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Abstract. Properties of the human embodiment — sensorimotor apgaaatlineurological structure — partici-
pate directly in the growth and development of cognitivecesses. It is our position that relationships between
morphology and perception over time lead to increasingmm@hensive models couched in the dynamics of
interactions with the world. We are studying humanoid rekiatorder to apply insight derived from neuro-
science, neurology, and developmental psychology to teigdef advanced robot architectures. Increasingly
compelling evidence from these communities indicate aimete relationship between form, control struc-
ture, and patterns of cognitive growth. Somehow theseadntems manage to defeat the awesome complexity
associated with controlling a human’s sensorimotor appardo find out how this happens, we believe it is
necessary to approximate the human sensorimotor configui@td to engage sensory and motor subsystems
in developmental sequences. Many such sequences havedmeanahted in studies of infant development, so
we intend to bootstrap cognitive structures in robots bylatmg some of these growth processes that bear an
essential resemblance to the human morphology.

In this paper, we motivate a framework for cognitive inteigna of haptic and visual sensorimotor modalities.
Specifically, we will model the development of prospectivasping behavior in human infants. Prospective
behavior describes a process in which behavioral utilitfiseovered and associated with a prior perceptual
condition and action (aaus@ that reliably distinguishes between desirable and unalelsi effects Our ex-
ample shows how exploratory grasping behavior using a degtrobot hand can lead to candidate grasps of
varying quality and illustrates a learning mechanism tlefiibly selects high quality grasps on the basis of
haptic feedback. Subsequently, the haptic policy can bgafigrsubsumed by learning visual features that
bootstrap grasp formation. The result is a trajectory toveessociative visual-haptic categories that bounds the
incremental complexity of each stage of development.

1 Introduction

Human infants display a tremendous assortment of timehvaustructure in their physiological and neurological

responses to the world. We speculate that this growth psqumewides important insight into how infants manage
the complexity of learning while acquiring increasinglypbdsticated mental representations. Right now, develop-
mental psychologists and roboticists are proposing sintlilaories of sensorimotor development — namely, that
latent aptitudes expressed by virtue of the kinematic, dyjogand “neurological” properties of a developing agent
are exploited to simplify and structure learning in the esthbf an on-going interaction with the world. The tem-
poral sequence of developmental processes appears tolé@adtble incremental learning tasks. We present a
framework developed to provide the basic mechanisms inatpp cognitive growth for a humanoid robot. The
proposed system architecture has been used to study mdtrddarning control [31], acquired representations
[12], and on visual behavior [55, 24].

Theinteractionistrepresentation grounds human knowledgadtivity. From this perspective, “motor timing
in skilled actions is discovered . .. through perceptual@gion of the body’s intrinsic (or autonomous) dynamics
within a changing task and physical space [70].” It is theeptial for rich and varied interaction with the world
that we contend necessitates cognitive organization anela@ment in humans — this is a critical issue that has
been largely overlooked by the Al community.

The human hand has often been cited as an important factbeiddgvelopment of the apparently superior
ability of the human brain to form critical categories in senimotor experience [75]. Many are of the opinion that
this faculty for building predictive models underlies mugftwhat we recognize as human-level cognitive ability.
While experts disagree on cause and effect, it is clear tigatnechanical dexterity and redundancy afforded in the
hand requires a neural architecture capable of modelingya Yariety of interactions with the world. Our decision
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to study reaching, grasping, and manipulation is motivateour desire to understand one of the important missing
aspects of intelligent systems research as well as by olredesconstruct general purpose end effectors and
integrated perceptual abilities for robots. We postulbtd the processes underlying multifaceted world models
effect problem solving in general as well as the formulatbskillful manipulation strategies.

