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Abstract—In this work, we make use of 3D visual contours
carrying geometric as well as appearance information. Between
these contours, we define 3D relations that encode structural
information relevant to object-level operations such as similarity
assessment and grasping. We show that this relational space can
also be used as input features for learning which we exemplify for
the grasping of unknown objects. Our representation is motivated
by the human visual system in two respects. First, we make use
of a visual descriptor that is motivated by hyper-columns in
V1. Secondly, the contours can be seen as one stage in a visual
hierarchy bridging between local symbolic descriptors to higher
level stages of processing such as object coding and grasping.

I. INTRODUCTION

The human visual system is characterized by a hierarchy
in which entities of increasing complexity are processed (see,
e.g., [1]). At the first cortical stage, different aspects of visual
information in terms of a variety of visual modalities (e.g.,
orientation, color and local motion) are computed in so-called
hypercolumns [2]. This local information is embedded into
the spatio-temporal context at intermediate stages through
mechanisms of perceptual organization, resulting in spatially
extended visual descriptors that code semi-global shapes such
as surfaces and contours. This coding allows for the detection
and utilization of even more global relations between visual
entities, leading to a semantic understanding of the visual
scenes. In this work, we want to mimic this hierarchical
scheme in the edge domain. Starting with functional abstrac-
tions of hypercolumns in terms of multi-modal1 local 2D and
3D descriptors [3]. We group these descriptors into multi-
modal 2D and 3D contours which we then apply in different
tasks in the context of vision and vision-based robotics.

Recent progress in the research of salient 2D local features
(see, e.g., [4], [5], [6]) has provided successful and robust
results in certain contexts such as object identification and
classification. On the other hand, they heavily rely on texture
and do not typically give information about the shape of the
object (see, e.g., [7]). Their usage is also limited when objects
need to be manipulated. These drawbacks can be compensated
by using 3D global entities such as visual contours and their
relations [8], [9], [10], [11].

As discussed in, e.g., [10], global entities complement the
local approaches by providing a more global overview of the

1Note that here we refer to different visual modalities and not different
sensory modalities

scene, which makes reasoning about the geometry and shape
easier. Also, once the global reasoning processes take place
in 3D, they become independent from viewpoint and trans-
formations. There is substantial evidence from human vision
showing the importance of contours and relations between
them. For example, in [12] and [13] it has been shown that
scrambled objects are difficult to recognize. Moreover, certain
relations between groups of features are found to be salient
[14] and shown to be non-accidental (see, e.g., [10]).

Visual contours and their relations have been used in com-
puter vision and robotics in various contexts. For example,
in [8] and [15], visual contours have been used for object
recognition and classification (see, [9] for a recent review).
Their relations also have been utilized as features for object
recognition (see, e.g., [16]). Similarly, Henricsson [17] makes
use of geometric relations such as proximity, curvilinearity and
symmetry between contours to describe objects by combina-
tions of these relations. These non-accidental contour relations
have also been utilized by Dickinson et al. [18] to create aspect
hierarchies which are then used for recovery and recognition
of 3D objects from a single 2D image.

A popular approach for dealing with the relational space is
the relational histogram (see, e.g., [19], [20]) where the his-
togram bins count certain combinations of relations. Once the
objects are encoded as relational histograms, their similarity
can be measured by simple histogram intersection [21]. Such
histograms then can be used for comparing objects.

The aim of this article is to discuss the importance of 3D
contours and second-order 3D contour relations. We introduce
four relations, namely, co-planarity, co-colority, normal dis-
tance and angle that are important in the context of robotics
and vision. While more relations can be defined for different
contexts, the aim of this article is not to give a complete
set of relations but to show the importance of 3D contours
and their relations in different domains. We show that the
relational space can provide a basis for discriminating different
object structures and can be used for the definition of visual
feature-grasp associations. In this context, we also discuss the
robustness of computation when using 3D contours instead
of local descriptors. Moreover, we show that through learning
relevant aspects in the space of contour relations the success
rate of grasping can be increased, indicating that contours and
their relations span a relevant space for learning.

The distinguishing feature of our approach can be summa-



rized as follows:
• We make use of 3D relations while keeping the possi-

bility of accessing the 2D information from which the
3D information is calculated. Although a lot of non-
accidental relations can be defined in 2D (see, e.g., [10]),
relations like co-planarity or distance heavily depend on
3D information.

