
Effect of Optimizer, Initializer, and Architecture
of Hypernetworks on

Continual Learning from Demonstration

Sayantan Auddy1, Sebastian Bergner1, and Justus Piater1,2

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{sayantan.auddy, justus.piater}@uibk.ac.at

sebastian.bergner@student.uibk.ac.at
2 Digital Science Center, University of Innsbruck, Innsbruck, Austria

Abstract. In continual learning from demonstration (CLfD), a robot
learns a sequence of real-world motion skills continually from human
demonstrations. Recently, hypernetworks have been successful in solving
this problem. In this paper, we perform an exploratory study of the
effects of different optimizers, initializers, and network architectures on
the continual learning performance of hypernetworks for CLfD. Our results
show that adaptive learning rate optimizers work well, but initializers
specially designed for hypernetworks offer no advantages for CLfD. We also
show that hypernetworks that are capable of stable trajectory predictions
are robust to different network architectures. Our open-source code is
available at https://github.com/sebastianbergner/ExploringCLFD.

Keywords: Learning from Demonstration, Continual Learning

1 Introduction

Learning from Demonstrations (LfD) [1] is an intuitive way for humans to train
robots without explicit programming. While the majority of research on LfD
addresses single skill acquisition, some recent methods investigate continual
learning from demonstration (CLfD) [2, 3], i.e. learning multiple LfD motion
skills sequentially in an open-ended way. Auddy et al. [2] propose a system of
hypernetwork-generated neural ordinary differential equation solvers (NODEs)
for continually learning a sequence of real-world 6-DoF trajectory learning tasks
from human demonstrations. More recent work [3], shows that by enforcing stable
trajectory predictions through hypernetwork-generated stable NODEs [4], the
continual learning performance is greatly enhanced in addition to the expected
guarantee of non-divergent and safe trajectory predictions. Hypernetworks have
also been utilized for continual reinforcement learning with robots [5]. The popu-
larity of hypernetworks for robotic continual learning is mainly due to desirable
features such as not having to store and retrain on data of past tasks, negligible
parameter growth with additional tasks, and low catastrophic forgetting [6].

In any deep learning system, many decisions related to the architecture
and training need to be taken. In previous works on CLfD [2, 3], the effect

https://github.com/sebastianbergner/ExploringCLFD


2 Sayantan Auddy et al.

of different deep learning components on the continual learning performance
of hypernetworks remains unexplored. These past works have either followed
accepted best practices (e.g. Adam is the optimizer) or followed the defaults
from prior work (e.g. hypernetwork architecture). In this paper, we conduct an
exploratory study in which we evaluate the effect of three key deep learning
factors on the performance of hypernetworks for CLfD: (i) optimization algorithms,
(ii) initialization schemes, and (iii) hypernetwork and target network architectures.
We adopt the RoboTasks9 dataset of real-world LfD tasks [3] as a benchmark,
and train hypernetworks and chunked hypernetworks continually on the 9 tasks
of this dataset. Additionally, we evaluate two kinds of target networks (generated
by the hypernetworks): NODE [2], and stable NODE (sNODE) [3].

Our results show that adaptive learning rate optimizers exhibit the best
empirical performance, but an initializer designed for hypernetworks (Principled
Weight Initialization [7]) does not outperform a good default choice (Kaiming [8])
for CLfD. We also show that when stable NODEs (sNODEs) are used as the target
network (i.e. the LfD trajectory predictions are non-divergent), the continual
learning performance is mostly independent of the network architecture.

2 Background

Continual Learning from Demonstration: Learning from Demonstration
(LfD) [1] is a robot training paradigm where a robot learns motion skills from
human demonstrations. LfD can be performed via kinesthetic teaching where a
human physically guides a robot and shows it how to perform a particular motion
task. The trajectories demonstrated by the human are recorded and used to learn
a vector field [4] which can then be used by the robot to perform a similar motion
as the demonstration. While typical LfD approaches focus on learning a single
motion skill, the objective of continual LfD is to learn and remember a sequence
of different motion skills, one at a time, in an open-ended manner with a single
model and without storing training data of past demonstrations. In the past,
this has been achieved by generating parameterized dynamical systems called
Neural Ordinary Differential Equation solvers (NODE) with Hypernetworks [2].
More recently, it has been shown that hypernetwork-generated stable NODEs
(NODEs augmented with a stabilizing Lyapunov function) [4] produce stable,
non-divergent trajectories and are more effective at continually learning sequences
of real-world and high-dimensional LfD tasks [3].
Hypernetworks: A hypernetwork is a neural network that generates the param-
eters of another neural network called the target network [9]. A hypernetwork
f with parameters h, takes as input a trainable task embedding vector em and
generates the target network parameters f(em,h) = θm for the mth task. A
two-stage optimization process (see [2, 3, 9]) is employed to optimize h and the
task embedding vector em. Once the mth task is learned, the task embedding
em is frozen and stored. For learning the m+ 1th task, a new task embedding
em+1 is initialized and the same two-step learning process is repeated. A regular
hypernetwork generates all the parameters θm of the target network from the