We pose the development of robot programs as an incremegatadtsfor strategies that exploit the intrinsic
dynamics of the robot/world interaction. “Intrinsic dyniusi' is interpreted fairly broadly as any kinematic, dy-
namic, perceptual or motor synergy that produces chaistiteand invariant temporal sequences of observable
state variables. Humanoid robots are simply too complexakawse of traditional approaches from robotics and
computer vision. The range of interaction possible and thd<of perceptual distinction required challenge com-
monly used methodologies for control and programming. €quaently, the architecture proposed in this paper
adopts an incremental and automatic approach to progragnmdaueled after the sensorimotor development of
human children in the first two years of life. In this perioéngtically-mediated maturational mechanisms focus
the infant on simple problems first and subsequently enhieké policies by including additional motor and per-
ceptual systems [27]. Infants are constantly learning atitaicapabilities of their motor systems and adapting
motor strategies in accord with their current level of sepsmd motor control [4]. Early sensorimotor programs
are not burdened with the full complexity of the infant neamatomy. Instead, maturational mechanisms in the
brain, co-contraction of distal degrees of freedom, andvawg neurological structure organize and direct evolv-
ing motor programming. Attentional mechanisms parti@patthis growth process and, therefore, it is critical that
flexible means of directing attention in humanoid robotsdeeeloped that can be varied as a function of time.
The framework reported in this paper is intended to be a fiegt in that direction.

2 Relationship to the Literature

Three principle threads in the research community are iniewedgl relevant to our on-going project. The first is the
body of analytical results in the robot grasping commuriitye second is the growing interest among behavioral
scientists and roboticists regarding the use of models padycs and the desire to exploit the intrinsic dynamics
of controlled processes. Finally, we review methods forrey visual recognition strategies as they have been
applied in computational systems.

2.1 Grasp Mechanics

A great deal of progress has been made in the mathematidgsenaf phenomena associated with grasping and
manipulation tasks [50]. We have relatively standard m®adélcontact types consisting of point contacts with
and without friction, and soft-fingers that can produce t@rqround the contact normal [42, 17]. To move control
contact during manipulation, work has been done on how tto@glippage [20, 8,14, 74, 37], and rolling contact
geometries [48, 29,10, 50]. Some of the most widely readalitee on grasping concerns the conditions under
which a grasp can restrain an object. Motivated by fixturingpems in machining operations, a form closure
grasp typically considers the placement of frictionlesmpoontacts so as to fully restrain an object [41]. Force
closure properties speak to the ability of a grasp to rejistticbance forces and usually considers frictional forces
[21, 53, 19]. We have adopted insights from these resultsdamtork reported here, however, the cited approaches
rely ultimately on complete geometric models which is nqirapriate for the problem specification we consider.
Consequently, we propose a closed-loop grasp primitivietémal locally toward null spaces in the grip Jacobian
[62] which is a necessary condition for force closure withtfonal forces.

Theoretical analysis of the stability of an object withinragp is typically focused on the size and steepness
of a potential well determined by the grasp that tends t@reghe object to a equilibrium position [73, 30]. This
is useful insight, especially when comparing otherwisevejent alternatives, but it is noteworthy to mention that
humans use many grasps in everyday life that are technigaditable by this analysis. Moreover, it is quite difficult
in practice to provide useful specifications of stabilitypecially in the context of other competing objectives.

Despite the significant theoretical impact of this literatuwe have not yet developed an adequate model
of the sensory and motor process of grasping and manipualafiois process moves fluidly through multiple
contact regimes and can trade stability margins early durianipulation for constructive interactions later in the
operation, e.g. as usually imposed by pick-and-place cainss. Moreover, nearly all the work on multifingered
grasping considers a complete geometrical model of thecblhjed most depend on geometrical reasoning to
compute a grasp — this despite the fact that grasping is énitigra force domain task. Finally, we feel that the
real challenge and opportunity afforded by multifingereddsais the automatic modeling of complex and non-
stationary modes of interaction between a robot and thedwbtbdeling end-to-end manipulation sequences leads
immediately to issues of representation and learning -essthiat have been largely ignored to date.
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2.2 Dynamical Systems — Movement Units for Robot Control

