
Can Expressive Posterior Approximations Improve Variational
Continual Learning?

Sayantan Auddy1 Jakob Hollenstein Matteo Saveriano Antonio Rodrı́guez-Sánchez Justus Piater

Abstract— Mean field variational inference (MFVI) has been
successfully used in the past for continual learning. However,
Gaussian mean field approximation has been shown to be
inferior to more expressive forms of posterior approximation for
training latent variable models and single task Bayesian neural
networks (BNNs). In this paper, we examine whether expressive
posterior approximations obtained with normalizing flows (NF)
can result in improved continual learning compared to the mean
field approach. Results from our preliminary experiments on
the Permuted MNIST benchmark indicate that with longer
training durations, over all tasks, BNNs with NF perform
marginally better than BNNs with MFVI. Additionally, BNNs
with NF are superior to BNNs with MFVI at remembering more
recent tasks, while the performance on older tasks is similar
between the two methods.

I. INTRODUCTION

Neural networks are trained to extract knowledge from
a single dataset at a time to solve a given task. When a
network is trained using a different dataset, it can no longer
perform the task associated with the previous dataset. This is
known as catastrophic forgetting [1]. Methods for continual
learning for neural networks aim to minimize the effect of
catastrophic forgetting in order to allow networks to learn in
an open-ended manner without requiring explicit access to
all the datasets that it was trained on in the past. Additional
objectives of continual learning are also to use previous
knowledge to improve the learning of new tasks, and to
enable learning a large number of sequential tasks [2].

The current literature on continual learning using neural
networks comprises of a large number of different ap-
proaches. While some methods rely on generative modeling
of previously seen data and pseudo-rehearsal techniques [3],
others rely on regularization schemes to protect the network
parameters that are essential for performing well on previous
tasks [2], [4].

The problem of continual learning has also been tackled
from the perspective of approximate Bayesian inference
over the parameters of a network. In Variational Continual
Learning (VCL) [5], [6], the posterior distribution over the
model parameters that is learned in task i is employed as
the prior distribution over the parameters in the next task
i+1, thereby exploiting the general framework of Bayesian
inference for continual learning. VCL [5] uses Mean-Field
Variational Inference (MFVI), in which the posterior dis-
tribution of the network parameters is approximated by a
Gaussian distribution with a diagonal covariance matrix.

All authors are with the Intelligent and Interactive Systems Group,
Department of Computer Science, University of Innsbruck, Technikerstrasse
21A, 6020 Innsbruck, Austria. 1sayantan.auddy@uibk.ac.at

The errors due to the approximation of the posterior by a
diagonal-covariance Gaussian will propagate and accumulate
in this setup. Given the very high dimensionality of the space
of parameters of a neural network, an approximate Gaussian
distribution presumably does not capture all the complexities
of the true posterior.

Recent contributions in VI have shown that more ex-
pressive posterior distributions obtained using Implicit/Semi-
Implicit VI [7]–[11] or Normalizing Flows [12]–[14] can
result in better performance. In the context of classification
or regression tasks with neural networks, this results in more
accurate predictions as well as better uncertainty estimates
on out-of-distribution data [14].

In this paper, our main contributions are: 1) extending
BNNs with normalizing flows [14] for use in continual
learning, and 2) investigating whether more expressive poste-
rior approximations for continual learning have any tangible
benefits over MFVI. We present results of the preliminary
comparison of the continual learning performance of a
Bayesian Neural Network (BNN) using MFVI [15] to the
performance of a BNN using normalizing flows [14] on
the Permuted MNIST continual learning benchmark. These
results show that when the performance over all tasks is
considered, a BNN with normalizing flows is marginally
better than a BNN with MFVI for longer training durations.
However, a BNN with normalizing flows is especially better
than a BNN with MFVI at remembering more recent tasks,
while a similar level of forgetting occurs for older tasks.

