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Abstract—Infants gradually improve their grasping
competences, both in terms of motor abilities as well
as in terms of the internal shape grasp representations.
Grasp densities [3] provide a statistical model of such
an internal learning process. In the concept of grasp
densities, kernel density estimation is used based on a
six-dimensional kernel representing grasps with given
position and orientation. For this so far an isotropic
kernel has been used which exact shape have only
been weakly justified. Instead in this paper, we use an
anisotropic kernel that is statistically based on measured
conditional probabilities representing grasp success in
the neighborhood of a successful grasp. The anisotropy
has been determined utilizing a simulation environment
that allowed for evaluation of large scale experiments.
The anisotropic kernel has been fitted to the conditional
probabilities obtained from the experiments.

We then show that convergence is an important prob-
lem associated with the grasp density approach and we
propose a measure for the convergence of the densities.
In this context, we show that the use of the statistically
grounded anisotropic kernels leads to a significantly
faster convergence of grasp densities.

I. INTRODUCTION

When using already made grasping experience with
a specific object there is no way to repeat the exactly
same grasp due to uncertainties on pose estimation as
well as the actual grasping process as such. Hence
assumptions about grasps likely to be successful in the
vicinity of grasps already tested and memorized are
required even when exactly the same grasp is repeated
for the same object in a new situation.

To tackle this, recently the concept of grasp densities
[3] has been introduced which describes grasp affor-
dances associated with specific objects in a probabilis-
tic way. It is based on a kernel density estimation [8]
in which the success likelihood of already tried grasps
is described by 6-dimensional kernels (illustrated in
figure ?? bottom left). The set of all grasp affordances
associated with an object can then be expressed as the
sum of these spatially extended 6D kernels (see figure
?? top right). Grasp densities have proven very useful
in applications since they allow for the formulation of
optimal grasps under constraints (see figure 2). In addi-
tion, since grasp densities reflect success likelihoods of
each grasp, these can be used in higher level processes
such as action sequence planning.
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Fig. 1: Illustration of the parallel-jaw gripper (top left)
and the 6D-kernel associated with the grasp (bottom
left). And a visualization of a grasp density associated
with an artificial object (top right). The left part shows
all kernels, the right part only 10% of the kernels in
order to provide a better overview. The original object
is shown at the bottom (right).

However, currently two severe problems exist when
using grasp densities. First, the exact shape of the
kernels being used in previous work is only weakly
motivated and is in particular isotropic (see figure ??
bottom left). Nonetheless high structural dependencies
can be assumed to exist in the space of grasps as-
sociated with objects due to the intrinsic regularities
of objects. The understanding of these regularities and
how they can be expressed in kernels is an interesting
topic in itself. In this context the first contribution of
our paper is to give a statistical justification of the
shape of the success likelihood of grasps in the vicinity
of already successfully tested grasps. This is done by
means of statistically derived conditional probabilities
in grasp simulations.

As we will show in this paper, a second problem
of the grasp density approach [3] is a rather slow
convergence of the algorithm when the complete set
of affordances is supposed to be represented as it
requires a large set of grasp attempts. In this paper
we give evidence that by using the statistically derived
anisotropic kernel, we can speed up the convergence
of the algorithm significantly.

The paper is structured as following. In section
II, we introduce basic notations and methods used
in this paper. In section III, we introduce the results
on our statistics which motivate the choice of a new
anisotropic kernel. The adaption of the new anisotropic
kernel to the statistical results is outlined in section III
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Fig. 2: Grasp success likelihoods learned by means
of exploration are represented in green. A local max-
imum indicates optimal grasp points. Constraints of
graspability (e.g., on invoked by workspace constraints
as indicated by the sharp green border) can be easily
integrated.

as well as its application to grasp density estimation.

II. METHODS

In the following we provide a detailed overview of
the different methods used throughout this paper. In
section II-A our parametrization of grasping actions
is defined, the association from actions to objects
using grasp densities is described in section II-B. Two
different designs for anisotropic kernels are outlined
in section II-C. The simulation environment wherein
actions are performed is introduced in section II-D
and in section II-E the choice of bandwidths for an
isotropic kernel is discussed.