The human central nervous system (CNS) is organized acaptdimovement pattern2]. The basic form of
packaged movement pattern is the reflex, which can resideaay mevels of the central and peripheral nervous
system. These processes contribute to the organizaticehaiiior at the lowest levels. This form of native control
structure speaks to the vegetative needs of the organismpraniles an “instruction set” for composing more
complex behavioral programs. All map stimulus to respontiee-so-called simple segmental reflex does so in a
predominately open-loop fashion and the more advanced Btam and cerebellar-mediated reflexes in a more
closed-loop fashion. It is generally understood that reSesxercise the musculature and provide useful motor
responses to simple reoccurring situations, but it may bésdrue that they serve to increase the exposure of
learning and developmental processes to conditions widgilimportant developmental milestones.

Infants are born with neural and skeletomuscular systeatgpttoduce patterned and timed movements. Con-
structive interactions within the anatomical substrate lsa stimulated by a variety of environmental contexts.
During the first several months in an infant’s life, reflexresponses begin to organize into coherent motor strate-
gies, sensory modalities are coordinated and attentioeehemisms begin to emerge. Native reflexive responses
like the primary walking reflex and the palmar grasp reflexpi@vide primitive, closed-loop sensorimotor behavior
that accomplish sensory-driven work in the world. Brunérgders to these types of behaviors as “preadaptation”
primitives for learning skillful motor policies. Subseauby, policies for coordinating multiple sensory and motor
modalities appear as primary circular reactions [54] whichpracticed until the infant finds it possible to prolong
certain interactions with the world.

In 1989, Koditschelet al. argued that robot designers should focus on “finding colenss! with inherent
dynamical properties that produce valuable artifacts @wtbrld rather than computing the artifacts directly [60].
Assertions about the stability of the coupled system ugtiatin the state space for such systems as in the attractor
landscape proposed by Huletral. [31] or the limit cycles proposed by Schaslal. [63]. Koditschek uses prior
stability assertions based on Lyapunov functions to pteslien discrete attractors can capture the state of the
system. This information supports switching policies tbiaee “juggling” tasks [38, 61, 39]. This paper adopts
these methodologies as well.

Currently there is a great deal of interest in the researainoonity regarding adaptive control architectures
for non-stationary, nonlinear processes [51, 28, 61, 58/@holithic optimal controllers don’t exist in general for
highly non-linear processes, so these approaches pestuiiatily of local models that can be used to approximate
the optimal, global control surface [47]. By switching canlers, or by reformulating local models, a linear control
substrate can be applied more generally to nonlinear amdferstationary tasks [58, 1]. As a result, the robot
control program is generally more robust. Some of thesecgmhies incorporate learning methods for control law
synthesis [47,1, 35,43, 45]. If local control models ardlgtgin the sense of Lyapunov), then they can actively
restrict the state to a neighborhood surrounding the attratus approximately preserving some property in the
system until conditions permit a transition to anotheraatior [61, 35]. We will employ this approach to express
grasping behavior on multiple object types and will learasging policies that switch between closed-loop grasp
controllers.

2.3 Learning Discriminatory Visual Features

How do humans learn to recognize perceptual cues in the ®dwa principal hypotheses can be identified [57].
According to the Schema Hypothesis, sensory input is mdttthanternal representations of objects that are built
and refined through experience. On the other hand, the Biffettion Hypothesis holds that contrastive relations
are learned that make relevant distinctions. Psycholbgiddence argues strongly in favor of a differentiation
learning framework [57,67, 76, 66]. As we interact, we letrpay attention to perceptual cues that are behav-
iorally important. For instance, we learn to recognize aistirtjuish individual objects and form categories on
the basis of relevance. This community argues against fe@tlifes and for an active process of identifying new
features that serve to form a relevant distinction in thk.tas