The remainder of the paper is organized as follows: in
section II, we briefly describe how MFVI and VI with
Normalizing Flows can be used for training BNNs. This is
followed by section III, in which we describe how we adapt
a BNN with Normalizing Flows [14] for continual learning.
The results from our preliminary experiments are presented
in section IV. Finally, a discussion of the observed results,
concluding remarks, and possible directions for future work
are presented in section V.

II. BAYESIAN NEURAL NETWORKS

When a conventional neural network is trained using
Maximum Likelihood Estimation (MLE) or Maximum a
Posteriori (MAP) estimation, we end up with point estimates
for each learnable parameter of the network. In contrast, each
parameter of a Bayesian Neural Network (BNN) is defined
to be a distribution instead of a point estimate. A single
trained BNN model thus behaves as an infinite ensemble of
networks (in which each sample from the learned distribution
of parameters acts as an individual network) [15]. This results

in additional capabilities such as the avoidance of overfitting
by inexpensive model averaging and also the computation of
predictive uncertainties.

The goal of Bayesian inference is to find the posterior
distribution of the network parameters w given the observed
data D: p(w|D). However, exact Bayesian inference on
the parameters of a neural network is intractable and for
practical purposes, we need to rely on approximate inference
techniques, among which Variational Inference (VI) is a
widely adopted choice [16]. Mean Field VI, which assumes
that the approximate posterior is a Gaussian distribution with
a diagonal covariance matrix, has been successfully used for
training generative latent variable models such as Variational
Auto Encoders (VAEs) [17], as well as BNNs [15].

VI approximates the true posterior by qφ(w) and aims to
minimize the Kullback-Leibler (KL) divergence between the
approximate posterior distribution of the weights qφ(w) and
the true posterior p(w|D). In MFVI, qφ(w) is assumed to
be a diagonal Gaussian distribution (parameterized by φ =
(µ, σ)) and thus a sample of w can be generated by sampling
a unit Gaussian ε ∼ N (0, I), and shifting it by a mean
µ and scaling it by a standard deviation σ to obtain w =
µ+σ�ε, where � denotes the Hadamard product. This is the
reparameterization trick [15] that allows us to use standard
backpropagation and gradient ascent for optimizing (1) .

Since we do not have access to the true posterior, instead
of minimizing the variational parameters φ with respect
to KL(qφ(w)||p(w|D)), we maximize the Evidence Lower
Bound (ELBO) given by

L(φ) = Eqφ

[
log p(D|w)

]
− KL

(
qφ(w)||p(w)

)
(1)

= Eqφ

[
log p(D|w)− log qφ(w) + log p(w)

]
(2)

where p(w) is the prior over the parameters. The first part of
(1) is data dependent and encourages maximum likelihood
estimation. The second term encourages the posterior qφ(w)
to be as similar as possible to the prior p(w), and for
continual learning, this regularization term is also exploited
for retaining information from the previous prior.

Although, using MFVI gives us a way of training BNNs
in an efficient way, the diagonal Gaussian approximation
for the approximate posterior results in an underestimation
of the variance of the posterior distribution which can, in
turn, result in poor predictive uncertainties [13]. More com-
plex posterior approximations can be created using mixture
models, but this would significantly increase the number of
learnable parameters. One way of creating richer posterior
approximations is to use Normalizing Flows (NF) [12],
which transforms a simple probability distribution (such as a
Gaussian) into a complex distribution through a sequence of
bijective mappings. Although it is relatively straightforward
to use NF with latent models such as VAEs [13], using them
for BNNs is more complicated because the dimensionality
of the latent variable in a VAE (output of the encoder) is
much smaller than in BNNs where the latent variables are
the network parameters.