A. Grasps and their transformations

A grasping action, A, is in this context defined as a
point in the special Euclidean space, A ∈ SE(3) and
defines the transformation from the object reference
frame to the tool which performs the grasp. In this
work, the tool is considered to be a parallel finger
gripper — the setup is illustrated in Fig. 3.

Based on a set of evaluated and successful grasps,
S = {A1, . . . , An}, for one specific object it is
investigated if a grasp still would be successful when
it becomes transformed locally:

P (TRBM (A) is successful|A is successful)

where TRBM (x) denotes a rigid body motion applied
to the action A, thus

TRBM : SE(3)→ SE(3)

Note that A and TRBM , although both elements of
SE(3) have two separate meanings, A representing a
grasp and TRBM a rigid transformation.

The success of a transformed action, TRBM (A), is
estimated by comparing it with all grasps in S using
the grasp density (introduced in section II-B). To be

able to do a reasonable comparison it is required that
the density covers the entire object. It is not feasible
to evaluate every TRBM (A) physically or even in a
simulator as this still would be far too time consuming.

B. Grasp Densities

A grasp density models the distribution of successful
grasps relative to an object. A density is defined as a
probability density function, pX|O=s (x), where X ∈
SE(3) represents a gripper pose and O ∈ {s, f} is
the outcome of a grasp which can be either success
or failure. The value of a grasp density at a concrete
pose x ∈ SE(3) is proportional to the likelihood of a
successful grasp when the gripper is moved to this pose
and closed. A typical applications for grasp densities
is for example the search for a local maximum which
provides the user with a grasp hypothesis with a high
likelihood of being successful (see figure 2). External
constraints, e.g. due limited workspace of a robot, can
easily be integrated by limiting the search space (see
figure 2).

A grasp density d(x) is estimated using kernel
density estimation (see also [2], [8]):

d(x) =

n∑
i=0

wiKµi,σ(x) (1)

where wi is a weight that compensated the impact
of the sampling strategy. The kernel K is defined
as a product of a trivariate Gaussian kernel, N, for
the position and a orientation kernel Θ defined on
SO(3) by the von-Mises-Fisher distribution [5] (see
also figure ??):

Kµ,σ(x) = Nµt,σt(λ)Θµr,σr (θ) (2)

where

Θµr,σr (θ) =
1

2
C4(σr)

(
eσr cos(β) + e−σr cos(β)

)
(3)

β = cos−1
(
µTr θ

)
(4)

where σt denotes the width of the kernel for the
position and σr denotes the width of the kernel for the
orientation. Similar µt and µr denote the mean values
in SE(3). λ and θ are the pure positional respectively
orientional part of x = (λ, θ) — orientations are in
all cases represented using quaternions. C4(σr) is a
constant which ensures that the density integrates to
one. Note that Θµr,σr (θ) basically depends on the
angle between two quaternions which is a scalar (for
further details, see [3]).

C. Anisotropic kernels

One property of the kernel K as introduced in
equation 2 and in more detail in [3] is that both
the position and the orientation are modeled isotropi-
cally (see figure 1a). Different strategies to model an
anisotropic kernel, K̂, which expresses the structural
properties of successful grasps in a neighborhood have



been considered. Note that an anisotropic kernel can
be defined as a sum of multiple isotropic kernels with
constant widths:

K̂S
µ,σ(x) =

m∑
j=0

wjKµj ,σj (x) (5)

allowing for an approximation d̂(x) of d(x) by

d̂(x) =

n∑
i=0

wiK̂
S
µ,σ(x) (6)

Although the approach in equation (5) is computa-
tionally not optimal it can be used to investigate the
impact of using anisotropic kernels for the generation
of grasp densities and it does not imply any restriction
on the shape of the anisotropic kernel.

