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Continual Learning Benchmarks for Antipodal Grasping
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Abstract— A continual learning robot that can repeatedly
learn from new data without forgetting past knowledge is surely
preferable to a robot that cannot learn incrementally. As most
continual learning methods focus on image classification tasks,
it is not clear if or how they scale to more complicated vision
problems such as robotic grasp prediction. To fill this gap, we
propose a set of benchmarks that can be used to evaluate con-
tinual learning methods on the problem of antipodal grasping.
We adapt a state-of-the-art grasp prediction model for continual
learning and evaluate multiple baselines using our benchmarks.
Our preliminary findings indicate that replay-based methods
may be suitable for the grasp prediction task.

I. INTRODUCTION

Antipodal robot grasping is arguably a challenge that has
already been met, considering the performance of state-of-
the-art methods [8], [11], [14]. All such methods either rely
on large scale grasp datasets [3], or use domain randomiza-
tion [16] to diversify the training data [3], [10]. However, it
may not be possible to completely anticipate every possible
situation in advance. A better strategy is to augment the grasp
learning methods with continual learning (CL) [13] to make
them capable of learning from a sequence of multiple small,
disjoint, and non-IID datasets that are encountered over time.

Barring a few works which address continual learning for
robotics [2], [5], most of the current CL research [7], [9],
[15], [18] focuses on image classification problems using
relatively simple network architectures. It is not apparent
how well these methods scale to robotics applications, which
typically involve the use of more complex network compo-
nents and architectures. If properly applied to robot learning,
CL can help achieve open-ended robot learning, and this
would be especially useful for a ubiquitous robotics problem
such as vision-based grasp prediction. With this motivation,
we present preliminary work on a set of continual learning
benchmarks that can be used to evaluate the effectiveness of
continual learning methods on the problem of grasp learning.
We adapt a state-of-the-art grasp learning method [8] for
continual learning and evaluate multiple baselines on our
benchmarks. Our initial results indicate that replay-based CL
strategies outperform regularization-based CL.

II. CONTINUAL LEARNING FRAMEWORK

A. Benchmarks

The Cornell dataset [14] is a widely used dataset for grasp
learning [1]. It consists of 885 RGB images of 280 different
household objects, where each image is annotated with

1 Department of Computer Science, University of Innsbruck, Techniker-
strasse 21a, Innsbruck, Austria. {name.surname}@uibk.ac.at

2 Digital Science Center (DiSC), University of Innsbruck, Austria.
3 Department of Industrial Engineering, University of Trento, Italy.

multiple top-down grasp rectangles. We create the following
4 benchmarks by partitioning the images of this dataset
into multiple tasks (sub-datasets), where each benchmark is
learned independently by learning its tasks sequentially:
Shape: We manually partition the 885 images of the Cornell
dataset into 5 tasks, where each task contains images of
objects with one of these shapes: rectangular (e.g. boxes,
TV remotes), rim (objects with a graspable rim, e.g. bowls,
frisbees), long (elongated objects, e.g. stick), round (objects
with a circular symmetry, e.g. apple, potato), and handle
(objects with a handle, e.g. spatula, toothbrush).
Width 5: For each image we compute the average of the 5
largest grasp widths. Then, 5 tasks are defined by partitioning
the images according to their average grasp width such that
each task has roughly the same number of images.
Width 10: We follow the same process as Width 5, but here
we partition the 885 images into 10 tasks.
Object: We compute the number of images for each distinct
object and then choose 10 objects with the most number of
images. Each of these 10 objects corresponds to a task.

Shape has highly disbalanced tasks, whereas the Width
benchmarks have balanced tasks. Object has very few images
per task. For each task, we create training and validation sets
in the ratio 75:25 and use image augmentation (random rota-
tions, translations, crops) to learn from such small datasets.