The authors of [14] get around this problem by defining
the approximate posterior as a mixture of simpler distribu-

tions: first, a vector of random variables z0 is drawn from
a fully factored Gaussian distribution (diagonal covariance
matrix). z0 is then transformed to a sample z from a more
complex distribution by passing it through an NF. The
approximate posterior can then be parameterized by

z ∼ qφ(z); w ∼ qφ(w|z), (3)

where qφ(z) represents the mixing density [14]. The ap-
proximate posterior distribution thus becomes qφ(w) =∫
qφ(w|z)qφ(z)dz. For a fully connected layer of a BNN,

the conditional distribution for w in (3) is a fully factored
Gaussian defined by

qφ(w|z) =
Din∏
i=1

Dout∏
j=1

N (ziµij , σ
2
ij) (4)

where Din and Dout are the dimensions of the input and
output of the layer respectively, zi denotes the ith component
of the NF output, and µij and σij are the trainable mean
and standard deviation parameters of the BNN. Due to
the form of qφ(w), the calculation of the entropy term
−Eqφ

[
log qφ(w)

]
in (2) cannot be obtained in a closed form.

This problem is circumvented by further lower-bounding
the entropy using an auxiliary distribution rθ(z|w) (which
approximates qφ(z|w) =

qφ(w|z)qφ(z)
qφ(w)). This results in

rewriting the ELBO from (2) as

L(φ, θ) = Eqφ

[
log p(D|w, z)− log qφ(w) + log p(w)

]
= Eqφ

[
log p(D|w, z)− log(

qφ(w|z)qφ(z)
qφ(z|w)

) + log p(w)
]

≈ Eqφ
[
log p(D|w, z)− log

(qφ(w|z)qφ(z)
rθ(z|w)

)
+ log p(w)

]
= Eqφ

[
log p(D|w, z)− log qφ(w|z)− log qφ(z)

+ log rθ(z|w) + log p(w)
]

= Eqφ

[
log p(D|w, z)− log qφ(w|z) + log p(w)

+ log rθ(z|w)− log qφ(z)
]

= Eqφ

[
log p(D|w, z)−Eqφ

[
log

qφ(w|z)
p(w)

]
+ log rθ(z|w)− log qφ(z)

]
= Eqφ

[
log p(D|w, z)− KL

(
qφ(w|z)||p(w)

)
+ log rθ(z|w)− log qφ(z)

]
(5)

In the last line of (5), the first term is the log likelihood of
the observed data. For continual learning, we are interested
in the KL term which involves the prior p(w). The use of
this term will be elaborated on in the next section. For an
expanded form of the remaining terms, the reader is referred
to [14].

III. METHOD

Consider a sequence of datasets D1,D2, . . . ,DN which
need to be used for training a BNN in a continual manner.
Thus, dataset D1 corresponds to task 1, D2 corresponds to
task 2, and so on. For task 1, we assume that the prior

over the network parameters in (5) is a standard normal
distribution p(w) = N (0, I). Once we have trained the
BNN following the process of [14], for task 1 we obtain the
approximate conditional posterior qφ(w|z). For learning task
2, this posterior can be used as the prior in (5). In general
the old posterior can be used as the prior for the next task
for learning each of the successive tasks.

Since both the posterior and prior in the KL term of (5)
can be expressed as Normal distributions, it is convenient
to obtain a simplified expression for the KL term. It can
be shown that the the KL divergence between two Normal
distributions N (µ1, σ1) and N (µ2, σ2) is given by

KL
(
N (µ1, σ1)||N (µ2, σ2)

)
=

1

2

(
− log

σ2
1

σ2
2

+
(σ2

1 + (µ1 − µ2)
2

σ2
2

)
− 1
)

(6)

For task 1, we can consider the first Normal distribution in
(6) to be as given in (4), and the second normal distribution
is N (0, 1). Since we are using fully factored distributions, it
can be shown that for a layer of a BNN, (6) becomes

KL
(
qφ(w|z)||p(w)

)
=
∑
i,j

KL
(
N (ziµi,j , σi,j)||N (0, 1)

)
=
∑
i,j

1

2

(
− log σ2

i,j + σ2
i,j + ziµ

2
i,j − 1

)
(7)

where i, j iterate over the input and output dimensions of the
layer. Equation (7) is the form of the KL term in (5) used
in [14] for learning a single task.

