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Abstract—Human infants practice their initial, seemingly
random arm movements for transforming them into voluntary
reaching and grasping actions. With the developing perceptual
abilities, infants further explore their environment using the
behavior repertoire they have developed, and learn causality
relations in the form of affordances, which they use for goal
satisfaction and motor planning.

This study proposes and implements a developmental pro-
gression on a robotic system mimicking the aforementioned
infant development stages: An anthropomorphic robot hand
with one basic action of swing-hand and the palmar reflex
(i.e. the enclosure of the fingers upon contact) at its disposal,
executes swing-hand action targeted to a salient object with
different hand speeds. During the executions, it monitors
the changes in its sensors, automatically forming behavior
primitives such as ‘grasp’, ‘hit’, ‘carry-object’ and ‘drop’ by
segmenting and differentiating the initial swing-hand action.
The study then focuses on one of these behaviors, namely
grasping, and shows how further practice allows the robot
to learn affordances of more complex objects, which can be
further used to make plans to achieve desired goals using the
discovered behavior repertoire.

I. INTRODUCTION

Newborns have several innate reflexes such as pupil reflex

to light, sucking reflex or palmar-grasp reflex that help the

development of motor and cognitive skills. Palmar reflex in

particular is “integrated into later intentional grasping” [1,

p. 7] after repeated activation of the reflex and execution of

grasp action. This reflex is not always stable and by 6 months

of age, it disappears [2, p. 199]. It takes 9 months for infants

to reach for objects with correct hand-orientation and adjust

their grip size based on objects’ size before contact [2]. Hand

orientation and grip size appear to develop later than hand-

speed parameter since “babies younger than 9-months lack a

fully-developed map between visually perceived orientations

and corresponding hand orientations” [2, p. 200]. Between 7-

9 months, babies explore the environment and objects using

various behaviors including grasp, drop, and hit [3]. This

indicates that, by this time, the infant has already transformed

their initial seemingly uncontrolled ‘move hand’ actions into

a set of behavior primitives from its most basic movement

primitive, ‘move arm’. Between 7-9 months, they learn the

causality relations and object dynamics in response to their

actions [3]. It is plausible to think that while interacting with

the environment, babies monitor these consequences of their

actions and relate the consequences to the visual properties

of the objects they interact with. In other words, they learn

object affordances, the action possibilities offered by their

environment [4], in this phase.

Infants between 7-10 months have also acquired a set of

behaviors that are qualitatively different and that can be used

for different purposes such as grasping, dropping, reaching,

shaking, etc. These actions can be considered as behavior

primitives that are utilized to develop more advanced skills

through practice. There is evidence that complex behaviors

are represented in a modular fashion by the central nervous

system. For example, the ‘transport’ and ‘grasp’ components

of grasping action appear to be controlled by different

regions of the human brain [2, p. 217]. Furthermore, there

is a developmental order in maturation order of these areas.

Thus, it’s plausible that the infant starts from a small number

of reflex like behaviors, and then progressively discovers and

distinguishes new behaviors through use of old ones. Such

developmental progression must be complemented in infant’s

perceptual system. First, a crude perception system should

be employed to discover the basic behaviors, and a more

advanced perception should be utilized to differentiate more

complex behaviors and to discover more abstract concepts

such as affordance relations.

During the recent years, robotic studies inspired by ideas

in developmental psychology have increased considerably

([3], [5]). These studies argue that a robotic developmental

pathway similar to infants is the right way for obtaining in-

telligent robots. They typically use exploration, learning and

embodiment to enable robots learn about their environment

via interaction with minimal expert knowledge.

This paper focuses on design of such a developmental

robotic system which starts with only one basic reflex-like

behavior (swing-hand1) and one basic reflex (palmar-grasp

reflex). By exercising this behavior with different hand speeds

(which corresponds to maturation of 5-month-old infants),

and by using its crude tactile perception, the robot is able to

1“Even in the newborn infant, a basic neuro-muscular infrastructure for
reaching and grasping is present. When an object is placed in the palm of
a newborn infant, the tactile stimulation triggers a grasp reaction in which
all digits are flexed around the object. Similarly, in newborns, reaching
movements aimed towards objects within the center of the visual field are
present. ”[6, p. 235]



form a useful set of behavior primitives. In developmental

phase II, the robot focuses on one of these primitives, namely

grasp behavior. In this phase, which corresponds to 7-10

months in infants, the robot learns the affordances of various

objects by executing the grasp behavior, and learning the

relations between object features and the effects created.