The alternative is an analytic expression of K̂µ,σ(x).
Remembering that the value of original kernel used
for the orientation is dependant on the angle between
two quaternions (see equation 3). This angle can be
weighted which leads to the following formulation of
the kernel:

Θ̂µr,σr (θ) =
1

2
C4(σr)

(
eσr cos(wµr (θ)β)

)
+

1

2
C4(σr)

(
e−σr cos(wµr (θ)β)

) (7)

where the angle is weighted by wµ(θ), which is similar
to Mahalanobis distance measure [?]:

wµr (θ) =

√
(θ − 0)S−1Rµr (θ − 0)

′ (8)

where S is a diagonal matrix that describes a 4D-
ellipsoid and Rµr represents the rotation that aligns
the ellipsoid with the mean-orientation of the kernel.
Similarly the Gaussian kernel N can be defined using
a covariance matrix to use the Mahalanobis distance
rather than the Euclidean. In this paper we describe
the basis for such an approximation as outlined in the
discussion.

D. Simulator and Simulations
As a large set of evaluated grasps is required to

achieve complete coverage of grasp affordances a sim-
ulator [7] has been used (in total we simulated about
10.000.000 grasps). The setup is illustrated in figure 3.
The use of a simulator allows us to evaluate large sets
of grasps efficiently while avoiding the overhead of
using a real setup and circumventing the introduction
of errors by usage of a pose estimation algorithm to
obtain the pose of the object.

In the simulator both objects and grippers are de-
fined by geometric models as well as mass and fric-
tion information. While the material of the gripper is
known, we estimate the mass of the objects and assume
them to be made of plastic. For the gripper it is in
addition ensured that the realistic constraints on the
position, velocity and acceleration of the fingers are
maintained.

Fig. 3: Screenshot from the simulator.

The positions of the grasps that are to be simulated
are obtained by defining a 6D grid covering all the
poses that are in the vicinity of the object. The resolu-
tion of this grid needs to be limited in order to ensure
that simulation still is tractable. In our simulation, we
used a grid of 10mm and approximately 15 degrees.

The simulator models the interaction between the
tool, a simulated Schunk PG70 parallel-jaw gripper
with a maximum finger distance of 70mm, and the
object during the grasping process using a physics
engine. The execution of a grasp is finished when either
the gripper is closed entirely or the object prevents
it from doing so (see figure 3). Grasp hypotheses
that would lead to collisions between gripper and
object beforehand are discarded. Whether a grasp is
successful or not is estimated by calculating the grasp
force wrench and determining whether the grasp can
counteract gravity (see also [4]). If that is the case, the
grasp is considered to be successful. We only consider
the force wrench as the simulation is based on hard
contacts. Therefore a stable grasp may consist of only
two contact points, although the object might rotate
freely on the axis defined by the two contact points.

The four different objects used in our simulations are
shown in figure 4. The screwdriver and the coffee-mug
have been found on the web1. Their size matches the
size of common real world objects. The screw driver is
approx. 280mm long and up 30mm wide, the body of
the cup is approx. 60mm wide and 80mm high. The
elongated D-shaped object (top right in figure 4) and
the cone are purely artificial objects. The width of the
cone is 80mm at it’s base and 20mm at the top while
the overall length is 400mm. The dimensions of the
elongated D are approx. 140mm× 140mm× 350mm.

Figure 5 shows a visualization of a grasp density
that has been created for the cone. For the projections
of the density a plane has been defined that contains
the main axis of the cone and is parallel to the image

1http://sketchup.google.com/3dwarehouse/



Fig. 4: The different objects used for the simulations.
Some of the objects have been scaled for illustrative
purposes.

(a) (b)

Fig. 5: An example of a grasp density. The more
opaque the red color is, the higher the values of the
density is at this point. (a) illustrates the distribution of
all grasps, (b) illustrates the distribution of all grasps
that are oriented vertical to the image plane and aligned
with the main axis of the object.

plane of a virtual camera. Subsequently the density has
been projected on the plane in red. The opaqueness of
the color indicates the value of the density where com-
pletely opaque refers to the maximum and completely
transparent regions indicate that no successful grasps
have been experienced there. Note that the projections
have been normalized individually to guarantee that
the highest value of projection saturates the red colore
channel. In figure 5a all grasps have been projected
showing that most successful grasps occurred at the
narrow end of the cone. Figure 5b show the distribution
of all grasps that are oriented vertical to the image
plane and aligned with the main axis of the object.