B. Baselines

As our base architecture, we choose the fully convolutional
network proposed in [8]. This network has 1.8×106 parame-
ters and produces heatmaps for the grasp center, orientation
and width. Using this, we implement the following baselines:
Finetuning (FT): For each benchmark, a network is initial-
ized at the beginning and is then successively finetuned on
each task. This forms the lower performance baseline, as
here we would expect that only the last task is remembered.
Replay 20% (RE20): This setting is similar to FT, but for
each task 20% of the training data is randomly cached and
then combined with the training data of the next task. For
example, while training for task 2, we use all the data of
task 2 and 20% of the data each from tasks 1 and 0.
Replay 100% (RE100): This is the same as RE20, except
that here all the data from past tasks is cached and replayed.
Synaptic Intelligence (SI): This setup is similar to FT,
but the grasp prediction network’s parameters are protected
from catastrophic forgetting [13] using a regularization term
according to the formulation of Synaptic Intelligence [18].
Joint Training (JT): This forms the upper performance
baseline. For learning each task, we use a freshly initialized
network and the data for all tasks up to that point. Note that



D
ra

ft

all the data of previous tasks is also used for RE100 but it
does not reinitialize the network for each task.

III. RESULTS

We train and evaluate the baselines on each benchmark
independently, where the tasks of a benchmark are learned
in sequence. Each training run is repeated with 3 independent
seeds. To compute the accuracy of the predicted grasp, we
compare the intersection over union (IoU) of the prediction
with the grasp annotations, and if any of these comparisons
have an IoU of more than 25%, the prediction is considered
to be accurate [8]. After training on each task, each baseline
is evaluated on the validation sets of the current and past
tasks. For example, after training on task 3, the network
is evaluated on tasks 0, 1 and 2. The average of these
validation accuracies is depicted in Fig. 1. The upper baseline
JT maintains an average accuracy close to 90% after all tasks
for all benchmarks. On the other hand, the performance of the
lower baseline FT drops as more tasks are learned, clearly
exhibiting catastrophic forgetting [13]. The regularization-
based CL method (SI [18]) is not able to avoid forgetting past
tasks and performs similar to FT. The replay-based baselines
perform better than FT and SI but worse than JT.

In Fig. 2, we show how the validation accuracy for each
of the 10 tasks of the Width 10 benchmark changes as newer
tasks are learned. The drop in accuracy for the oldest tasks
can be seen for all the baselines except JT. This drop is severe
for FT and SI, for which the accuracy for task 0 (which
corresponds to objects needing the smallest and most precise
grasps) drops to around 20% after all tasks are learned. It
can also be seen that for FT and SI, whenever a new task is
learned, its accuracy starts around 90%, but starts dropping
sharply as newer tasks are learned.

Using the validation accuracies we also compute continual
learning metrics [4] in Tab. I (for Width 10). In terms of
accuracy (ACC) over all tasks, and remembering (REM)
past tasks, JT is the best, followed by the two replay-based
baselines. Since joint training and replay involve the storage
of data from past tasks, they achieve low scores on the
storage size efficiency metric (SSS). Interestingly, FT has
the highest forward transfer (FWT) score, indicating that it
is the best at using past knowledge to learn newer tasks.

IV. SUMMARY AND OUTLOOK

The preliminary results presented in this short paper
indicate that (i) parameter regularization may not be as
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Fig. 1. Cumulative validation accuracies for current and past tasks. Each
data point shows the mean accuracy of all tasks till that point on the x−axis.

effective as replay-based CL for continual grasp learning,
and (ii) it is possible to learn grasps using small datasets.
To further expand these findings, we will evaluate more
continual learning methods [6], [7], [15], [17] in the future.
We also plan to perform similar evaluations for other robot
vision applications such as affordance detection [12]. Our
goal for this future work will be to identify areas where
current continual learning methods can be improved to make
them more suitable for robotics tasks.

TABLE I
CL METRICS FOR WIDTH 10 (1-BEST, 0-WORST).

Benchmark Baseline ACC REM FWT SSS

Width 10

FT 0.663 0.733 0.732 1.000
RE20 0.752 0.827 0.711 0.912
RE100 0.769 0.839 0.681 0.550
SI 0.655 0.717 0.698 1.000
JT 0.858 0.943 0.702 0.550
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Fig. 2. Per-task validation accuracies for Width 10, showing how the accuracy of each task changes as newer tasks are learned.
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