Here the robot uses a more advanced visual perception,

which is inspired from surface orientation selective neurons

of CIP area2, in order to learn these complex relations.

The outline of this paper is as follows. In the next section,

we will give the details of the robot, it’s behavior and

perceptual representation. In Section III, the two phased

developmental approach that is developed for (1) discovering

behavior primitives and (2) learning grasp affordances will

be detailed. In Section IV, after providing the details of

the learning experiments conducted in the simulator, the

discovered behavior primitives and affordance prediction

performance will be discussed. Next, the robot’s performance

in the real world after learned skills are transfered to the real

robot will be demonstrated. We will conclude by summariz-

ing the results and our contribution, and by discussing the

relation of our study to similar ones.

II. EXPERIMENTAL FRAMEWORK

An anthropomorphic robotic system equipped with a range

camera is used as the experimental platform. This system

uses a 7 DOF Motoman robot arm, that is placed on a

vertical bar similar to human arm as shown in Figure 1. A

five fingered 16 DOF Gifu robot hand is mounted on the arms

to enable manipulation. The maximum length of Motoman

arm and Gifu hand is 123 cm. and 23 cm., respectively.

There are tactile sensors distributed on the surface of the

fingers and palm. For environment perception, an infrared

range camera (SR-4000), with 176x144 pixel array, 0.23◦

angular resolution and 1 cm distance accuracy is used.

The simulator (Figure 2), developed using Open Dynamics

Engine (ODE) library, is used during the exploration phase.

The range camera is simulated by sending a 176 × 144 ray

array from camera center with 0.23◦ angular intervals.

A. Behavior representation

The robot is assumed to have the ability to reach and bring

the objects to it. Swing-hand behavior is used for this purpose

where the robot reaches to the object and pulls back its hand.

This behavior is implemented to generate minimum jerk

trajectory in joint space using the inverse kinematic solution

[8] from initial and final positions as in Figure 1. The hand

that is either clenched or wide open prior to the behavior

execution can reach to the object in different velocities. Due

to an built-in grasp-reflex, if the robot feels anything in its

palm using touch sensors, the hand is closed. Furthermore,

at any moment, this reflex can be disabled randomly and in

this case the robot hand is loosened even if there is an object

inside.

2CIP area on the dorsal path of monkeys extracts visual data and forwards
it to AIP that is thought to be responsible from perception of graspability
affordance [7]

Fig. 1. The hand, arm, range camera (top-right), and the robot environment.
The trajectory of the basic swing-hand behavior is also show is also shown.

The execution of the same swing-hand behavior over

the same object with different parameters (velocity, disable-

reflex, and initial hand state) produces different effects.

Figure 2 shows hand and object trajectories during execution

of the same behavior with four different parameter sets. In

(a), the hand hits the object with a velocity of V = 0.24
cm/s, and due to the grasp-reflex the object was grasped

and brought back. In (b), the high-velocity (V = 0.42 cm/s)

collision between the hand and the object did not allow the

object to be grasped on time. In (c), the hitting/reaching

velocity of the hand was same with (a), so the object was

grasped. However, while pulling back the hand, the grasp-

reflex was disabled (randomly) so the object was released.

Finally, the hand was initially clenched in (d), so the object

was tapped only. Although the trajectory of the object being

interacted can differ through experiments, these four different

situations qualitatively cover all different possibilities if

perfect reaching and tactile sensing is assumed.

How the objects are affected from the execution of the

same behavior, depends on the free parameters of these

behaviors. While swing-hand behavior has one parameter

(hand speed), the discovered behavior primitives may have

more than one parameter. Each behavior primitive is rep-

resented as bi(α) where i corresponds to the index of the

primitive and α corresponds to parameter list. Since the

behaviors are discovered from the swing-hand behavior by

using the same method, they have a common encoding.

In other words, each behavior primitive is encoded with a

common set of descriptors that are automatically instantiated

during behavior discovery. These descriptors are:

• initial and final touch states,

• initial and final hand velocities,



(a) Grasp (b) Hit (c) Drop (d) Tap

Fig. 2. Robot-hand and object trajectories during swing-hand behavior
with different velocities and hand states. The labels that explain situations
are only given to ease the understanding of the figures and are not used in
any phase of development. Corresponding sensor trajectories and behavior
primitive segments are provided in Figure 3.