Most work in machine vision concentrates on Schema methditi®wt a developmental component. Hence
the performance characteristics of most existing machisierv systems are largely determinadriori by the
design of features and matching algorithms. Neverthelegsessive systems exist that use sophisticated statisti-
cal, texture- and shape-based features and recognitiorithlgs and perform very well on closed tasks where all
training data are available at the outset [46, 49, 52, 64%pide the noteworthy progress advanced in the form of
the Schema hypothesis and the visual recognition task®, kas been a dearth of results drawing on the Differen-
tiation hypothesis. This approach appears, nonethelgsacfor embedded and developing perceptual systems
in open domains. These technigues promise to find a basisdorihg discriminative abilities on the basis of be-
havioral utility [55] and hold a great deal of promise as diggive computational accounts of infant development.
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3 The UMASS Humanoid Platforms

The results reported in this paper require certain esdaetaionships to the human morphology. Perhaps fore-
most among these is a multifingered robot hand. As we citediqusly, these devices require accompanying
technologies for modeling the variety of interactions tthety afford in open environments. We have previously
reported results employing the Utah/MIT robot hand, butvtbbek we describe here employs the Stanford/JPL (or
Salisbury) hand. The Utah/MIT hand would not easily accomate fingertip tactile sensation that was critical
for this work. Brock sensors were fitted to the Stanford/JBhchto provide observations of contact position and
normal. This feedback provides the basis for our closeg-tpasp controllers. The hand requires a degree of mo-
bility in space so as to permit the flexible application of tza resources. The robot hand is placed on the end of
a 5 DOF GE P50 robot arm. Although not the subject of this paperhand/arm configuration permits kinematic
properties of the hand to drive arm movement — a capabiliticat to our approach. The resulting 14 DOF effector
provides the essential mobility and reconfigurability regd to model human grasping processes.

In addition to kinematic and tactile dimensions of the humamfiguration, we require visual input to determine
spatial targets for reaching tasks and to associate vieatifes with grasp control parameters. The data reported
in this paper was derived from a monocular vision system aiitficient additional knowledge to recover range to
objects. The search for features that parameterize gbginavior is accomplished in monocular image frames
acquired prior to the reach-and-grasp process. There ipewfi&E requirement for the geometry of the hand and
eye.

The ultimate target platform for this work is the newly cansted UMass humanoid torddagilla, illustrated
in Figure 1. It consists of two Whole Arm Manipulators (WAMsBarrett Technologi€s¥), two multi-fingered

Fig. 1. Magilla — the UMASS Humanoid Torso.

Barrett hands, and a TRC BiSight stereo head. Later, wednteradd a multi-aural auditory system as well.
Each arm is a seven degree-of-freedom (DOF) backdrivabhépuakator with roughly anthropomorphic scale and
kinematics. Magilla’s hands are two BH8-255 Barrett Ham@dsh with three fingers and a total of 4 DOF. Two of
the fingers track laterally around the perimeter of the paimugh 180 degrees synchronously. This supports hook
as well as opposition grasp types. Tactile (ATI Nanol7 fliorque) sensors are implemented in the fingertips,
allowing recovery of contact positions and normals.

Visual information forMagilla is provided by the articulated stereo head consisting of video cameras
mounted on a TRC BiSight head providing four mechanical elegiof freedom: pan, tilt, and independent left
and right vergence. Six more optical degrees of freedomargdlable: iris, zoom, and focus, independently for
each eye. Motion is controlled via a PMAC/Delta TAU intedatmages from each camera are input to a Datacube
pipelined array (image) processor (IP).
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4 Computational Framework for Humanoid Development

Figure 2 is a sketch of a computational framework that aded®the development of manual skills with robot
hands. One dimension of development is viewed as a schegduriilem in which robotic resources are engaged to

i s RL_policy

automatically within formation

a set of constrained

alternatives Q(q, a) TD error
Developmental DEDS Specification
Schedule ONO c@TT)
constrain the set T Feature
of programming — 5
options for solving @ @ aUX|||ary Learning
a problem state

state .
/ q T[\actlon
Dynamic (e, ¢) | control-Basis s
! sensors

Modeling 0

Q. _Q
€ Ddx2 %2 °© e
e effectors
generative basis

for all closed-loop
reflexes

Fig. 2. Native Structure, Learning, and Development in an Integt#@trchitecture.

satisfy a task. Primitive actions are closed-loop controtpsses constructed by combining an artificial potential,
¢ € @, with a subset of the available sensarg, and effectorsy2.. As these controllers interact with objects and

tasks, a set of prototypical dynamic models are construbggddentify haptic categories during grasp formation.