For continual learning, for task 1 we also use (7). For the
successive tasks we rewrite (7) as

KL
(
qφ(w|z)||qoldφ (w|z)

)
=
∑
i,j

KL
(
N (ziµi,j , σi,j)||N (zoldi µoldi,j , σ

old
i,j)
)

=
∑
i,j

1

2

(
− log

σ2
i,j

σold2i,j

+
(σ2

i,j + (ziµi,j − zoldi µoldi,j)
2

σold2i,j

)
− 1
)

(8)

and use this form as the KL term in (5). Here, the superscript
old denotes the frozen parameters belonging to the posterior
distribution learned during the previous task. The remaining
terms in (5), which do not involve the prior, are used as is.

It is also easy to see that if we ignore the mixing density
specified in (3) (by considering z to be always equal to 1),
we can ignore the log rθ(z|w) and log qφ(z) terms in (5),
which reduces (5) to (1). Thus, by doing so, we get the
ELBO for an MFVI BNN. This allows us to use the same
code base for both types of BNNs (MFVI and NF).

IV. EXPERIMENTS

In this section, we present the results of our preliminary
experiments for comparing the continual learning perfor-
mance of an MFVI BNN against that of an NF BNN. We
focus on the core aspect of variational continual learning and
so we do not use any data summarization techniques such as

the coreset method [18] used in [5] since such methods can
be used to augment any kind of continual learning method.
Additionally, we do not employ any kind of model expansion
during our experiments.

A. Experimental Setup

We use the Permuted MNIST (PMNIST) continual learn-
ing benchmark, which like MNIST is a ten-digit classifi-
cation problem. A task in PMNIST consists of different
permutations of the pixels in the images. The length of
the task sequence is determined by the number of different
permutations that are used. We use 10 tasks, in which the
first task is the same as the original MNIST and for the
rest of the 9 tasks, different permutations are used. For each
task, we use a training set of 50000 images, a validation set
of 10000 images, and a test set of 10000 images. We use
a batch size of 100 during training. Although PMNIST is
not considered a very challenging continual learning problem
[19], its wide use and simplicity make it a suitable choice
for initial experiments.

For our continual learning experiments, we extended the
code1 provided by the authors of [14]. For both experiments,
NF- and MFVI-BNNs, we used the same code base in which
only the variational distributions (NF, MFVI) are changed,
by the switch of a single flag.

For our experiments we use a fully connected BNN with
3 hidden layers, each containing 200 units. We use ReLU
activations and the Adam optimizer with a learning rate of
10−3. We compare the performance of 2 types of BNNs
(MFVI vs NF) and train each network for 10, 50, and 100
epochs for each PMNIST task. We repeat every experiment
for 3 different seeds thereby resulting in a total of 18 different
sets of results. We group the results by epochs and network
types in the plots presented in this section. For evaluation, we
compare the test accuracy of the network on the task it has
just been trained on, as well as all the test accuracy for all
the tasks seen in the past. We not only compare the average
of these test accuracies but also look at how the accuracy
of each task evolves over time as newer tasks are learned.
Finally, we also compute some overall continual learning
metrics based on [20].

B. Results

Fig. 1 shows the average test accuracies for all the past
tasks and the current task after the network is trained for the
current task. This means for example that when the network
is trained for task 5, we compute its average test accuracy
for tasks 0 to 5. The results shown are averaged for the 3
different seeds used. Based on these results, we can say that
both the MFVI and NF BNNs perform best when they are
trained for 50 epochs per task, and here both types of BNNs
perform similarly well. However, it is interesting to note that
for 10 epochs/task, MFVI performs better than NF, but for
100 epochs/task, the NF BNN performs better. This switch
in performance may be due to the additional parameters in