• whether grasp-reflex is disabled, and

• hand movement direction (towards object or robot).

B. Perceptual Representation

1) Touch perception: The sensory readings obtained from

the distributed tactile sensors that cover the palm and fingers

are processed as follows.

First, touch for each finger link and for the palm is

detected and encoded as 5 × 3 + 1 = 16 binary touch

signals. Then, their sum is normalized between [0 − 1] to
represent a general touch sensation for the hand, and called

as raw touch signal. Since the readings are noisy, the raw

touch trajectory is convolved with the first half of Gaussian

window, G(N = 50, σ = 0.5): yi = xi × e
(i−M)2

2σN where

M = (N − 1)/2. Convolved readings are used in perception

during affordance-learning phase, Phase II.

On the other hand, in Phase I, the robot has a crude

sense of touch as mentioned before. This limited sense

is represented by three touch states, which are computed

from binary touch signal, to ease the representation of this

change. In order to compute the binary signal, the convolved

trajectory is discretized to on/off sensor using a threshold

t = 0.02. Figure 3 shows a number of sample trajectories

where the raw values are convolved and binarized.

Touch states are defined based on the binary touch signal

trajectory as follows:

• on: The touch sensor that is active during behavior

execution.

• off: The touch sensor that is not active during behavior

execution.

• onf: In some cases, the touch sensor is active for a

short duration. Such cases are denoted by on/off or onf

in short. There is such a case in Figure 3(b), change (E),

where the robot hand hits the object with high velocity.

A similar case in Figure 3(d) occurs, however since the

approach velocity is lower, the object is dragged on the

table rather then been hit. So the duration of touch is

long in this case and hand state is represented by the

consecutive on and off states instead of the onf state.
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(a) Grasp & carry
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(b) Hit & move-hand
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(c) Grasp & release & move-hand
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(d) Punch & drag & move-hand

Fig. 3. Velocity, touch sensor trajectories and segmentation of swing-hand
behavior with different parameters.

2) Visual perception: The range image obtained from

the infrared range camera is used to compute a number of

features from the objects in the environment as follows:

Object detection: The first step of pre-processing is

to filter out the pixels whose confidence values are below

an empirically selected threshold value. Then the pixels

outside the region of interest (table) are filtered out. As

a result, the remaining pixels of the range image would

belong to one or more objects that are segmented by the

Connected Component Labeling algorithm [9]. In order to

reduce the effect of camera noise, the pixels at the boundary

of the object are removed, and the Median and Gaussian

filters with 5×5 window sizes are applied. Finally, a feature

vector for each object is computed using the positions of the

corresponding object pixels as detailed in the next paragraph.

Object features: The object feature vector includes a

binary feature for object-visibility, and a number of features

related to size, position and shape of the object. The 3D

position of the object center is used to represent the position

feature. As for the shape features, inspired from CIP neurons

in monkey brain, first, object surfaces are identified, then

size, orientation, and curvature of each surface is computed.

Object surfaces are found by grouping object pixels with

similar local orientations. For this purpose, for each detected

object pixel a local normal vector is computed ([10]) and a

clustering algorithm is used to find ‘normal vector clusters’

that correspond to object surfaces. See Algo. 1 for the details

of this algorithm and Figure 7 for sample surfaces. After

finding surfaces, for each cluster (surface), standard deviation

of the normal vectors is computed in each coordinate axis

to represent curvature. Additionally, for each surface, height

and width are computed. At the end, the following feature

vector represents the object shape perception:

S = (a1, w1, h1,µ1,σ1, ...as, ws, hs,µs,σs)



where a1, w1 and h1 correspond to number of pixels,

width and height of the first detected surface, µ and σ

refer to mean and standard deviation vectors (of size 3),

respectively. s is the maximum number of surfaces, which

is set to 3. Therefore, the object feature vector includes

object-visibility, position and shape features, and has size of

1+ 3+ (1+ 1+ 1+ 3+ 3)× 3 = 30. Although, this feature
representation is limited with the number of surfaces and

their order, we expect to obtain generalization in learning by

including extra object feature vectors that are obtained from

the original computed feature vector with shuffled surface

orders.