We will introduce the control processes used for graspirggations 4.1.

In the Dynamic Modeling component of Figure 2, we show th&ahinative model for all states and actions.
This model describes convergence of the grasp controileee # contains the set of states where the time deriva-
tive of the control error¢, is near zero. This implies that initially control decisiomay only happen when one
or more of the working grasp controllers approaches eqiilib. Moreover, the very first policies will move be-
tween discrete equilibria in the working controllers. As tbbot accumulates experience with an object, additional
models are constructed that describe prototype trangspbnses of the grasp controllers. The manner in which
the grasp controllers eliminate error over time dependstj@cb geometry and the local grasp attractor, so these
haptic categories can be used to predict the eventual gresjpyorelative to the reward function. If the predicted
quality is unacceptable, the haptic category can be usedke wontrol decisions that cause the system to navigate
through a landscape of attractors toward those that saisfyto-end task specifications. The pattern of member-
ship in these models over a working set of controllers and:timgrollers themselves form tretatesandactions
for a Markov Decision Problem (MDP). Nodes in the graph digién Figure 2 are states and transitions involve
concurrent grasp control processes selected from the sgadéble actions.

To balance expressive power against computational tréitgathe Discrete Event Dynamic Systems (DEDS)
specification constrains the range of interactions peechittith the environment to those that:

are consistent with a resource model specifying which coatiins of resources are relevant;
satisfy real-time computing constraints;

guarantee safety specifications while learning;

are consistent with kinematic and dynamic limitations; and

express a developmental schedule to learn complex aesivitcrementally.

The DEDS specification is designed to eliminate irrelevanirsafe control combinations during on-line, incre-
mental learning tasks. Together with the task (reward fongit focuses exploration on the horizon of available
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control knowledge in order to build internal representagiof important (sub)tasks. This, in and of itself, can lead
a robot through a sequence of developmental milestonesdpirgithe sequence of policies acquired [33] and
making “options” (temporally extended sequences of cdnsnailable as abstract actions [69].

Finally, once the utility of haptic categories and polidi@smoving between attractors are learned and compiled
into value functions, we may use mature haptic value funetis the basis for visual discrimination tasks. Visual
features are sampled from a possibly infinite set of altéresto discriminate between haptic categories and index
a set of relative hand postures distinguished by theirtyiiti the end-to-end manipulation task. In a simple form
of visual guidance, the Feature Learning component of Eiduis used to construct robust visual features that
recommend particular spatial goals for reaching. Thestsgiace the hand in positions relative to the object that
are upstream of optimal equilibria in the grasp controll@tse overall architecture is designed to extend a native
representation in two ways:

1. to accumulate models of grasp dynamics to enhance stat® a@erive temporally extended actions, and
2. to identify important visual distinctions on the basiglifcernible differences in haptic utility.

Visual categories provide auxiliary (non-native) stat®imation with which to make control decisions. The ma-
nipulation policy informed by this additional state mayg&ag toward valuable attractors by reaching directly to
them rather than groping through intermediate and sub@pbtiaptic categories.

4.1 AClosed-Loop Motor Control Basis

All successful organisms exploit some form of native stet(neurological, muscular, skeletal), many employ
mechanisms for neural adaptation, and all successful apseittle into a stable dynamic relationship with their
environment. Successful biological systems exploit therisic dynamics of bodies and tasks. Moreover, humans
learn, by means of a developmental trajectory, to expleibifable dynamic relationships to the world by using
acquired control knowledge. The design of a native conepértoire for a synthetic system should be both flexible
and expressive enough without introducing undue complekite motor unit in this paper employs a closed-loop
control basis, this design is consistent with perspeciivésant motor development and adult motor control [72,
71,4,5] and robotics [25, 18].