E. Optimal isotropic kernels

The grasps obtained using the simulator are used
to create a grasp density. This process requires that a
suitable kernel width is selected. There is a trade-off
between having small kernels requiring a fine-grained
density using a large number of kernels to reach a full
coverage but allows to have relatively sharp borders
separating successful and non successful grasps and
having wide kernels which ensure that entire graspable
part of the object is covered by the density using fewer
samples with the cost that borders between successful
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Fig. 6: Bootstrapping applied to a density using three
different kernel widths.

and non-successful grasps are blurred. In this section
we discuss this trade-off aiming at estimating a suitable
kernel width.

Since the set of true grasp affordances is not di-
rectly accessible, it is difficult to select proper widths.
Therefore the concept of bootstrapping (see [6]) is
utilized in order to achieve a convergence measure
s. Bootstrapping is in general a strategy to estimate
statistical properties of any measurement by estiming
these properties directly on samples of the distribution
that approximates the measurement. The measurement
in our case is the overall graspability of the object,
estimated by a grasp density. Each grasp is considered
to be a sample of the overall graspability. Given a
grasp density based on N samples, N new samples are
drawn randomly with replacement and a new density
is created based on these samples. This procedure is
repeated B times and the similarity s of the B re-
sampled densities is estimated:

s =
1

B

B∑
b=1

BC (dµ (x) , db (x)) (9)

where BC() denotes the Bhattacharyya Coefficient [1]
and dµ(x) is the mean density over the B sets. Given a
large value for B, d(x) is used as an approximation of
dµ(x) in equation (9). Note that although s is defined
similarly to the variance, the variance approaches zero
when s approaches the value of one, which is inter-
preted as the density being fully converged.

The more the individual kernels of a density overlap,
the smaller the variance of the re-sampled densities is
expected to be and as a consequence the similarity s
will approach 1. Figure 6 shows the convergence of
three densities which are based on the same samples
but using different widths. Although it is obvious
that the larger kernel leads to a faster convergence,
it is important to keep in mind that the densities do
not converge to the very same density as each larger
kernel covers a larger region, even though this does
not necessarily reflect the true grasp density. When
samples are drawn randomly (and not obtained by
the search for a maximum ) from the final densities,
the average success ratios of the samples have been
found to be 9.76% (45mm), 18.18% (30mm) and
30.08%(15mm). Note that these numbers do present



Object successes failures ratio
Cone 166.690 3.331.043 5.0 %
Elongated D 2.898 99.764 2.9 %
Screwdriver 159.947 1.574.709 10.1 %
Mug 19.051 4.127.861 0.46 %

TABLE I: Overview over the number of successful and
failing grasps for the individual objects and the success
ratio.

results in a very sub-optimal use of grasp densities
in which also grasps are tested which are known to
have a low success likelihood (i.e., where the grasp
density has low values). This can be very useful, when
we want to explore grasps corresponding to areas in
SE(3) where there are unstable grasps. It is a quality
of the grasp density also to represent these kind of
areas appropriately. However, one needs to be aware
of the trade–off discussed here.

III. RESULTS

The estimated conditional probabilities
P (TRBM (A) is successful|A is successful) of the
success of the displaced successful grasps for various
objects is given in section III-A. Results in the context
of the adaption of an anisotropic kernel to these
statistics is outlined in section III-B. results on the
convergence using this anisotropic kernel are given in
section III-C.

A. Statistical Results

A feasible method for an investigation of the results
of the statistical investigation are multidimensional his-
tograms where one axis covers the likelihood of a grasp
to be successful and each direction of displacement
leads to an additional axis. As it is hard to visualize
high-dimensional histograms, only two dimensions of
displacements will be covered in a single histogram
and the mean success likelihoods of the grasps associ-
ated with the individual bins are computed.