Algorithm 1 Surface identification through normal vector clustering

sid = Index of the surface (cluster).
snormal = Normal of the corresponding surface (the mean of the cluster).
{N}: The set of normal vectors computed for each pixel.
cluster(A, k): Cluster sample set A into k clusters. Return the list of
cluster index and means.
dist(si, sj): Distance between normal vectors of surfaces si and sj .
thresholddist: A threshold to decide the similarity of surfaces.
nSameSurfaceNeighbors(p, sid): Number of pixels with same sid in
8-neighborhood of p

1: ({sid}, {snormal}) = cluster(N , 3)
2: for each surface pair < si, sj > in surface list {sid} do
3: if dist(si, sj) < thresholddist then
4: Combine si and sj in {sid}
5: end if
6: end for
7: for each surface si in surface list {sid} do
8: for each pixel p in surface si do

9: Delete p from si if nSameSurfaceNeighbors(p, si) < 3
10: end for
11: end for

3) Entity Feature Vector Computation: Entity feature vec-

tor includes robot’s visual and tactile percept in progressively

increasing complexities in subsequent developmental phases:

In Phase I, entity feature vector is represented only with

one feature, touch state (T ):

f = (T )

In Phase II, the convolved touch signal is used as tactile

feature instead of touch-state. In this phase, the object

perception is more complex and includes position and shape

related information: f = (C, V,P ,S) where C, V , P , and S

represent convolved touch signal, object visibility, 3D object

position, and object shape feature vector, respectively.

4) Effect Feature Vector Computation: Effect corresponds

to the difference between final and initial perception of the

robot and is defined as the vectorial difference between

final and initial features: f bi
effect = f (bi) − f (), where f (bi)

represents the feature vector of the entity perceived after

bi behavior is executed. Here ‘after’ refers to the timepoint

where there is no change in perception anymore.

C. Affordance Representation

The affordances are represented as triples that consist of

the initial percept of the agent (entity), the behavior applied

and the produced effect [11]. Here, the entity corresponds

to the feature vector which includes object features and

robot’s tactile sensor readings. The entity feature vector is

represented as f . The effect feature vector (f bi
effect) represents

the change in perception of the entities during behavior

execution. Thus the affordance relation instance, which rep-

resents a sample interaction with the environment, will be

represented as follows:

{< f bi
effect,f , bi(α) >}

III. TWO PHASE LEARNING

A. Phase I: Discovering Behavior Primitives

In this phase, the robot executes the swing-hand behav-

ior on the same small object placed in a fixed reachable

position. Different hand speeds and grasp-reflex disabling

timings generate different hand movement trajectories. These

different movement trajectories result in various hand-object

interactions that can be measured with robot’s touch per-

ception. Thus, by observing the changes in touch state

and segmenting the movement trajectories based on these

changes, the robot is able to distinguish the segmented

trajectory instances that transform one hand-object state to

another one. In order to obtain generic behaviors, the robot

finds the segments with the same initial and final touch states,

i.e. the segments which creates same transformation between

touch states. Finally, it groups these common segments to

form behavior primitives.

Figure 3 shows a number of obtained segment instances

from behavior executions demonstrated in Figure 2. As

shown, from different executions and different segmenta-

tions, segment instances with common characteristics are

observed. For example, the first segments obtained in (a)

and (c) are similar since they correspond to the touch stage

change of off → on. As another example, the last segments

obtained in (b), (c), and (d) correspond to the common

change (or no change) of off → off. These similar segments

will be grouped together in order to create new behavior

primitives. The representative behavior primitive of each

group, which is composed of many individual examples, is

computed by taking the average of initial and final velocities.

B. Phase II: Learning Affordances

In this phase, the robot executes the discovered behavior

primitives on different objects of different positions, orien-

tations and size in order to learn which affordances they

provide. This learning takes place in 2 steps, where first

discrete effect categories are found, and then given objects

and behaviors, the means to predict effect categories is

learned. The details of these steps are as follows:

Effect category discovery: In the first step, for each

behavior bi, a number of discrete effect categories Ebi
id

are found using the set of effect feature vectors ({f bi
effect})

observed during interactions. A novel 2-level clustering

algorithm that takes into account the representational dif-

ferences between different perceptual channels is used for

this purpose since one-level clustering method is sensitive

to relative weighting of the effect features that are encoded

in different units. This algorithm first finds channel-specific



(a) Channel-specific effect category discovery for each channel ch in the
lower-level

(b) All-channel effect category discovery in the upper-level

Fig. 4. 2-level effect category discovery method where obtained effect
categories are tested based on their predictability

effect categories within each perceptual channel and then

combines them to obtain all-channel effect categories. In

detail, in the lower level channel-specific effect categories are

found by clustering in the space of each channel, discovering

separate categories for touch, visibility, position and shape.

