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Abstract—In this paper, we propose a method that enables
a robot to learn not only the existence of affordances provided
by objects, but also the behavioral parameters required to
actualize them, and the prediction of effects generated on
the objects in an unsupervised way. In a previous study, it
was shown that through self-interaction and self-observation,
analogous to an infant, an anthropomorphic robot can learn
object affordances in a completely unsupervised way, and use
this knowledge to make plans in its perceptual space. This
paper extends the affordances model proposed in that study
by using parametric behaviors and including the behavior
parameters into affordance learning and goal-oriented plan
generation. Furthermore, for handling complex behaviors and
complex objects (such as execution of precision grasp on
a mug), the perceptual processing is improved by using a
combination of local and global features. Finally, a hierarchical
clustering algorithm is used to discover the affordances in
non-homogenous feature space. In short, object affordances
for object manipulation are discovered together with behavior
parameters based on the monitored effects.

I. INTRODUCTION

In the postnatal age of 7-10 months, the infant explores

the environment actively. By observing the effects of her

hitting, grasping and dropping actions on objects, she can

learn the dynamics of the objects [1]. The infant in this stage

has already acquired a number of manipulation behaviors

and is able to detect different properties of objects such as

shape, position, color, etc. Using her motor skills, the infant

interacts with the environment and observes the changes she

creates via her perceptual system, accumulating knowledge

about the relationships between objects, actions and the

effects.

Within this developmental stage, the infant not only learns

what type of affordances are offered by the object, but also

learns how he can actualize them. For instance, she learns not

only that a milk bottle is graspable, but also at which angle

her hand should approach the bottle to successfully make

the grasp. At this period, she demonstrates different modes

of grasping such as power-grasp which relies on synergistic

control of the hand as a whole, and precision-grasp that

requires delicate distal finger control. It is not clear whether

the two types of grasps develop from a single rudimentary

grasping behavior or develop independently. However it is

known that infants in that age do not have the complete

adult level visuo-motor grasp execution ability [2], thus the

control of grasp behavior develops with the perception of the

affordance graspability.

During the recent years, studies inspired by ideas in

developmental psychology have increased considerably [1],

[3]. In these studies, the agent typically acquires the ability to

make predictions about the effects it can create through active

exploration of the environment. For example, [4] proposed

methods for the self-discovery of the affordances, where the

effect categories were found through unsupervised clustering

in the effect space. [5] used probabilistic networks that

capture the stochastic relations between objects, actions and

effects. These networks allow bi-directional relation learning

and prediction. Although these systems gained the ability

to predict the effect to be generated, they cannot predict

more than one step ahead, which prohibits complex planning.

In [6] on the other hand, after learning, the robots could

make multi-step predictions using transition rules and hence

were able to demonstrate complex planning. Their approach

is different from ours since sensorimotor experience of the

robot was used to associate the predicates of the AI rules.