Given an object that can be grasped at its edge, it
is expected that successful grasps can be translated
along the edge (see figure 7a where the green marker
represents a successful grasp and the orange ones
represent grasps we would expect to succeed as well).
However, grasps will also be translatable on the two
orthogonal directions depending on the finger-width of
the gripper (in conjunction with the thickness of the
edge) as well as the length of the fingers. Further it
is expected that grasps can be rotated around the axis
defined by the normal of the surface ending at this
edge (illustrated in figure 7b). Figure 7c indicates the
associated coordinate system.

The numbers of succeeding and failing grasps for
the different objects are listed in table I. Note that the
success likelihood is very different for the different
objects. The screwdriver is relatively easy to grasp,
even a random grasp has a success chance of more

(a) (b)

xy

‐z 

(1) (2) (3) 

(c)

Fig. 7: (a) and (b):Given that the green grasps (visual-
ized in 2D) have been found to be successful and the
gray box represents the grasped object, it is expected
that the orange grasps would be successful as well. (c)
Illustration of the gripper (1), a simplified view (2) and
the 3 axes of the associated frame (3).

than 10%. For the ’Elongated D’ a random grasp has
a probability of success of less than 3% while for the
the cone the success likelihood is 5%. For the mug
a random grasp has a very low success chance of
only 0.5%. Note that for the mug only few grasps will
succeed since there are only few graspable positions,
and these need to be approached with carefully aligned
grasp orientation. For each object an individual grasp
density has been created based on the successful grasps
(see, e.g., figure 5). Note that the kernel K does not
handle the fact that the gripper is mirror-symmetric
around its approach axis. Therefore each sample is
used to create the density both unaltered and rotated
180 degrees around the approach-axis of the gripper
(the Z-axis, illustrated in figure 7c).

Subsequently each successfully tried grasp is used
to generate a set of samples in its vicinity. For each
of these samples the grasp density associated with
the object is used to estimate the likelihood of graps
corresponding to the new sample to be successful. As it
is intractable to sample the complete 6D neighborhood
for every tried grasp, a kernel is defined at the location
of a tried grasp. Subsequently this kernel is sampled.
Thereby the entire neighborhood of grasps can be
covered, without exhausting it with every single tried
grasp.

The average success likelihoods of the trans-
formed grasps relative to the transformation (i.e.,
P (TRBM (A) is successful|A is successful)) for the
object ’Elongated D’ is shown on the histograms in
figure 8. The color of each bin reflects the success-
likelihood of the grasps, 0 at the scale indicate 0%
success likelihood, 1 indicates 100%.

The histograms in the top row cover the translations
— each histograms covers the translations in the X-
and Y- axis (horizontal resp. vertical axis on the
histogram). Further, each histogram is accumulated
over a range of displacements of 16mm in the Z-axis
(−24mm to −40mm in the leftmost histogram, 24mm
to 40mm in the rightmost). Each histogram in the
bottom row covers two axis of rotations. The relation
between a grasp and the different axes is shown in



P (TRBM (A) is successful|A is successful), object not aligned
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Fig. 8: Results for the object ’Elongated D’ for both rotation and translation using the grasp densities with
30mm wide kernels for position.

figure 7c.
Results indicate that successful grasps are more

robust towards translation in x– and z–direction and
rotations around their y-axis than the two remaining
axes. This confirms our expectations visualized in fig-
ure 7. Note that when rotations are applied symmetries
become explicit (see bottom row in figure 8). When a
grasp for instance is rotated 180 degrees around both
it’s x- and y-axis, the resulting configuration will be
identical with the initial one, just mirrored around the
Z-axis which is identical with the approach-vector of
the tool. Due to symmetry of the gripper the resulting
grasp is considered to be identical with the initial one.

However, the results are not as explicit as one might
have expected. It can be observed that a wide range
of different orientations may still lead to a successful
grasp at the very same position. Hence grasps do
not have to be aligned with the edge of the object
in order to be successful. But when the grasp and
the object are not aligned, the translations we apply
are not aligned with the object either and will lead
to likely to be unsuccessful grasps. This becomes
evident when we look at the corresponding statistics
when we align the kernel with the main orientation
of the object (see figure 9): It can be seen that the
anisotropic structure is much more expressive both in
translation and orientation. As a consequence of this
investigations we can conclude that it is important to
align an anisotropic kernel with the visually extracted
edge shape structure.