In order to ensure the predictability of the channel-specific

effect categories, classifiers are trained. If a channel-specific

effect category is found to be not predictable, the clustering is

re-done with less number of desired clusters (Algorithm 2,

Figure 4(a)). After finding the final channel-specific effect

categories, in the upper level these categories are combined

to obtain all-channel effect categories using the Cartesian

product operation. If an all-channel effect category is not

predictable, it is discarded and the corresponding affordance

relation instance will not be used in the next step.

Learning effect category prediction: In the second step,

classifiers are trained to predict the effect category for a given

entity feature vector, a behavior id and behavior’s parameter

by learning the (f (), α) → Ebi,id mapping. Specifically, we

used a Support Vector Machine (SVM) classifier with Radial

Basis Function (RBF) kernel to learn this mapping for each

behavior bi, where (f (), α) is given as the input, and the

corresponding Ebi,id as the target category.

IV. EXPERIMENTS

A. Phase I: Discovered Behavior Primitives

When only open-hand swing-hand behavior execution is

considered, the approach velocity is randomly selected from

the range [0 − 0.70], six different behavior primitives were

discovered by the robot. As mentioned before, the behavior

types are automatically discovered by the robot based on

differences in initial and final touch states. Figure 5 gives

these primitives with their touch state change characteristic.

For each primitive, the initial and final velocity distributions

are given on the left and right plots of the figure, respectively.

The meaningful labels for these primitives are also provided.

• Hit primitive corresponds to high velocity reach and hit

to the object. The touch sensor was activated for short

time and the object was not grasped at the end.

Algorithm 2 Discovery of channel-specific effect categories

kmax: Maximum number of categories.
Reset(kmax): Reset kmax for new channel.
feffect(ch): Portion of feature vector limited to channel ch.
Clusters({f}, kmax): Find between 1-kmax clusters with feature set {f}.
{Eid}ich: The set of effect categories found in channel ch.

1: for each channel ch in [visibility, tactile, position, shape] do
2: Reset(kmax)
3: while kmax 6= 1 do

4: {STEP 1: Find optimal categorization by clustering nopt times}
5: for i = 1 : nopt do

6: Find effect category set ({Eid}ich) by
Cluster({feffect(ch)}, kmax).

7: Train classifier (Predictor()i) to learn mapping (f, α) →
Eid

i
ch.

8: end for
9: Select effect category set ({Eid}bestch

) with most accurate
Predictor()

10: {STEP 2: Verify predictability of the optimal categories in
{Eid}bestch

}
11: for each effect category e in {Eid}best do
12: Assign same category (a) to all effects except e
13: Train classifier to learn mapping (f, α) → e, e
14: if accuracy < threshold then

15: kmax = kmax − 1
16: jump (3) {Categorization does not allow prediction}
17: else
18: continue {Check predictability of next category}
19: end if
20: end for
21: end while
22: end for

• MoveHand1 primitive corresponds to hand movement

towards robot body without object after short duration

touch to the object.

• Grasp primitive corresponds to slow velocity reach

to the object and results in long period touch sensor

activation, i.e. stable grasp.

• Carry primitive starts with slow velocity and stable

grasp. When the primitive execution finished, the object

is still at robot’s hand indicated by on touch state.

• MoveHand2 primitive corresponds to hand movement

towards robot body without any object in the beginning

and at the end.

• Drop/release primitive corresponds to hand movement

towards robot, object in the hand in the beginning and

no object at the end. The object falls as the result of

unstable grasp in drop behavior in some situations, and

as the result of disabled grasp-reflex in release behavior

in other cases. We assumed that the robot can notice and

and learn from the disabled grasp-reflexes.

