also showed that by actively selecting the next
objects and by increasing the diversity of the training set using
a distance measure based on learned single-object affordances,
the effect of bootstrapping can be further increased.

I. INTRODUCTION

This study is part of a research effort where a robot system

gradually develops skills and competencies in subsequent

stages of development, similar to human infants. In our

previous work, we showed that similar to human infants

who learn a set of actions by the age of 7 months such

as grasp, hit and drop [1], a robot could also self-discover

a number of behavior primitives such as push, grasp and

release by interacting with objects using its crude ‘reach’

action and grasp reflex, and observing the changes in its

tactile perception [2]. Next, we showed that similar to infants

who learn object dynamics after 7-9 month of age, our

robot could learn affordances in an unsupervised way by

first discovering the effect categories it could generate in

the environment, and then by learning the mapping from

the object features to the effect categories. After learning,

the robot was shown make plans to achieve desired goals,

emulate end states of demonstrated actions, monitor the plan

execution and take corrective actions using the perceptual

structures employed or discovered during learning. Finally,

we showed that more complex actions that involve multiple

objects (such as bring object 1 over object 2) can be taught to

the robot through imitation using the structures developed in

the previous stages with mechanisms inspired from parental

scaffolding and motionese [?]. In the current study, we

assume that a number of actions (such as push and stack)

and effect categories (such as rolled and pushed), which

were discovered in the previous stages as summarized above,

are transferred to the next stage where complex affordances

such as stackability are learned. We study how this complex

affordance learning can be bootstrapped by use of learned

simple affordances as (i) additional inputs in prediction, and

(ii) in active selection of objects to explore next in an active

learning setting.

One hallmark feature of bootstrapped learning is that

learning problems stack in the sense that higher-level learners

use as input attributes concepts produced by lower-level

learners. These higher-level attributes should allow faster

learning than if the higher-level concepts had to be learned

from the lower-level attributes alone. The aim of this paper is

to propose a learning system where a developmental robotic

system benefits from bootstrapping where learned simpler

structures (affordances) that encode robot’s interaction dy-

namics with the world are used in learning of complex

affordances. In detail, our robot learns the affordances of

single objects and uses these affordances as additional fea-

tures in the next stages of development where paired-object

affordances are discovered. The use of learned similarities in

the form of affordances are expected to bootstrap the learning

in the next stages.

Our approach can be explained by the following intuitive

example: Let us assume that the robot learned rollability

affordances of the objects in the first development stage,

and can now predict the rollability based on object shape

properties. In the next stage, robot learns a more complex

affordance such as stackability from two sample interactions

where it observes that stacked two balls tumble over and

stacked two boxes pile up. The robot, trained only with those

two stacking interactions, can find a correspondence between

stackability and rollability. Then, even if the robot does not

have any stacking experience with cylindrical objects, it can

make better predictions for stackability depending on the roll

orientation (and affordance) of the cylinders.

In the context of robot affordance learning research,

paired-object affordance learning has not been studied ex-
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Fig. 1. Learning and prediction of action effects using basic-features (visual
features) are shown with solid lines. The learned affordance-features, i.e.
predicted effects, can be further used as input to classifiers which predict
action effects of object pairs, i.e. in learning paired-object affordances.

tensively with exceptions of [3] where ‘tool objects’ are

interacting with other objects, and [4] where two-object

relational interaction models were directly learned. However

none of these studies attempted to bootstrap their robot-

object-object interaction dynamics with previously obtained

skills and affordance knowledge.

Our method summarized in the next section is validated

with an artificial interaction dataset that includes rich set of

objects and interactions in Section III, in real world with

robot experiments in Section IV.

II. METHOD

Learning of affordances corresponds to learning the re-

lations between objects, actions and effects [5]. In this

study, affordances are acquired through learning to predict

what type of effects, i.e. discrete effect categories, can be

generated given discrete robot actions and continuous object

properties. To achieve this, we simply train a classifier for

each action, which takes object features as input and predicts

the effect category.

A. Object features

Here, we distinguish two different sets of object features.