This paper builds upon our previous work [7] which

addresses how symbolic planning operators, as opposed to

the symbols used in planning, can be grounded in the

continuous sensory-motor experiences of a robot from a

developmental point of view. Our approach is inspired from

the notion of affordances [8], for which we provided a com-

putational framework in [9]. The current work extends our

previous work by (1) going from discrete fixed behaviors to

continuous behaviors and by (2) addressing a more complex

behavior, namely grasping. In the previous work [7], we

learned the effect of actions within the framework of [9] with

the assumption that the behaviors are fixedi, i.e. the behaviors

have no free parameters. Here we show how this assumption

can be removed. The current work also addresses learning

to grasp in two modes: precision and power grasping. Grasp

learning is a complex task [2]; here we adopt a minimalist

representation for the grasp actions requiring two parameters,

namely the target position and the approach direction. We

choose to have the former to be determined by the object

location and orientation uniquely. The approach angle, on

the other hand, represents the freedom in grasping and used



Fig. 1. In (a), the 23 DOF hand-arm robotic platform, infrared range camera (on the bottom-left) and one object that is used in this study are shown. In
(b) the range image obtained from the range camera and the detected object are shown. The pixels and surface patches that are used in feature computation.
The range image is scanned in four different directions starting from Closest Pixel (CP, shown by cross). Four neighbor rectangular surface patches and four
border pixels are detected. U (up), D (down), L (left), and R (right) stand for four directions. Thus LS and LB means left surface patches and left border,
respectively. Surface patches in different directions contain fixed number of (5x5=25) pixels at CP’s neighborhood. A snapshot from the robot simulator
is shown in (d) with a number of sample objects used in training. Note that the size and orientation of the objects are randomly set during training.

by our learning system to discover the grasp actions that are

suitable for the given object.

II. AFFORDANCES AND ROBOT CONTROL

The notion of affordances was proposed by J.J. Gibson, to

refer to the action possibilities offered to the organism by its

environment [8]. For example, a horizontal and rigid surface

affords walk-ability, and a flat surface at a certain height af-

fords sit-tability. This notion emphasizes the complementar-

ity of a robot and its environment and claims that affordances

are determined by both the properties of the objects and the

capabilities of the organism. A small cobblestone may afford

hide-ability to a mouse, while affording throw-ability to us.

Recently, we proposed a formalism for using affordances

as a framework at different levels of robot control ranging

from perceptual learning to planning [9]. The proposed

formalism agrees with the Gibsonian view that affordances

are relations within the agent-environment system, but it also

extends this view by arguing that these relationships can

also be represented in the agent (a.k.a. robot). Specifically,

the formalism defines affordances as general relations that

pertain to the robot-environment interaction and claimed that

they can be represented as a triple which consist of the

initial percept of the object, the behavior applied and the

effect produces. For instance, the lift-ability affordance is a

relation between the properties of an object, the behavioral

capabilities of the robot and the type of effect produced by

the lift behavior. In this paper, we used this framework to

propose a developmental method that enables a robot to learn

the symbolic relations that pertain to its interactions with the

world and show that they can be used in planning.

III. EXPERIMENTAL FRAMEWORK

An anthropomorphic robotic system (Fig. 1 (a)), equipped

with a range camera, and its physics-based simulator is used

as the experimental platform (Fig. 1 (d)). The robot platform

consists of a five fingered 16 DOF Gifu robot hand and 7

DOF PA-10 robot arm. For robot perception, SwissRanger

SR-4000 infrared range camera, with 176×144 pixel array,

0.23◦ angular resolution and 1 cm distance accuracy was

used. Along with the range image, the camera also provides

grayscale image of the scene that enables us to differentiate

the robot hand from objects.

The simulator (Fig. 2, 3), developed using the Open Dy-

namics Engine (ODE) library, is used during the exploration

phase. The range camera is simulated by sending a 176×144
ray array from camera center with 0.23◦ angular intervals.

A. Interactions

What type of interactions the robot can perform on the

objects depend on the diversity of its behavior repertoire.

In this work, five different behaviors, that are assumed to

be learned in a previous developmental stage, are used to

manipulate the objects in the environment. These behaviors

are triggered with different mechanisms based on the internal

and external sensors. We postulate that manipulation behav-

iors are executed over object’s closest point (CP) to the robot.

Thus, if an object is detected on the table, the position of

the closest point (CP), computed from the range camera, is

used to reach to and interact with the object by the behaviors

triggered by external sensors.

How the object are affected from the execution of the

same behavior, on the other hand, depends on the free

parameters of these behaviors. For simplicity, each behavior

is modulated with one parameter, α. The 5 behaviors and

their modulation strategy is as follows:

Open-hand(α): : The robot rotates its wrist in α angle

and opens its hand.

Move-hand(α): : The robot moves its hand 10 cm in α

direction.

Push-object(α): : The robot pushes the object for 10

cm approaching from α direction1.