Effect of Optimizer, Initializer, & Architecture of Hypernets on CLfD 3

final layer, which can result in a large parameter size. Alternatively, chunked
hypernetworks [9] generate the target network parameters in smaller segments
called chunks, and consequently have a smaller size. See [2, 3, 9] for details.

3 Experiments and Results

We train hypernetworks (HN) and chunked hypernetworks (CHN), each with
either a NODE or an sNODE as the target network, resulting in 4 kinds of
hypernetworks (HN→NODE, CHN→NODE, HN→sNODE, CHN→sNODE). We
compare the performance of 3 different optimizers: Stochastic Gradient Descent
(SGD), RMSProp [10], Adam [11] and 3 different initializers: Kaiming [8], Princi-
pled Weight Initialization (PWI) [7], Xavier [12] when used to train the 4 kinds
of hypernetworks. We evaluate 16 different architectures for each hypernetwork.
Each model is trained continually on the 9 LfD tasks of RoboTasks9 [3]. We
report the widely used Dynamic Time Warping (DTW) error metric [2, 3]. Due
to the large number of possible combinations, we perform our experiments in
3 stages to keep the number of runs manageable. To aid reproducabilty and
further research, our code and experiment hyperparameters are available at
https://github.com/sebastianbergner/ExploringCLFD.

Experiment 1 (Optimizers): We train each of the 4 kinds of hypernetworks
with the 3 different optimization algorithms (SGD, RMSProp, Adam). We use a
fixed architecture (same as [3]) and initializer (Kaiming) for all hypernetworks.
After each task is learned during the continual learning process, we evaluate each
model on the currently learned task and all previous tasks and repeat each run 5
times with independent seeds. Fig. 1 (top row) shows the overall DTW errors
during this evaluation. For all optimizers, HN→sNODE and CHN→sNODE
outperform HN→NODE and CHN→NODE. The overall performance of SGD
is much worse than Adam and RMSProp, both of which achieve similarly good
DTW errors.

Adam RMSProp SGD
0

1

2

3

Op
tim

ize
rs

 
DT

W
 E

rro
r↓

×104 HN → NODE

Adam RMSProp SGD

CHN → NODE

Adam RMSProp SGD

HN → sNODE

Adam RMSProp SGD

CHN → sNODE

Kaiming PWI Xavier
0.0

0.5

1.0

1.5

In
iti

al
ize

rs
 

DT
W

 E
rro

r↓

×104

Kaiming PWI Xavier Kaiming PWI Xavier Kaiming PWI Xavier

Fig. 1. DTW errors (lower is better) of different optimizers (top), and initializers
(bottom) for 5 independent runs. For reference, the dotted brown line shows the best
possible median DTW score from [3] (when each task is learned with a separate model).

https://github.com/sebastianbergner/ExploringCLFD


4 Sayantan Auddy et al.

Experiment 2 (Initializers): We use Adam as the optimizer since it is slightly
better than RMSProp for the well-performing models (with sNODE) in the
previous experiment. We compare 3 initializers (Kaiming, PWI, and Xavier)
while training the 4 kinds of hypernetworks with fixed architectures (same as [3]).
We follow the same training and evaluation steps as in experiment 1 and repeat
each run 5 times. We report the DTW errors for these evaluations in Fig. 1
(bottom row). All initializers perform similarly, except for CHN→NODE, where
the Xavier initialization fails completely (very high DTW errors). For the other
hypernetworks, all the initializers achieve similar results. All our hypernetworks
use ReLU activations, and while Xavier is designed for tanh/sigmoid, we still
include it in our experiments since it is used in a similar comparison in a prior
work on hypernetwork initialization [7]. Additionally, though PWI is specially
designed for hypernetworks, it does not outperform Kaiming for CLfD.