1https://github.com/AMLab-Amsterdam/MNF_VBNN

0 1 2 3 4 5 6 7 8 9
Currently trained task

0.5

0.6

0.7

0.8

0.9

1.0
Av

er
ag

e
te

st
 a

cc
ur

ac
y

of
 a

ll
ta

sk
s

10 Epochs
MFVI
NF

0 1 2 3 4 5 6 7 8 9
Currently trained task

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

te
st

 a
cc

ur
ac

y
of

 a
ll

ta
sk

s

50 Epochs
MFVI
NF

0 1 2 3 4 5 6 7 8 9
Currently trained task

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

te
st

 a
cc

ur
ac

y
of

 a
ll

ta
sk

s

100 Epochs
MFVI
NF

Fig. 1. Mean test accuracy for all Permuted MNIST tasks seen till the
current task. For each task the network is trained for (top) 10 epochs,
(middle) 50 epochs, (bottom) 100 epochs.

the NF BNN, which may require more training iterations
to be optimized. With an increase in training epochs, the
variability of the results for the different seeds also increases,
as indicated by the error bars (1 standard deviation) in
the plots. However, Fig. 1 does not give us a complete
picture of the continual learning performance of a network.
From a network’s average test accuracy we cannot get any
information about the relative performance of the network
on the older and current tasks.

To get a better understanding of the relative performance
on old and new tasks, in Fig. 2 we also track the performance
on each task individually as the newer tasks are presented to
the network. As before, average results for 3 different seeds
are shown.

Fig 2 (top) shows the results for BNNs trained for 10
epochs for each PMNIST task. Here it is evident that for both
kinds of networks, task 0 is remembered exceedingly well.
The performance of both the networks for task 0 remains
constant around 0.96 (MF 0 and NF 0 in the plot) even after
learning all 10 tasks. The performance for the remaining
tasks is considerably worse, but in general, the performance
for older tasks is better than newer ones. This means that for
a relatively small number of training epochs per task, after
learning the first task (for which a unit normal prior is used),
the data-dependent part of (1) (for MFVI) or (5) (for NF)
has a lesser influence than the KL part. There is, however,

0 1 2 3 4 5 6 7 8 9
Currently trained task

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 se
t a

cc
ur

ac
y

pe
r t

as
k 10 Epochs

0 1 2 3 4 5 6 7 8 9
Currently trained task

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 se
t a

cc
ur

ac
y

pe
r t

as
k 50 Epochs

0 1 2 3 4 5 6 7 8 9
Currently trained task

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 se
t a

cc
ur

ac
y

pe
r t

as
k 100 Epochs

MF 0
NF 0

MF 1
NF 1

MF 2
NF 2

MF 3
NF 3

MF 4
NF 4

MF 5
NF 5

MF 6
NF 6

MF 7
NF 7

MF 8
NF 8

MF 9
NF 9

Fig. 2. Test accuracy for individual PMNIST tasks. Solid lines and dashed
lines represent NF and MFVI (abbreviated as MF) networks respectively.
Each task from 0 to 9 has a distinct color. Average results for 3 different
seeds are shown. For each task the network is trained for (top) 10 epochs,
(middle) 50 epochs, (bottom) 100 epochs.

no clear distinction between MFVI and NF.
The trend of remembering older tasks better seems to

change when the number of training epochs per task is
increased to 50 and 100 (Fig. 2 middle and bottom respec-
tively). In Fig. 2 (middle), the first 2 tasks are the worst
remembered ones in the end and generally newer tasks are
remembered better. For the 50 epochs experiment, there is
no significant difference between MFVI (dashed lines) and
NF (solid lines), apart from task 2 for which NF performs
slightly better. The results for the different seeds show more
variability than in the previous case.

As the number of training epochs is further increased to
100 in Fig. 2 (bottom), the difference between older and
newer tasks opens up much more for both MFVI and NF.
For tasks 0-3, there is a significant drop in performance.
However, it is noticeable that for tasks 3-9, NF performs
significantly better than MFVI, which contributes to the
overall better performance of NF shown in Fig. 1 (bottom).