Power-grasp(α): : The hand approaches wide-open

from α direction to the CP of the object. When palm-touch

sensor is activated or the hand reaches the desired position

(CP), all the fingers are closed and the hand is lifted.

Precision-grasp(α): : The hand approaches from α

direction to the CP of the object. Different from power-grasp,

only thumb and index fingers are used to make a precision

1During object manipulation the robot hand is moved only in horizontal
plane above the table, thus direction parameter can also be represented by
one angle.



Fig. 2. The execution of power-grasp behavior and the final object range
image. The arrow shows the corresponding approach direction (α).

Fig. 3. The execution of precision-grasp behavior and the final object range
image. The arrow shows the corresponding approach direction (α).

grasp when the tip of these fingers reach CP. The hand is

lifted after the fingers are closed.

B. Objects

The robot interacts with four types of objects; namely

boxes, cylinders, spheres, and objects with handles, all in

different size and orientations (Fig. 1 (d)). During the execu-

tion of its behaviors with different parameters, the robot may

experience interactions with objects and face with different

consequences. For instance when the hand pushes boxes or

upright cylinders, the objects will remain on the table, but

if it pushes spheres the objects will roll down the table.

As another example, the same box can be grasped from

one approach direction while cannot be grasped from other

directions. Note that in order to avoid robot arm - camera

collision, the camera is placed on the other side of the

table. On the other hand, the robot interacts with the closest

point (CP) of the object and the closest point is generally

out of view of the camera. Thus, only symmetric objects,

which provide mirrored but same information from robot

and camera views, are used in experiments.

C. Perception

a) Object Detection: The first step of pre-processing is

to filter out the pixels whose confidence values are below

an empirically selected threshold value. Then the pixels

outside the region of interest are filtered out. As a result,

the remaining pixels of the range image would belong to

one or more objects that are segmented by the Connected

Component Labeling algorithm [10]. In order to reduce the

effect of camera noise, the pixels at the boundary of the

object are removed, and the Median and Gaussian filters with

5×5 window sizes are applied (see Fig. 1 (b) for a sample

range image). Finally, a feature vector for each object is

computed using the positions of the corresponding object

pixels as detailed in the next paragraph.

b) Object feature vector computation: The perceptual

state of the robot at time t is denoted as [f t,()
o0

,f t,()
o1

..] where
f is a feature vector of size 25, and the superscript () denotes

that no behavior has been executed on the object yet. Six

channels of information are gathered and encoded in a feature

vector for the object.

Behavior execution on the objects are performed through

interaction with objects’ closest point (CP). Thus, the inter-

action results are affected by the properties of the CP and its

local neighborhood. A number of pixels and surface patches,

related to CP, are detected by scanning the range image in

four different directions as shown in Fig. 1 (c). Then,

• the position of CP (3 features),

• the distance of CP to each border pixel (4 features),

• the distance of CP to the center of each surface patch

(4 features),

• the mean normal vector for each surface (12 features),

• the visibility of the object (1 binary feature), and

• the touch sensor on the hand (1 binary feature)

are included into the feature set.

c) Effect feature vector computation: For each object,

the effect created by a behavior is defined as the difference

between its final and initial features:

f
(bj)
effect,oi

= f (bj)
oi

− f ()
oi

where f (bj)
oi

represents the final feature vector computed for

object oi after the execution of behavior bj .

IV. LEARNING OF AFFORDANCE RELATIONS

The exploration phase, conducted only in simulation, con-

sists of episodes, where the robot interacts with the objects,

and monitors the changes. The data from an interaction is

recorded in the form of < f
bj

effect,f
(), bj(α) > tuples, i.e.

(object, effect, behavior) instances. Here, α is the parameter

of the behavior bj used for interaction, f () and f
bj

effect denote

the initial object feature vector and the difference between

final and initial feature vectors, respectively.