The first set includes hand-coded basic general-purpose

features, computed from visual perception1 with no explicit

link to robot’s actions. These may include standard features

used in literature related to size, shape and local distance

properties of the objects. The second set of features are

acquired through interaction and they correspond to the

higher-level learned ones that are computed from basic

features. They encode the dynamics between robot actions

(A) and object response (effect, ε). The first set of features

is called basic-features whereas the second that is learned

through interaction is called affordance-features as the latter

includes the relations between objects, actions and effects.

1In this paper, we limit ourselves with the features that can be captured
by vision only. However, object properties such as object friction or
weight plays an important role on object-robot interaction dynamics. Thus,
exploratory actions that can be used to perceive such properties should be
implemented in a full-fledged scenario.

The straightforward approach to learn effect prediction is

to train a classifier c for each action a that takes basic-

features as input:

cabasic(basic-feat) → effect

whereas we propose to speed up learning of complex effect

prediction using affordance-features that are computed using

the learned basic effect prediction:

cacomplex(basic-feat, cbasic(.)) → effect

which, in a flat form, corresponds to:

cacomplex(basic-feat, affordance-feat) → effect

Our approach is summarized in Fig. 1. The features

shown with blue and red solid lines correspond to basic-

features and action predictions based on these features give

rise to affordance-features. The dashed lines correspond to

affordance-features, that are learned in previous stages. The

learning and prediction of complex affordances benefit from

previously learned affordance features as shown in ‘Predict

effect of action k’ predictor. Note that action k is considered

to be a complex action as two objects are involved in

execution.

In particular affordance features are represented as a vector

of categorical variables, i.e. the list of the effect categories,

predicted to be generated by single-object actions:

affordance-feat = (εoa1
, εoa2

, ...)

where

εoai
= cai

basic(basic-feat)

Complex affordance learning can be realized in different

ways. In this paper, the action possibilities that are provided

by two (or more) objects are considered to be complex.

For instance, the effects created by a stack action (where

the object is grasped and released over another one) is

determined by the properties of both objects. We will use

affordance-features (such as rollability, pushability, etc) and

basic-features to learn and predict stackability affordances,

and show that this learning significantly speeds up with

predictors that are bootstrapped with affordance-features.

B. Active object selection based on affordances

We claim that the bootstrapping effect can be further

increased if the objects to be explored (and learned next)

are selected intelligently. A learner which is provided with

a rich set of qualitatively different objects in its initial

phases of development can perform better compared to the

ones trained with complete random objects. Thus, an online

learning system actively selects the next object to maximize

the diversity of the training set, and the learned single-object

affordances will be used as ‘high-level’ similarity measures

between objects in computing this diversity.
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The next object is selected from the set of possible objects

(PossObjs) by maximizing the total distance from the next

object to the already explored objects (ExpObjs) as follows:

nextObj = argmax
o1∈PossObjs

∑

o2∈ExpObjs

distt(o1, o2)

where distt(o1, o2) is the distance between two objects in

the space of affordances.

distt(o1, o2) =
∑

a

(1− δεo1a ,ε
o2
a
)

where a ∈ ABasic, and δi,j is Kronecker delta function.

III. BOOTSTRAPPING IN ARTIFICIAL DATA

In this section, we report our bootstrapping results ob-

tained from a manually prepared artificial database of objects

and interactions. The set of objects include cylinders, boxes,

spheres and triangular prisms in different orientations and

with/without holes as shown in Fig. 2. The set of manually

encoded actions and their effects are as follows:

• Actions: {side-poke, top-poke, front-poke, stack}

• Poke-effects: {pushed, rolled, toppled, resisted, nothing}

• Stack-effects: {piled-up, inserted-in, covered, tumbled-over}

When poked from different directions, hypothetically,

different effects can be generated with these objects. For

example, when poked from side, lying cylinders would roll

away, boxes would be pushed, objects with holes in poke

direction would not be affected as finger would go through

the hole without any interaction, and the tall objects would

topple down. The effect of stacking objects on top of each

other depends not only on their shape but also on their

relative size as well. For example, while ‘inserted-in’ effect

would generated when a small box is stacked on a hollow

cylinder, ‘piled-up’ effect would be observed when the box

is larger than the opening on top of the cylinder. Based on

these assumptions, we manually created a hypothetical set

of rules that give the effect based on object categories and

their relative sizes.