Closed-hand swing-hand behavior was segmented to five

different primitives, namely one tap, two drags, and 2 move-

hands. Different from open-hand segments where the object

drops due to unstable grasps, in closed-hand segments, the

object may be dragged by robot’s fist for certain time. The

behavior segments are similar to previously found ones, so

we will focus on open-hand swing-hand behavior only.

Figure 5 gives the velocity distributions for all experi-

enced segments. Consider the final velocity (reach velocity)
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Fig. 5. The distribution of hand velocities in the beginning and at the end
of behavior primitive executions.

TABLE I

THE BEHAVIOR PRIMITIVES AND THEIR ENCODING. GR REFERS TO

ACTIVATION OF GRASP REFLEX.

Name
Init

Touch

Final

Touch
Init Vel. Final Vel. GR Dir.

Grasp off on [0-0] [0.19,0.22] on obj.

Carry on on [0.19-0.21] [0,0] on self.

Drop on off [0.22-0.27] [0.28,0.35] on self

Release on off [0.19-0.21] [0.10,0.70] off self

Hit off onf [0-0] [0.24-0.76] on obj.

MoveHand1 onf off [0.25-0.46] [0,0] on self

MoveHand2 off off [0.25-0.65] [0,0] on self

distribution of hit and grasp behavior primitives. Ideally,

the velocity of the hand for grasping should be always

smaller than the velocity for hitting. However, as shown, the

velocity ranges of these primitives are not clearly separa-

ble and contain overlapping parts because of the complex

interaction dynamics and noise in the system. While the

robot hand could grasp the object with an approach velocity

of 0.36cm/s, it could not grasp with 0.19cm/s in some

situations. Thus, in order to increase the confidence we

include the portion between first and third velocity quartiles

into behavior primitive descriptors.

Table I gives the set of descriptors that are automatically

set for the corresponding discovered behavior primitive. As

shown, the robot hand which approaches to the object with

[0.19−0.21]cm/s velocity would grasp the object, however

if the approach velocity is [0.24 − 0.76]cm/s, the object

cannot be grasped and the robot hand would hit it. As another

example, even if the touch state is on initially, if the hand

velocity is high ([0.22, 0.27]cm/s), it corresponds to high-

speed grasp attempt, i.e. unstable grasp, thus the object drops

from the hand.

B. Phase II: Learned Affordances

In order to learn grasp affordances, a table with 100× 70
cm2 surface area was placed with a distance of 40 cm in

front of the robot. At the beginning of each exploration trial,

one object of random size [8cm − 40cm] was placed on

a fixed reachable position at random orientation. Since the

grasp affordances of boxes of different sizes and orientations

is more difficult to learn and predict, large number of boxes

are included into interactions. The robot simulated 2000,

400, and 400 grasp interactions with boxes, cylinders, and

spheres, respectively. Through experiments, the approach-

TABLE II

THE EFFECT CATEGORIES (CAT.) DISCOVERED BY 2-LEVEL

CHANNEL-BASED CLUSTERING.

Channel Cat.
Prototype 2-category Predic- Accep-

vector accuracy table? ted?

Visibility 2 cat.
-1 90.6 %

√ √
0 90.6 %

√

Tactile
3 cat.

0.40 79.73 %
√

X0.11 64.42 % X
0.00 68.82 % X

2 cat.
0.38 80.15 %

√ √
0.04 80.15 %

√

Position

3 cat.
[9, 2, 1] 67.00 % X

X[0, 0, 0] 81.14 %
√

[12,-4,12] 79.20 %
√

2 cat.
[2, 1, 0] 78.2 %

√ √
[12,-3,12] 78.2 %

√

Shape

3 cat.
Large 73.47 % X

XLarge 69.77 % X
Small 71.27 % X

2 cat.
Large 70.5 % X

X
Small 70.5 % X

1 cat. NA. NA.
√ √

direction parameter (α) of grasp is kept random. The set of

relation instances were used in learning. The X-means algo-

rithm was used to find channel-specific effect categories, and

Support Vector Machine (SVM) classifiers were employed to

learn effect category prediction.

1) Discovered Effect Categories: The 2-level channel

based clustering algorithm, detailed in Algorithm 2 is used

to find the effect categories. The maximum number of

categories, kmax, is set to 5 for each channel. The accuracy

threshold is set to 75%. The results are given in Table II.

• For visibility channel, X-means algorithm naturally

finds 2 categories. The first and second categories

correspond to disappear and stay-in-view, respectively.