Experiment 3 (Architecture): In our final experiment, we fix Adam as the
optimizer and Kaiming as the initializer, as they achieve marginally better median
DTW scores than their respective alternatives. In this experiment, we evaluate
4 different network depths (2, 3, 4, or 8 layers) for both the hypernetwork and
its generated target network, resulting in 16 different architectures for each
of the 4 kinds of hypernetworks. We also modify the number of units in each
layer such that the overall parameter size of the networks is roughly similar
and comparable to the network sizes of the previous experiments. We follow the
same training procedure as the previous two experiments and repeat each run
5 times with independent seeds. The median DTW results are shown in Fig. 2.
For HN→NODE, the depth of the target network affects the overall performance
much more than the depth of the hypernetwork, while for HN→sNODE, almost
all architectures achieve similar results irrespective of the depth of either network.
Chunked hypernetworks (CHN→NODE and CHN→sNODE) on the other hand,
perform best when the hypernetwork is 3-4 layers deep and the target network is
4-8 layers deep. However, similar to HN→sNODE, CHN→sNODE also performs
similarly for almost all architectures. In summary, hypernetworks with sNODE

2 3 4 8
hypernetwork layers

8

4

3

2

ta
rg

et
 n

et
wo

rk
 la

ye
rs

794 1078 1291 1318

1319 1196 1391 1560

1997 1719 1618 2040

3332 2765 3493 3788

HN → NODE

2 3 4 8
hypernetwork layers

8

4

3

2

ta
rg

et
 n

et
wo

rk
 la

ye
rs

3509 1412 1532 2507

7280 1964 2152 2705

13775 2381 2557 2654

5350 3057 2937 2651

CHN → NODE

2 3 4 8
hypernetwork layers

8

4

3

2

ta
rg

et
 n

et
wo

rk
 la

ye
rs

914 1075 1085 1713

763 855 824 1154

827 857 900 918

1181 1079 1272 1172

HN → sNODE

2 3 4 8
hypernetwork layers

8

4

3

2

ta
rg

et
 n

et
wo

rk
 la

ye
rs

1747 1409 1236 1472

1763 1565 1679 1524

1992 1519 1569 1509

2141 1548 1566 1645

CHN → sNODE

103

104

Median DTW

Fig. 2. Effect of hypernetwork depth (y-axis) and target network depth (x-axis) on
continual learning from demonstration. Each heatmap corresponds to a different hyper-
network type. Circled numbers show the best DTW for each hypernetwork. Colors are
scaled logarithmically. Median values over 5 independent runs are shown.



Effect of Optimizer, Initializer, & Architecture of Hypernets on CLfD 5

as the target network perform well and are much less sensitive to the network
architecture than hypernetworks with NODE.

4 Conclusion

We demonstrated the effects of the optimizer, initializer, and network architecture
on hypernetwork-based continual learning from demonstration. Our findings show
that adaptive learning rate optimizers (Adam, RMSProp) are a good choice for
CLfD. Kaiming is a good default initializer that performs as well as PWI which
is specially designed for hypernetworks. We also showed that hypernetworks
with sNODE as the target network are mostly independent of the network
architecture. Our findings can help in making informed design decisions while
developing hypernetwork-based methods for CLfD in the future.

References

1. A. Billard, S. Calinon, and R. Dillmann, “Learning from humans,” Springer Hand-
book of Robotics, 2nd Ed., 2016.

2. S. Auddy, J. Hollenstein, M. Saveriano, A. Rodŕıguez-Sánchez, and J. Piater,
“Continual learning from demonstration of robotics skills,” Robotics and
Autonomous Systems, vol. 165, p. 104427, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889023000660

3. S. Auddy, J. Hollenstein, M. Saveriano, A. Rodŕıguez-Sánchez, and J. Piater,
“Scalable and efficient continual learning from demonstration via hypernetwork-
generated stable dynamics model,” arXiv preprint arXiv:2311.03600, 2023.

4. J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,” Advances in
Neural Information Processing Systems, vol. 32, pp. 11 128–11 136, 2019.

5. P. Schöpf, S. Auddy, J. Hollenstein, and A. Rodriguez-Sanchez, “Hypernetwork-ppo
for continual reinforcement learning,” in Deep Reinforcement Learning Workshop
NeurIPS 2022, 2022.

6. G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71,
2019.

7. O. Chang, L. Flokas, and H. Lipson, “Principled weight initialization for hypernet-
works,” in 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

8. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

9. J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe, “Continual learning
with hypernetworks,” in International Conference on Learning Representations
(ICLR), 2019.

10. T. Tieleman and G. Hinton, “6.5-rmsprop coursera: Neural networks for machine
learning university of toronto,” Tech. Rep., 2012.

11. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

12. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the thirteenth international conference on
artificial intelligence and statistics, 2010, pp. 249–256.

https://www.sciencedirect.com/science/article/pii/S0921889023000660
https://www.sciencedirect.com/science/article/pii/S0921889023000660

	Effect of Optimizer, Initializer, and Architecture of Hypernetworks on Continual Learning from Demonstration