Continual Learning Metrics: To enable easier comparison
of the overall performance of the two kinds of networks,
we also compute some continual learning metrics suggested
in [20]. Specifically, we calculate (i) accuracy (ACC) – the
average test accuracy for the current task and the previously

seen tasks (computed for all current tasks), (ii) remembrance
(REM) – measures how well previous tasks are remembered
as a new current task is learned, (iii) positive backward trans-
fer (BWT+) – measures how the performance on previous
tasks is improved after learning the current task, (iv) forward
transfer (FWT) – measures the performance on future unseen
tasks after learning a current task, (v) model size efficiency
(MS) – measures how the model size grows with the number
of tasks, and (vi) sample storage efficiency (SSS) – measures
how effectively data samples from different tasks are cached.
Finally, a continual learning score (CLscore), the average of
(i)-(vi) is computed. Each metric lies in the range [0.0, 1.0]
(1.0 is the best). The reader is referred to [20] for a detailed
discussion of these metrics, the motivation for their use, and
their mathematical expressions.

Table I shows the values of the continual learning metrics
described above, where each metric (cols 3-8) is the average
value obtained for 3 different seeds. Since neither MFVI
nor NF uses any kind of model expansion or data caching
mechanism, the values of MS and SSS are always 1.0.
Overall, MFVI achieves the best result for CLscore, but
the difference with NF is not significant. For a benchmark
such as PMNIST, in which the pixels are permuted for the
different tasks, the performance of a network on individual
tasks is expected to be decoupled (learning a current task 5
does not improve the performance on task 4 or task 6). This
is reflected in the values for BWT+ and FWT in Table I.
For the metrics which are comparatively more relevant for
PMNIST (ACC and REM), it can be seen that NF performs
marginally better than MFVI, for 50 and 100 epochs. Fig. 3
shows a graphical representation of the same results. Similar
to Fig. 1, the results in Table I and Fig. 3 show that there
is not much difference in the performance of the two VI
methods. Fig. 2 provides a clearer view of the difference
in the performance of the two methods, especially how the
individual performances on the current and previous tasks
affect the overall performance.

TABLE I
CONTINUAL LEARNING METRICS FOR MFVI (ABBREVIATED AS MF)

AND NF NETWORKS FOR PMNIST FOR 10, 50 AND 100 EPOCHS (EP).
THE VALUE OF EACH METRIC IS AN AVERAGE OVER 3 RUNS.

EP VI ACC REM BWT+ FWT MS SSS CLscore

10 MF 0.779 0.937 0.0 0.113 1.0 1.0 0.638
10 NF 0.739 0.915 0.0 0.108 1.0 1.0 0.627

50 MF 0.797 0.851 0.0 0.101 1.0 1.0 0.625
50 NF 0.810 0.855 0.0 0.100 1.0 1.0 0.628

100 MF 0.645 0.636 0.0 0.105 1.0 1.0 0.565
100 NF 0.677 0.663 0.0 0.105 1.0 1.0 0.574

Note that the results we obtained on PMNIST for MFVI do
not reach the state-of-the-art [5], presumably because we do
not use the same architecture and hyperparameters but rather
keep the parameterization and architecture of [14] which is
not evaluated with PMNIST.

ACC

REM

BWT+

FWT

MS

SSS

0.0
0.2

0.4
0.6

0.8
1.0

10 Epochs
ACC

REM

BWT+

FWT

MS

SSS

0.0
0.2

0.4
0.6

0.8
1.0

50 Epochs
ACC

REM

BWT+

FWT

MS

SSS

0.0
0.2

0.4
0.6

0.8
1.0

100 Epochs

MFVI NF

Fig. 3. Continual learning metrics [20] for MFVI and NF.

V. CONCLUSIONS

Although there is no clear advantage between the perfor-
mance of MFVI and NF in the results presented in Section
IV-B, overall, we note that with more training epochs, NF
performs better than MFVI at remembering more recent
tasks. However, with more epochs at some point, there is also
a degradation of the overall continual learning performance
with an increase of catastrophic forgetting of older tasks.
This brings us to some critical questions in the context of
continual learning: what causes this behavior? For future
continual learning applications outside of research experi-
ments, how should we choose the ideal training duration
(epochs) for each task? Should this duration be constant or
dynamic?