A. Basic and affordance features

The classifier trained with basic-features uses the follow-

ing features for training (and prediction later):

TSbasic = {(shapeo1 , shapeo2 , dimo1 , dimo2)}

where shape includes mean and variance of the normals of

the lateral surfaces, and the direction of the hole if it exists;

and dim encodes the object size in different axes.

The classifier trained with affordance-features uses the

following features:

TSaff = {(εo1*-poke, ε
o2
*-poke, dim

o1 , dimo2)}

where εo refers to the effects of the corresponding poke

action on the object o.

Fig. 2. The set of objects used in the artificial interaction database.

B. Bootstrapping Results

The performances of the classifiers trained with basic-

features and affordance-features are provided in Fig. 3.

We evaluated the classifiers by systematically changing the

number of categories used in training set. For each number

of categories, we trained 10 classifiers by selecting 5 objects

of random size from each training category. To test these

classifiers, we created test sets with random sized object

from the remaining categories. Each bar corresponds to mean

performance of these 10 classifiers. As shown, the prediction

performance of both basic-features and affordance-features

based classifiers improve by including more categories into

the training set. We also included the performance of a

category based predictor (which takes category index as

input) to show the baseline. Because the categories used in

training set are never included into test set, category-based

predictors do fail independent of the training set size.
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Fig. 3. The effect prediction performance of stack action obtained in
artificial interaction database. The training of classifiers are done with the
indicated number of categories with either shape features or affordance
features. As shown, use of affordance features enable bootstrapping of the
learning system.

These results show that because affordance-features al-

ready include properties related to object dynamics (pusha-

bility, rollability etc), classifiers that use these features have

better performance especially for small training sets. With

the increasing training set size, the effect of using high-level

features is reduced as the basic-features classifier can also

find the invariance related to stackability affordance with

large dataset. Finding this invariance with small datasets is

easier with affordance-features as they already include some

properties of the agent-object-environment interactions.

IV. BOOTSTRAPPING IN REAL WORLD

This section provides the details of the real world experi-

ments where the effect of bootstrapping is analyzed. We first

present the robot setup along with the details of robot’s action
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Fig. 4. The experiment setup. The environment includes one or two objects
during experiments depending on the action type.

control and perception. Next, we showed that single-object

affordances can be learned through interaction, and use of

these acquired single-object affordances bootstraps paired-

object affordance learning.

A. Robot system

The robot system employs a 7 DOF Kuka Light Weight

Robot (LWR) arm, which is placed on a vertical bar similar

to human arm in Fig. 4. A 3 fingered Schunk gripper is

mounted on the arm to enable manipulation. For environment

perception, Kinect sensor placed over the torso is used. The

objects shown in Fig. 4 are used in learning single-object

affordances as well as pairwise-affordances.

1) Object features: The robot’s workspace consists of

several objects and a table where the region of interest is

defined as the volume over the table. First, the point cloud

obtained from Kinect is transformed to robot’s task space,

then table is removed from the point cloud with a filtering

along z-axis (see Fig 4), and finally objects are segmented

based on depth information. Point Cloud Library normal

estimation software is used next to compute a normal vector

for each point of the object. The projection of each normal

vector along each axis is separated, and histograms of normal

vectors along each axis are computed. Using 8 bins for each

histogram, 3 × 18 = 54 sized feature vector is obtained for

shape related features. Note that in these experiments, an

object is represented by a feature vector composed of only

shape related features. Please see [5] for more details on

histogram representation of normal vectors.