When an SVM predictor is trained to differentiate the

first category from the other categories (from the second

one), the prediction accuracy is found to be high. The

same is valid for second category as well. Thus, these

categories are valid and transformed to upper-level for

cross-product operation.

• For tactile channel, X-means algorithm first finds 3

categories. The value shown in prototype vector is the

ratio of activated touch sensors on hand. Thus, the

first category corresponds to high-activation (grasp) and

second and third categories correspond to low-activation

(finger touch or no touch). The performance of the

SVM classifier that is trained to differentiate the first

category from the others (graspable from others) is

high (79.73%). However, the SVM classifiers cannot

distinguish second and third categories well since the

accuracies are around 65%. As a result, maximum num-

ber of categories are decreased to 2, and X-means algo-

rithm is executed again. The new categories correspond

to high-touch-activation and low-touch-activation, and

they are predictable (with 80% accuracy), so they are

transformed to upper-level.

• For position channel, X-means algorithm finds 3 poten-



TABLE III

EFFECT CATEGORIES DISCOVERED FOR GRASP BEHAVIOR.

Effect id Visibility Tactile Position Shape Comment

Effect 1 -1 0.04 no change N.A. Disappeared

Effect 2 -1 0.38 no change N.A.
Grasped&
disappeared

Effect 3 no change 0.38 no change N.A. Grasped

Effect 4 no change 0.04 [12, -4, 12] N.A. Pushed

tial categories, where two of them cannot be predicted.

Thus, in the next iteration 2 categories are found and

transformed to upper-level.

• For shape channel, neither 3 category nor 2 category

set is found to be predictable. Thus, there is no cate-

gorization in shape channel. The failure in discovering

any meaningful shape change category is mainly due to

robot’s inability to track object’s surfaces.

After effect categories are found for each channel, they

are combined in the upper level by cross-product operation.

Some of the new categories are discarded since they do not

satisfy predictability criteria (see Figure 4(b)). At the end, 4

meaningful effect categories are shown to remain (Table III).

Disappeared effect was probably created by large spheres,

and grasped & disappeared effect was created by very small

object that becomes invisible inside hand.

2) Effect Prediction Performance: After the discovery

of effect categories, the mapping from the initial object

features to these categories is learned for grasp behavior by

multi-class Support Vector Machines (SVMs). The LibSVM

software package was used with optimized parameters of the

RBF kernel through cross-validated grid-search in parameter

space. 2200 simulated interactions were used in training and

a separate set of simulated 600 interactions were used for

testing. During training and testing, the same number of

samples from each category are used to avoid any effect

of dominant category. Figure 6 gives the change in accuracy

based on number of samples used in training. Considering the

chance level is 25% in predicting correct category out of 4

categories, high prediction accuracy is obtained with enough

number of samples. Furthermore, since use of perfect object

information (such as type of the object, dimensions, etc) does

increase the performance only around 5%, the utilized visual

features are proved to capture objects’ physical affordances.

Note that although shape features did not contribute to

effect categorization, they are utilized in this stage in pre-

dicting effects and perceiving affordances. For example, in

order to detect rollability affordance of a ball placed in the

middle of the table, the robot should use surface curvature

which is represented by σs; or to detect the graspability of

a small object, the width feature should have been used.

C. Transfer of Learned Skills to the Real Robot

The behavior discovery and learning results were trans-

fered to the real robot and the affordance perception is tested

in the real world. For this purpose, first a number of objects

were placed on the table and the robot predicted the effects

to be created by the grasp behavior with fixed approach
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Trained with object properties

Trained with features computed from range camera

Fig. 6. The change in prediction accuracy of classifiers trained with
real object information (such as object type, diameter, etc.) and computed
features from range camera.

direction. The detected objects and identified surfaces can

be seen on the range image in Figure 7. For those objects,

the robot was able to make correct predictions in spite of

the facts that (i) the surface identification is not sharp in

many cases (e.g. ball) due to the noise in sensing, (ii) some

objects were occluded, and (iii) some of the objects (4&5)

were novel, i.e. were not used during learning. In this study,

the robot learned single object affordances and executed the

grasp behavior to one object at a time.