The learning process consists of two steps: the unsu-

pervised discovery of effect categories, and the training

of classifiers to predict the effect categories from object

features. The learning process is applied separately for each

behavior as detailed below.

Effect category discovery: In the first step, the effect

categories and their prototypes are discovered through a

hierarchical clustering algorithm. In the lower level, channel-

specific effect categories are found by clustering in the

space of each channel, discovering separate categories. In

the upper level, the channel-specific effect categories are

combined to obtain all-channel effect categories using the

Cartesian product operation. Finally, the effect categories that

occur rarely are automatically discarded together with their

members. This hierarchical clustering method is superior to

simple one-level clustering method, since the results of one-

level clustering are sensitive to the relative weighting of

the effect features that are encoded in different units (e.g.

continuous position features vs. binary visibility feature).



Fig. 4. Given object features (f) and behavior-id (b), the effect category
(Ej ) and the next state (f′) can be predicted by using the corresponding
svmPredictor() and prototype features. (a) and (b) shows the next state
prediction using discrete and parametric behaviors, respectively. A grouping
and averaging mechanisms is used to choose the most reliable behavior
parameters that transform the current object perceptual state to one of the
possible states the corresponding behavior can transform.

After discovering the effect categories and assigning each

feature vector in the set of {f
bj

effect} to one of the effect

categories (Ebj ,id), the prototype effect vectors (f
bj

prototype,id)

are computed as the average of the category members.

Learning effect category prediction: In the second step,

classifiers are trained to predict the effect category for a given

object feature vector, a behavior id and behavior’s parameter

by learning the (f (), α) → Ebj ,id mapping. Specifically, we

used a Support Vector Machine (SVM) classifier with Radial

Basis Function (RBF) kernel to learn this mapping for each

behavior bj , where (f (), α) is given as the input, and the

corresponding Ebj ,id as the target category.

V. BEHAVIOR PARAMETER SELECTION FOR

GOAL-ORIENTED AFFORDANCE USE

The trained SVM classifiers allow the robot to predict the

effect category that is expected to be generated on an object

by a behavior controlled with a particular parameter:

E
predicted

bj ,id = svmPredictbj (f (), α).

The predicted next percept of the object can be found as:

f ′(bj(α))
= FM bj (f (), α) = f () + f

bj

prototype,idpredicted

Effectively, this corresponds to a forward model (FM )

that returns the next perceptual state of the object. By

successively applying this model, the robot can predict the

perceptual state of the object for any number of sequentially

executed behaviors. This multi-step prediction ability has

already been proven to be useful in satisfying goals that were

encoded in perceptual space with discrete behaviors in [7] .

Predicting the next state of the object for any discrete

behavior is straightforward since given initial object features,

the SVM classifier will predict only one effect category and

FM will give only one next state as shown in Fig. 4 (a).

On the other hand, one non-discrete behavior can create

many different effects on the same object when controlled

with different parameters. The next state predictions also

depend on the behavior parameter since it is an input to

svmPredict(), thus different next state predictions can be

obtained when whole parameter space of the behavior is

considered as shown in Fig. 4 (b). Still, the number of effect

categories is fixed for each behavior and the possible next

Fig. 5. The interaction results for 3 different cases from Fig. 7 are shown.
Object angle is always kept as −45

◦ but the approach angle α is changed.

TABLE I

EFFECT CATEGORY PROTOTYPES DISCOVERED FOR POWER-GRASP.

Only significant changes are given in the table. The comments are provided
for the effect prototypes and are not used during experiments.