In figure 10 - 12 we see the analog statistics (only
the two center sub-figures corresponding to figure 9
and 8 are displayed). As we can see, the results for
the screwdriver (figure 10) and the cone (see figure
12) look similar to the object ’Elongated D’. However,
the structure of the conditional probabilities is different
for the mug (figure 11). The reason is that the mug
has only highly curved edges for which only slight

translations of successful grasps lead to errors. Here
also an alignment to the actual curved object shape
would be appropriate.
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Fig. 10: Histograms for the screwdriver
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Fig. 11: Histograms for the mug (not aligned)



P (TRBM (A) is successful|A is successful), object aligned
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Fig. 9: Results for the object ’Elongated D’ when the grasps are translated aligned with the object structure.
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Fig. 12: Histograms for the cone

B. Adapted kernel

When using the definition of a kernel given in
equation (5) the anistropic kernel is defined as a sum
of isotropic kernels. This sum of kernels can directly
be obtained by drawing are sufficiently large number
of samples from the results that form the basis for the
histograms in section III-A. Figure 13 illustrates the
similarity between the results used for the histograms
and the anisotropic kernel with respect to the number
of samples used for the kernel estimation. The results
show that a rather high number of samples are required
in order to achieve estimate of the anisotropich kernel.
In order to limit the computational costs we limit the
kernel to consist of 900 samples which leads to a
similarity of approximately 0.8, estimated using the
Bhattacharyya Coefficient [1].
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Fig. 13: Comparing the sampled kernel with the full
data set used for the histograms for different numbers
of samples.

C. Convergence

The usage of the anisotropic kernel does not imply
significant changes to the learning of a grasp density.
Independent on the type of the kernel, one kernel is
added to the density every time a successful grasp is
experienced. When the anisotropic kernel is used all
kernels that it consists of are transformed according
to the pose of experienced grasp and subsequently
the composition of kernels is added to the density.
Figure 14 shows a comparison of the convergence of
two densities (both are based on the set of grasps
learned for the elongated D), one using the anisotropic
kernel and one using the isotropic kernel with a similar
width. It becomes explicit the density that is using the
anisotropic kernel converges significantly faster.

IV. CONCLUSION AND DISCUSSION

In this paper we have investigated the conditional
probabilities of grasps in the vicinity of an already
performed successful grasp for a number of objects.
We found a large degree of structure in these condi-
tional probabilities with large anisotropies. We have
used these anisotropies to derive statistically justified
kernels for grasp density estimation [3] and we have
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Fig. 14: Comparing convergence of the isotropic kernel
and the anisotropic kernel. The vertical bars indicate
the standard deviation of the individual similarity mea-
surement.

shown that based on these kernels a faster conver-
gence of grasp densities can be achieved. By that
the statistical experience made during grasping can
influence the actual learning approach on a meta level.
We believe that the efficient use of such statistically
derived conditional probabilities is one of the main
reasons for successful development of cognitive agents.
We have also shown that it is important to align the
derived kernels with the actual structure of the object
shape: Considering the scenario in [3] where local 3D
edge-descriptors of the scene have been used to create
a proposal grasp density describing potential grasps.
We imagine that the introduction of anisotropic kernels
allows us to utilize the edge information further. Rather
than generating a proposal density consisting of a vast
number of kernels, anisotropic kernels can be fitted
to edge segments, thereby covering structural similar
regions. As a consequence less samples are needed
to formulate a proposal density and less samples are
required to sample the entire object.

In future work we will finalize the experiments with
the analytically defined anisotropic kernel. Further-
more we aim at comparing the simulation data with
real robot data and to derive higher order conditional
probabilities associated with more complex feature
grasp associations such as coplanar and/or parallel edge
and surface structures.
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