• The contour representation we use covers geometric as
well as appearance information (as a straightforward
extension of the local entities from which they are com-
puted).

• The geometric and appearance information encoded in
the 3D contours leads to semantically rich dependencies
between scene areas that can be expressed in 3D relations
between these contours.

The rest of the article is organized as follows. In Section II,
the visual representation used in this work is briefly explained.
After the discussion about the object structure encoding in
Section III-A, the application of the relational space on grasp-
ing unknown objects and learning how to refine grasping is
presented in Section III-B. We conclude with a discussion on
the potential of 3D contours and their relations in Section IV.

II. VISUAL REPRESENTATION

A. Local Multi-modal Edge Descriptors

In this work we make use of a visual representation
based on an Early Cognitive Vision (ECV) system which
creates local edge descriptors called primitives [3], [22],
[23]. They are extracted sparsely along image contours and
form a feature vector that contains visual modalities such
as position, orientation, phase, color and optical flow (π =
(x, θ, φ, (cl, cm, cr) , f)) where the color of a patch is defined
by left, right and middle color (see Fig. 1(c)). An important
property of the primitives is that they encode geometric
information (position and orientation) as well as appearance
information (color and phase) as separate modalities. 2D-
primitives are matched across two stereo views. Such pairs
of corresponding primitives afford the reconstruction of a 3-
dimensional equivalent called 3D-primitive which is encoded
by the vector Π = (X,Θ,Φ, (Cl,Cm,Cr)). The extraction
process of 2D and 3D primitives for a sample stereo image
pair is illustrated in Fig. 1.

During the reconstruction of 3D entities from 2D stereo
data, the uncertainty of 2D data propagates via the operations
that are used for reconstruction. The statistical uncertainty of
the reconstructed entity can be modeled, if these operations
are linear and the error model for 2D data is known. For
the visual features discussed above, the uncertainty calculation
was shown by Pugeault et al. [24].

B. Multi-modal 3D Contours and Their Relations

The local 2D and 3D primitives are grouped together by
using the perceptual organization scheme described in [25]
to create semi-global contour structures (Fig. 1(d)). Since
contours are based on good continuation of local primitives
in terms of geometry and appearance, they also contain
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Fig. 1. An overview of the visual representation. (a) Stereo image pair, (b)
Filter responses, (c) 2D primitives, (d) 2D contours, (e) 3D primitives.

modalities covering geometry and appearance. This sparse and
symbolic nature of the primitives and the contours allows the
definition of perceptual relations on them that express relevant
spatial relations in 2D and 3D (e.g., co-planarity, co-colority)
which can be applied in different contexts. In the rest of this
section, a brief description of the relations used as visual cues
in this work is given.
Co-planarity: Co-planarity of entities is measured by their
distance to a common plane. An important point is that
analytical operations may be misleading for 3D data produced
by stereo, because of the uncertainty of the data. The co-
planarity calculation benefits from a plane fitting algorithm
based on renormalization [26] that takes the uncertainty of
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Fig. 2. Illustration of 3D relations. (a) All 3D contours of the object in Fig. 1(a). (b) A selected 3D contour shown in red. (c) All contours that are co-planar
to the selected contour are shown in green. (d) All contours that have a distance of less than or equal to 30 mm to the selected contour are shown in green.
(e) All contours that have color difference of less than or equal to 5 to the selected contour are shown in green.

the data into account. The co-planarity between ith and jth

contour in the scene is defined as:
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where N and M are the numbers of primitives in the ith and
jth contours respectively, pk

i = (xk
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i ), Λk
i is the uncertainty

matrix of the kth feature in the ith contour, xk
i is the position

vector of it and x̂k
i is the closest point to xk

i on the plane that
has been fit to feature locations of the ith and jth contours by
renormalization. An example is shown in Fig. 2(c).
Normal Distance: The distance between two 3D contours is
defined by the distance of the centroid of one contour to the
line created by the orientation of the principal component2 and
the centroid of the other. Therefore, the distance between ith

and jth contour in the scene is defined as:

RD =
|wi − (wi · ui)ui|+ |wj − (wj · uj)uj |

2
, (2)

where wi is (kj−ki), wj is (ki−kj), ki is the centroid and ui

is the principal component of the ith contour. An example is
presented in Fig. 2(d). Note that this is a parallel distance, and
even if a contour is split into small parts it does not change,
which makes the definition independent from contour length.
Angle: Similar to distance, angle between two contours is
defined by using the principal components of the contours as:

RA = arccos
(

ui · uj

|ui||uj |

)
(3)

Co-colority: Since contours are created from primitives with
good continuation in terms of geometry and color, similar
color needs to be shared among those primitives that create
the contour. Therefore, similar to primitives, every contour
has mean left, right and middle colors as well. Co-colority of
two contours (RCl) is defined as the color difference between
the mean colors of the contours’ sides that are facing each
other. The color difference is calculated using the CIE 1994
color difference formula [27]. A mean color is calculated for
the contours’ sides that are facing each other and the color
difference is then used to estimate how reliable the mean color
is (see Fig. 2(e) for an example).

2The eigen-vector of the highest eigen-value in PCA.

III. USING 3D CONTOURS IN COGNITIVE VISION AND
GRASPING TASKS

In this section, we want to exemplify the use of our multi-
modal contours and their relations. We have chosen two very
different domains – object encoding and grasp learning – to
demonstrate the general usability of the representation.

A. Object Structure Encoding via Relations

In this section, we discuss encoding the structure of an
object as a relation histogram to show the potential of the
relational space in a visual task. The main idea behind re-
lation histograms is to split objects into parts that are both
geometrically and visually similar. Therefore, the histograms
have axes that contain both geometrical and appearance based
information. We selected co-planarity, normal distance, and
(L,a,b) components of the mean color as the axes for the
relation histograms. Note that, since the color is encoded with
three components, the relation histograms are 5-dimensional.
Also, to obtain visually similar parts, instead of calculating
the histograms from every feature pair, only co-color pairs are
used.

The similarity between two histograms is calculated using
a histogram intersection technique introduced in [21]. The
intersection between normalized histograms H1 and H2 can
be formulated as

D(H1, H2) =
n∑

i=1

min(H1(i), H2(i)), (4)

where n is the total number of bins and Hj(i) is the value
stored in the ith bin of the jth histogram. For normalized
histograms, a perfect match results in 1 and a total mismatch
results in 0. One may of course use more sophisticated
methods for comparing two objects in relational space, but
metrics are not the focus of this paper. Our aim in this section
is to demonstrate the potential of 3D contour relations.

50 relation histograms were created based on a set of 10
objects (see Fig. 3), viewed from 5 poses each. Each histogram
is compared with all the others using Equation 4, and the
resulting confusion matrix is given in Fig. 4. High values
within object-aligned blocks on the diagonal in Fig. 4 indicate
good matches, whereas other high values indicate either false
positives or structural similarity between objects. For example,
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Fig. 3. Objects used in our experiments.

all poses of the object ‘basket’ were found to be similar to all
poses of the object ‘rack’. On the other hand, the relation
histograms of object ‘knife’ responded weakly to every object
in the experiment.
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Fig. 4. Similarity measures between 5 different poses of the 10 objects in
Fig. 3.

For further analysis, the 50x50 similarity matrix was re-
duced to a dimension of 50x2 using multi-dimensional scaling
[28]. The results are shown in Fig. 5 where we observe that
both appearance-based (e.g., small distance between ‘spatula’
and ‘red spoon’ clusters) as well as structural information (e.g.,
small distance between ‘pan’ and ‘plate’ clusters, ‘red spoon’
and ‘blue spoon’ clusters) is encoded successfully. Also, the
high degree of similarity between objects in Fig. 4 (e.g.,
‘basket’ and ‘rack’) appears in Fig. 5 as well as the low degree
of similarity (e.g., very large spread of the ‘knife’ cluster).

B. Using 3D Contours for Grasping Unknown Objects

In the absence of prior knowledge about the 3D model of
an object, sensory data must be used to calculate grasping
hypotheses (see, e.g., [29]). Compared to grasping known
objects, grasping of unknown objects is acknowledged to be a
challenging problem. The main difficulty is that visual features
extracted from the scene (which in general are afflicted with a
large degree of noise) need to be related to grasping actions.
Here we show that 3D multi-modal contours can be a powerful
trigger for such grasping actions. In particular, we show that a
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Fig. 5. Similarity maps between different poses.

more global approach based on contours outperforms a local
approach based on local primitives in terms of stability and
robustness.