The grasp behavior was also executed on a number of

objects with different positions and orientations in order

to compare the predicted and actual effect categories. The

resulting interactions and actual observed effects are shown

in Figure 8 for a number of cases. The effect predictions

in (a-c) were correct where a mug was Grasped in (a), a

larger cylindrical object was Pushed in (b) and the same

cylinder with a different orientation rolled off from the

table and Disappeared in (c). In (d), the robot predicted the

object to Disappear but the object stuck in between robot

fingers and table edge at the end of the grasp action without

being grasped (and disappeared). Finally in (e), the robot

Pushed the object initially (as predicted), but later the object

rotated while being pushed and was grasped from the other

side with index and thumb fingers. In the real world with

uncertainties and noise, the robot cannot perfectly predict

the result of its actions; however it can observe its own

action execution, compare the actual effect with the predicted

one and perform corrective actions if necessary, and possibly

update its prediction mechanisms. We leave such corrective

actions and update for future work as they are not at the core

of this current report (but see [12]).

V. CONCLUSION

In this paper, a developmental framework was provided for

unsupervised discovery of a behavior repertoire and learning

of object affordances for a manipulator robot. Initially, the

robot possessed one basic action (swing-hand) and one basic

reflex (palmar-grasp). First, by executing this action with dif-



Fig. 7. Left: The test environment. Middle-top: The range image, detected objects and the identified surfaces of these objects. Right: The features computed
from the objects and their surfaces. The robot predicts that different effects will be created if grasp behavior is executed, as shown in the middle-bottom
figure. Note that the features of objects 5 and 6 are not shown in the figure due to the space constraints in the user interface.

Fig. 8. The actual effects of grasp behavior executions on different objects with different orientation and positions. The complete movie which also
displays robot’s perception, object features, and effect predictions with larger number of interactions can be downloaded from the url below. Note that the
grasp behavior execution only includes reaching to the object and closing the hand. In other words, the execution is finished as soon as the hand is closed.
The hand that is automatically opened and taken to initial position is not part of the grasp execution and experiment and dropping object after execution
does not refer to grasp failure. Thus, for example out of 4 grasp predictions, only one of them were unsuccessful due to prediction error.

http://www.emreugur.net/videos/iros2012/

ferent hand speeds, and monitoring its crude tactile sensors,

the robot was able to discover meaningful behavior primitives

such as carry, grasp, release, and push. Second, by focusing

on the grasp behavior, the robot learned affordances of more

complex objects by first finding discrete effect categories and

learning the relation between these categories and interacted

object features. In summary, the robot discovers behavior

primitive, effect categories and affordances, by progressively

dividing behavior parameter space, effect feature space, and

entity feature space. The robot uses the structures found

in the previous steps in order to discover in skills. After

learning, the skills are transferred to the real robot and shown

to be effective in real world.

In many other studies, the robots learned affordances in

terms of the relations between object features, behaviors and

created effects. Furthermore, in [12], the robot was able to

make simple plans using the learned affordances. However,

in all these studies, a fixed set of hand-coded behaviors were

assumed to exist. The findings of this paper (unsupervised

emergence of the behavior repertoire from one hand-coded

action) can be incorporated into those approaches to obtain a

developmental progression that parallels infant development.

REFERENCES

[1] J. Piaget and B. Inhelder, The Psychology of the Child. New York,
USA: Basic Books, 1966.

[2] D. A. Rosenbaum, Human Motor Control. London, UK: Academic
Press, 1991.

[3] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive developmental
robotics: a survey,” IEEE Tran. Auton. Mental Dev., vol. 1-1, 2009.

[4] J. J. Gibson, The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, 1986.

[5] A. Stoytchev, “Some basic principles of developmental robotics,” IEEE
Transactions on Autonomous Mental Development, pp. 122–130, 2009.

[6] B. Vollmer and H. Forssberg, “Development of grasping and object
manipulation,” in Sensorimotor Control of Grasping: Physiology and

Pathophysiology. Cambridge University Press, 2009.

[7] E. Oztop, H. Imamizu, G. Cheng, and M. Kawato, “A computa-
tional model of anterior intraparietal (AIP) neurons,” Neurocomputing,
vol. 69, pp. 1354–1361, 2006.

[8] B. Moore and E. Oztop, “Redundancy parametrization for flexible
motion control,” in ASME IDETC, 2010.

[9] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Volume
I. Addison-Wesley, 1992.
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