2) Robot Actions: The robot is equipped with a number of

manually coded actions that enable single and paired object

manipulation. The robot can ‘poke’ a single object from its

side, front and top with s-poke, f-poke, and t-poke actions,

respectively. It can also stack one object on the other using

stack behavior, where it grasps the first object, move it on

top of the other one and release it. The object position in

world coordinate (shown in Fig. 4) is computed using the

depth image of Kinect sensor. An inverse kinematic solver

is used to compute the joint angles for initial and final

Fig. 5. The training set used for learning single-object affordances.

points defined in Cartesian space, and Reflexxes library [6]

is utilized to generate smooth trajectories to achieve point-

to-point movement. The action execution is as follows:

• Regarding to poke actions, the robot gripper is placed

on one side of the object with 5cm distance with an

orientation depending on the poke type. Two of the

fingers are flexed to enable only the third finger to

physically interact with the object (similar to index

finger poking in humans). Next, the robot hand moves

in the corresponding direction for 10cm towards the

object and it is retracted after the poking is completed.

• Regarding to stack action, one object is grasped from

above first by placing the gripper in a vertical orien-

tation 10cm over of the object, then moving the wide-

open gripper towards the object and finally enclosing it.

Next, the gripper that carries the grasped object is repo-

sitioned over the second object in a vertical orientation

again, and the object in the gripper is released over the

first one by extending all the fingers.

3) Effect Categories: In the real world experiments, de-

pending on the object(s) and the action executed, different

effects were generated. When poke action was executed, the

object was pushed, toppled over or rolled away depending

on its shape. There was no effect in object state or robot’s

sensors if the robot finger went through the hole on the

object. Finally, for t-poke action, all solid objects created re-

sistance and obstructed gripper’s movement that was detected

using the force sensors. When stack action was executed, the

objects in general piled up on top of each other if the object

below provided a proper support (for example if it had a flat

top surface). Depending on the existence of concave surfaces

and holes, the released object was inserted in or hided the

object below by encapsulating it. The released object also

tumbled over due to the lack of stable support. Based on the

above possibilities that we observed empirically, the sets of

effect categories (E) were set same as in previous section.

B. Experiment Results

1) Learning single-object affordances: The robot exe-

cuted its poke actions on the objects (Fig. 4) placed in

different orientations, and it collected 24 interaction instances

for each poke action. The object shape features along with

generated effect categories are stored for learning affor-

dances. Support Vector Machine classifiers are used to learn

the mapping between object features and effect categories.

In order to analyze if the affordances for poke action are

generalizable, we divide the interaction set into training and
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Fig. 6. Robot’s basic-affordance prediction on objects which are not
included in the training set with the same orientations. Prediction fails in
the examples with star (*), which are difficult cases to predict.

test sets with the deliberate purpose of distributing objects

with same affordances into different sets. For each poke

action, we trained a classifier using the objects given in

Fig. 5. Then, we tested these classifiers by predicting the

action effects on novel objects given in Fig. 6. As shown,

the robot was able to detect the affordances of the object (in

terms of effect prediction) correctly, except a small number

of cases shown with stars (∗), where the prediction also

required perception and learning of material properties.

The trained three classifiers (for s-poke, t-poke, and f-poke)

are transferred to the next stage and their predictions are used

as high-level features to learn complex affordances.

2) Learning paired object affordances: In this section, the

robot learns the paired-object affordances by exploring the

two-object environments with its stack action. This learning

is again achieved by training an SVM classifier that predicts

the effect of the stack action given object features. Here we

compare the prediction performance of the classifiers that

are trained either with basic-features or affordance-features.

Regarding to basic-features, normal vector histograms are

used as we did in learning single-affordances in the previous

subsection. Regarding to affordance-features, the list of ef-

fect predictions (provided by the classifiers transferred from

the previous stage) for the poke actions are used.

The robot executed stack action with 18 pairs of random

objects. A number of snapshots taken during these inter-

actions are given in Fig. 7, where all the possible effects

were observed with different object pairs. In each interaction,

basic-features and affordance-features of both objects are

computed and stored along with the observed effect category.