Effect id Visibility Position (x,y,z) Touch Comment

Effect 1 0 +3cm,+2cm,+2cm 0 Not-lifted

Effect 2 0 +3cm,+13cm,+3cm +1 Lifted

Effect 3 0 +3cm,+2cm,+2cm +1 Unstable lifted

Effect 4 -1 +3cm,+2cm,+2cm 0 Disappeared

states are limited with this number. As a result, the problem

can be transformed to ‘finding the most reliable behavior

parameter to reach a possible next state’. For this purpose,

(1) a grid search is done in continuous parameter space; (2)

behaviors which transform the current state to the same state

are grouped together; (3) the largest group for each next

different state is found; and (4) the mean parameter value in

each group is selected as the best parameter that transforms

the current state to the corresponding next state. Fig. 4 (b,c)

illustrates this method in a simple example.

VI. EXPERIMENTS

In the experiments, a table with 100×70 cm2 surface area

was placed with a distance of 40 cm in front of the robot, as

shown in Fig. 1. At the beginning of each exploration trial,

one random object of random size [8cm−40cm] was placed
on the table at random orientation. For all behaviors, 2000

interactions were simulated with random parameters and the

resulting set of relation instances were used in learning. The

X-means algorithm was used to find channel-specific effect

categories, and Support Vector Machine (SVM) classifiers

were employed to learn effect category prediction.

A. Discovered effect categories for grasp behaviors

For the power-grasp behavior, 4 clusters were found to

represent whole effect space as shown in Table I. Large

objects could not be lifted resulting in not-lifted effect. Small

objects could be lifted so the height is increased and touch

sensor is activated as shown in prototype of lifted effect.

In some cases, the grasp was not stable, so the object slided

from robot’s hand during lifting but remained in contact with

the hand, creating unstable-lifted effect (Fig. 5 (b)). In this

effect, the vertical position of the object was not increased

(significantly), however the touch sensor remained activated.

The disappeared effect was created by the spheres that roll

away during interaction.



TABLE II

EFFECT CATEGORY PROTOTYPES DISCOVERED FOR precision-grasp.

Effect id Visibility Position (x,y,z) Touch Comment

Effect 1 0 +6cm,-1cm,+4cm 0 Not-lifted

Effect 2 0 +5cm,+10cm,+2cm +1 Lifted

Effect 3 -1 +6cm,-1cm,+4cm 0 Disappeared

For the precision-grasp behavior, 3 effect categories were

obtained as shown in Table II. Because the robot inserted one

of its fingers through the aperture of the handle, the grasps

were more stable once the object is hold.

B. Effect prediction in power grasp behavior

After the discovery of effect categories, the mapping from

the initial object features to these categories was learned

for each behavior bj (Predictorbj ()) by multi-class Support

Vector Machines (SVMs). The Libsvm software package was

used with optimized parameters of the RBF kernel through

cross-validated grid-search in parameter space. Different sets

of 1000 simulated interactions were used in training and for

testing. At the end, 72% accuracy was obtained in predicting

the correct effect categories for power-grasp behavior. The

low accuracy is due to the difficulty in predicting unstable-

lifted effect category since it corresponds to the critical point

between success and failure in liftability. When this category

is discarded from the sample set, the prediction accuracy in

predicting the three categories is increased to 85% in average.

We analyzed the relevance of the features in affordance

prediction for the power-grasp and precision-grasp. For this

purpose, we used Schemata Search [11] which computes the

relevance of a feature based on its impact on the prediction

accuracy. The Schemata Search is a greedy iterative method

that starts with the full feature set (R0), and shrinks it by

removing the least relevant feature (based on its impact on

prediction accuracy) in each iteration.

Fig. 6 (a) and (b) gives the prediction accuracy results with

different feature sets, with and without unstable-lifted effect.

When the feature relevance is examined, behavior parameter

(α) is among the most relevant features as presented. The

other relevant features represent CP’s object-relative proper-

ties and CP’s local surface angles. For example, distance to

right border and distance to left border encodes the location

of CP with respect to object and left/right surface normals

represent the shape of the CP’s local neighborhood.