For a model with limited capacity (without any rehearsal
or data caching mechanisms), such as the ones we used in
our experiments, catastrophic forgetting is inevitable at some
point with the continued increase in tasks. In such a scenario
it is perhaps desirable to gracefully forget the older tasks
while remembering the newer ones. From the results in Fig.
2, BNNs with NF give a slight indication of this property,
but only a more thorough investigation can shed more light
on this behavior. We leave this investigation for future work.
It will also be interesting to compare the performance of
BNNs trained with other alternative VI techniques such as
Implicit and Semi-Implicit VI [7]–[10] and to carry out
this comparison using more challenging continual learning
benchmarks such as CORe50 [21].

REFERENCES

[1] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and
Stefan Wermter. Continual Lifelong Learning with Neural Networks:
A Review. Neural Networks, 113:54–71, May 2019.

[2] Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Ag-
nieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia
Hadsell. Progress & Compress: A scalable framework for continual
learning. arXiv:1805.06370 [cs, stat], July 2018.

[3] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual
Learning with Deep Generative Replay. In Advances in Neural
Information Processing Systems, pages 2990–2999, 2017.

[4] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
Catastrophic Forgetting in Neural Networks. Proceedings of the
National Academy of Sciences, 114(13):3521–3526, 2017.

[5] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E.
Turner. Variational Continual Learning. In International Conference
on Learning Representations, 2018.

[6] Siddharth Swaroop, Cuong V. Nguyen, Thang D. Bui, and Richard E.
Turner. Improving and Understanding Variational Continual Learning.
arXiv:1905.02099 [cs, stat], 2019.

[7] Ferenc Huszár. Variational Inference using Implicit Distributions.
arXiv:1702.08235 [cs, stat], February 2017.

[8] Jiaxin Shi, Shengyang Sun, and Jun Zhu. Kernel Implicit Variational
Inference. In International Conference on Learning Representations,
2018.

[9] Nick Pawlowski, Andrew Brock, Matthew C. H. Lee, Martin Rajchl,
and Ben Glocker. Implicit Weight Uncertainty in Neural Networks.
arXiv:1711.01297 [cs, stat], May 2018.

[10] Mingzhang Yin and Mingyuan Zhou. Semi-Implicit Variational
Inference. In International Conference on Machine Learning, pages
5660–5669, 2018.

[11] Michalis K Titsias and Francisco Ruiz. Unbiased Implicit Variational
Inference. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 167–176, 2019.

[12] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density
estimation using Real NVP. arXiv:1605.08803 [cs, stat], February
2017.

[13] Danilo Rezende and Shakir Mohamed. Variational Inference with Nor-
malizing Flows. In International Conference on Machine Learning,
pages 1530–1538, 2015.

[14] Christos Louizos and Max Welling. Multiplicative Normalizing Flows
for Variational Bayesian Neural Networks. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages

2218–2227, 2017.
[15] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan

Wierstra. Weight Uncertainty in Neural Networks. In Proceedings
of the 32nd International Conference on International Conference on
Machine Learning-Volume 37, pages 1613–1622, 2015.

[16] Ethan Goan and Clinton Fookes. Bayesian Neural Networks: An Intro-
duction and Survey, pages 45–87. Springer International Publishing,
Cham, 2020.

[17] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[18] Jonathan H. Huggins, Trevor Campbell, and Tamara Broderick. Core-
sets for scalable bayesian logistic regression, 2016.

[19] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira.
Re-evaluating Continual Learning Scenarios: A Categorization and
Case for Strong Baselines. arXiv:1810.12488 [cs], January 2019.

[20] Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat, and Da-
vide Maltoni. Don’t forget, there is more than forgetting: New metrics
for Continual Learning. arXiv:1810.13166 [cs], October 2018.

[21] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset
and benchmark for continuous object recognition. In Sergey Levine,
Vincent Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st
Annual Conference on Robot Learning, volume 78 of Proceedings of
Machine Learning Research, pages 17–26. PMLR, 13–15 Nov 2017.