The classifier trained with basic-features uses the follow-

ing features for training (and prediction later):

TSbasic = {(shapeo1 , shapeo2)}

Fig. 7. Sample interactions observed during stack action execution.

and the classifier trained with affordance-features uses the

following features:

TSaff = {(εo1s-poke, ε
o1
f-poke, ε

o1
t-poke, ε

o2
s-poke, ε

o2
f-poke, ε

o2
t-poke)}

where {} corresponds to the set operator.
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Fig. 8. The effect prediction performance of stack action that involves
two objects. The training of classifiers are done with the indicated number
of samples (interactions) with either shape features or affordance features.
The initial high performance of affordance-features based classifiers demon-
strates the advantage of using bootstrapping.

We evaluated the performance of these classifiers by

systematically changing the size of the training set. For each

training set size, we trained 10 classifiers using randomly

selected samples. We tested each classifier using the remain-

ing sample interactions. Fig. 8 gives these cross-validation

results. Real-world experiment results are similar to the

results obtained from the synthetic interaction dataset. As the

affordance-features were obtained through interaction with

the environment, they already encode the object-environment

dynamics, which provides bootstrapping effect in learning

multi-object affordances as shown. The basic-features are

real valued larger sized vectors that encode object shape

properties independent of robot-object dynamics. Thus they

require more training data for learning. Additionally, basic-

features are used in computation of affordance-features,

so they contain the information to make predictions with

the performance of affordance features. As shown in the

figure, with increasing number of training samples, basic-

features based classifier’s performance indeed approached to

the bootstrapped classifier’s performance.
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Fig. 9. The bootstrapping obtained by active selection of pairs of objects
for learning of stack affordances.

V. ACTIVE SELECTION OF OBJECTS BASED ON

AFFORDANCES

We used affordance distance measure defined in Sec-

tion II.B, to maximize the diversity in training of paired-

object affordance learning in an online learning setting. 83

objects and their poke and stack effects are used in this

experiment (please see [7] for the complete list of objects).

The object features are computed from Kinect depth image

as in previous section, however, we used a human expert

to label stack effect categories and it was not feasible to

execute 83 × 83 = 6889 stack actions in the real robot.

Fig. 9 shows the resulting performance of the basic-features

and affordance-features based effect predictors trained with

randomly selected objects, and of the effect predictors trained

with the proposed active object selection strategy. Each type

of predictor was trained 10 times, starting from a different

random set of objects, and the thick lines correspond to

the average accuracy for each predictor type. As shown,

active selection of objects based on single-affordances pro-

vides a further bootstrapping effect in learning paired-object

affordances. The best predictor was trained with affordance-

features, but we observed that a similar performance was

achieved even if it was trained with basic-features.

VI. CONCLUSION

Single-object affordances encode characteristics related

to robot-object-environment dynamics as they are learned

through robot’s interaction with the objects. In this study,

we showed that learned basic affordances can be used as

additional features in order to bootstrap the next stage of

development where complex paired-object affordances are

learned. In our general model, affordances are used as

‘additional features’ for learning complex affordances, but

in the experiments, in order to compare their independent

performances, we used either only basic features or only

affordance features. If an important basic action (such as

top-poke) was unavailable, the affordance features, i.e. effect

predictions for side-poke and front-poke actions, would have

failed to predict insertability. Therefore, both channels should

be used during learning and possibly a feature selection

algorithm can filter out unnecessary channels.

While this work serves as one of the proof-of-concept

application of the structural bootstrapping idea, we need to

adapt advanced representations and learning methods (such

as knowledge propagation framework of [8]) that can truly

exhibit the real potential of this idea. We showed that this

bootstrapping enabled the robot to speed up its learning par-

ticularly with small training data. Recently generative models

have been proved to be effective in their ability in capturing

object-action-effect dynamics, and in making predictions in

different directions, for example in inferring the required

actions to achieve desired effects given object properties

[9], [4]. Particularly, hierarchical Bayesian networks directly

encodes the desired structure and allows inference in several

directions [10]. We discuss that our ‘discriminative’ model

still provides powerful mechanisms as it can effectively

map the continuous object feature and behavior parameter

spaces to the corresponding effects [11] without any initial

categorization of object properties as in [9], [4]. Furthermore,

while bi-directional relations are not explicitly encoded in

our system, we showed that our robot was able to make pre-

dictions in different directions, and made plans that involved

sequence of actions on automatically selected objects[5].
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