We systematically analyzed the success in effect prediction

by comparing real and predicted effect categories using a

fixed size box which is graspable from only one side. It

is rotated in 10◦ intervals and in each object orientation,

power-grasp behaviors were executed with varying (reach-

able) approach direction angles from −70◦ to 40◦. The

real effect categories obtained during these interaction were

shown in Fig. 7 with different colors. Predicting the relation

between object-angle and approach-angle, which determines

the liftability of the objects, is non-trivial as the robotic

hand is not a simple gripper. There is hardly any symmetry
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Fig. 7. The comparison of real and predicted effect categories for different
object orientations and power-grasp approach directions. The color of the
regions corresponds to observed real effect categories; black: Not-lifted

effect, white: Lifted effect, and gray: Unstable lifted effect. The ‘S’ and
‘F’ labels corresponds to prediction success and failure. If the prediction
or real effect category is unstable-lifted, then the corresponding box is not
labeled. The cases marked with bold red boxes are shown in Fig. 5.

(a) Power-grasp (α = 5
◦) (b) Power-grasp (α = −25

◦)

Fig. 8. Objects in different orientations were grasped with different
approach angles.

between these two components (e.g. while objects at 60◦

were lifted by power-grasp(−20◦), objects at −60◦ could not

be lifted by power-grasp(20◦). Furthermore, there are many

‘gray’ regions which corresponded to unstable-lifted effect

that are distributed between lifted and dragged regions. Our

method was able to predict many effect categories correctly,

however failed to predict some that reside in critical border.

C. Real Robot Results

The results obtained in the simulator were partially verified

on the real robot platform. For this purpose, the effect

category prediction system was transferred to the real robot.

A box shaped object and an object with a handle were used

to assess the ability in prediction of lift effect with power-

grasp and precision-grasp behaviors, respectively.

The box shaped object was placed in two different ori-

entations as shown in Fig. 8. As a result, the behaviors that

were predicted to lift the objects from their narrow side were

parameterized with different angles.

The watering can was placed in two different orientations:

In the first orientation, the closest point (CP) was on its
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(a) Power-grasp behavior (4 categories)
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(b) Power-grasp behavior (3 categories)
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(c) Precision-grasp behavior (3 categories)

Fig. 6. The prediction accuracies of the classifiers that are computed using different feature sets. The feature set is increased by one feature in each
iteration by adding the most successful one. The left-most and right-most bars in each plot show the results obtained using all and no features, respectively.
Error bars on prediction accuracies indicate the best, median, and worst classifiers found by 10-fold cross-validation. Many features, when discarded from
the training set, did not change the prediction accuracy significantly. Thus their prediction accuracies are not shown, and they are represented with ‘.....’.

Fig. 9. The object is correctly predicted not to be liftable in (a). The same
object when rotated is predicted to become liftable with any precision-grasp

behavior. Thus, it is approached with 0
◦ and lifted up.

main body; and in the other one, the CP was on the handle

(Fig. 9). The robot computes the features based on CP, so

the results were different. In (a), no precision grasp was

predicted to lift the object, where in (b) precision grasps from

all directions were predicted to lift the object since the handle

was reachable from all directions. When the average of these

directions were used as the final parameter, the object was

approached from behind and lifted up. The movie for this

behavior is available at

http://www.emreugur.net/movies/icra2011/.

VII. CONCLUSION

In this paper, we proposed a method that allows a robot

not only to discover what type of affordances are offered by

the objects but also to learn how to actualize them. After

robot’s exploration, the effect of behavior parameters over

discovered affordances were learned in relation with the

object features and the generated effects. In this context, we

proposed a method to select the behavior parameters to reach

desired goals. This enabled the robot to predict the objects’

next perceptual state based on the current object features and

the behavior parameters. This prediction ability was used to

satisfy particular goals, i.e. to reach desired final states.

The proposed method is able to not only predict the type

of effect that will be generated by a behavior for a certain

type of parameter value, but also the change to be generated

on the object as a result of execution. This property allows

us to use these relations for making multi-step plans [7].
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