Grasps for a two-finger gripper are defined through a 3D
location and two directions (x,r1,r2) as shown in Fig. 6(a).
Making use of the co-planarity relation as defined in Section
II-B, we can associate a number of grasps to two co-planar
contours or primitives (see Fig. 6(b)). In this way, we can
compute a large variety of grasping hypotheses (see Fig. 6(e))
for any given object.

The grasps associated to contours are defined by using the
3D location of the central primitive of one of the contours
(x) and the normal of the plane fitted to the contours (r2).
Furthermore, the second direction of the grasp, r1, is calcu-
lated as the cross product of r2 and the tangent vector of
the contour at x (see Fig. 6(f) for an example). Those grasps
that are associated to contours are specifically defined between
contours that are co-color and co-planar. It has been shown that
by such a straightforward association of co-planar contours to
grasps, without making use of any prior object knowledge, it
is already possible to achieve grasp success rates of about 40%
(for details, see [30]).

In the following, we compare the performance of grasps
defined by relations between contours and grasps defined
by relations between local features. For the local approach,
the grasping hypotheses are calculated from the location and
orientation of two primitives that are co-color and co-planar
as described in [29] (see Fig. 6(b) for a brief explanation).

For the comparison of the global and local approaches, two
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Fig. 6. Grasping with a two-fingered gripper. (a) A grasp is defined by a
location and two directions (r1,r2). (b) The direction vectors for local features
are defined as r2 = (u3×u1)+(u2×u3) and r1 = u3×r2. For contours,
r2 is the normal of the common plane, and r1 is the cross product of r2 and
the tangent vector of the contour at grasping location. (c) Grasping hypothesis
types based on contours. (d) A blue pan to be grasped. (e) A set of grasping
hypotheses generated to grasp the blue pan. (f) An example grasp based on
contours.

contours from the brim of the can that is shown in Fig. 7(a)
were manually selected to make sure that they belong to the
same surface. The grasp hypotheses were calculated using both
the local and global approaches while adding random noise

within the uncertainty range of the primitives. As shown in
Fig. 7(b) and (c), even though the best grasps were chosen for
the local approach, the global approach performs significantly
better. Note that this fact is comprehensible as the local
approach is based on only two primitives, while the global
approach makes use of the geometric stability of multiple
primitives.

Besides the fact that using co-planar contours instead of
co-planar local features increases the robustness and success
rate of grasping unknown objects, in [30], it has been shown
that the performance can be further increased by learning. To
this end, we constructed an artificial neural net that predicts
a success likelihood for a grasp depending on the relations
of the contours defining the grasp. Three relations between
contours in addition to co-planarity – namely, co-colority,
normal distance, and angle – were used as input features to the
neural network. Each grasp attempt was evaluated haptically
by the robot, which resulted in a set of triplets containing
the performed grasp, the contours defining the grasp as well
as a label for success or failure. From these data, the robot
system learned a function predicting the success likelihood of
the grasp depending on the values of the four relations. For
example, from the large number of potential grasps shown in
Fig. 6(e), the robot picked the one with the highest predicted
success likelihood. We have shown that by such a selection
based on learning we can increase the success rate of the
grasping behavior from below 40% to above 60% (for details,
see [30]). Note that by learning a success likelihood for a
grasp that can be associated to a certain constellation of
contours, no prior knowledge pertaining to specific objects
is introduced. Rather, the system acquires general knowledge
about the chance of grasp success when certain sets of relations
occur in the scene.

IV. CONCLUSIONS

We demonstrated the potential of using multi-modal 3D
contours and their relations in the context of cognitive vision
and robotics. We observed that geometrical reasoning in 3D
benefits from the use of multi-modal contours and contour
relations. We showed how the relational space can be used to
encode the structure of a scene and to grasp unknown objects.
We also showed that the same space provides a useful basis
for learning, by improving the success rate of grasping of
unknown objects based on these relations.
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