The control basidl = {m,m,...,m,} represents the agent’s native control structure. In ounédation,
eachr; € II is a closed-loop controller based on simple, local modelsowi the agent affects its environment
by applying inputs to its actuators. To structure contral tmreduce the complexity of behavior composition, the
control basis approach uses a small set of feedback coatvsltb construct complex behavior on-line. End-to-end
tasks are solved by combining and sequencing elemedisasf proposed in [35]. The control basis effectively or-
ganizes a continuous, high dimensional state space intowanerable set of attractors. In its simplest form, control
is expressed in terms of activation and convergence evetit®iparticipating controllers. Navigation controllers
[15, 16], contact controllers [12], and kinematic condiiimy controllers [26] have been used in experiments in
complex, multiple hand-and-arm systems [11, 68], in adeptperiodic walking gaits [34, 40], in foraging tasks
[1], and in visual servoing tasks [65].

Figure 3 depicts the closed-loop control scheme propodes plant consists of akrcontact grasp configura-
tion on an unknown object geometry. The feedback controdles on a frictionless point contact model repre-
sented by a unit force oriented along the inward directethsarnormal. Sensor evidence in the form of contact
positions and normals is used to construct the instantangop Jacobian¢z, with which to transform contact
forces into object frame wrenches. This local charactédmacaptures the ability of the object surface to carry
contact forces and to generate object frame wrenches.

Plant
Reference S| Grasp Control
wrench Controller | actions
Object Contact normals
wrench G and positions

Fig. 3. Grasp synthesis as a control problem.
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A necessary condition for force closure requires that tige facobiané [62], contains a null space consisting
of wrenches derived from strictly positive-sense contaatés. The controller constructs the grasp configuration by
continuously adjusting the contact coordinates to achaesaference net wrench. If there exists a contact wrench
that can be written as a positive linear combination of otioertact wrenchesy; = Z#i wj, then the object may
besqueezewithin a null space of the grip Jacobian without applying amench to the object. It follows that the
condition}_ w; = 0 satisfies a necessary condition for force closure withiénitl forces. While most researchers
describe grasp synthesis as an optimization problem, wgogeml that it is best characterized as a robust control
problem. In this framework, the robot uses tactile feediadompute incremental contact displacements.

Contact displacements are determined by the grasp cantgltescribed in [12] whose potential field gradi-
ents are based on local models of interaction between thtadsrand the object surface, and are aimed at reducing
the squared wrench residuaineasured at the object’s center of mass. The squared wresicluak is defined as
the sum of squared force and torque residuals. Given theclwnersidual vector fon contacts

n

p=> [fi fi fi 77 7l

i=1

1"

then the squared wrench residual is defined by
_ T
e=p p.
The controllerr, displaces the subsebf contacts until a local minimum faris reached. Minima i corre-
spond to the existence of a null space of rank 1 or higher igtasp matrix(G. The subset of contactsspecify

which fingers and surfaces are enlisted in the grasp tasknd with 3 fingers labeledT, 1, 2} permits 4 distinct
fingertip contact subsets, assuming that two or more fingerseguired to grasp the object:

c={(T,1), (1,2), (1,2), (T,1,2)}.

Each instance of € C defines a new control law. The controlleris an element in the family of grasp controllers
II = {r.|c € C}.

The control actions of the controllet. are dependent solely on instantaneous, local tactile teddiConver-
gent configurations fort. correspond to local minima ef Each choice of control law,. € IT leads to distinct
convergent grasp configuration for a given object orieatatTherefore, there exists an optimal choice of grasp
resources;, for each orientation of the object that yields a convergenfiguration with the minimura. The idea
can be extended to controller sequencing: given a certétialinonfiguration, there exists an optimal sequence
of controllers that lead the system state to the solutioh e smallest possible More importantly, controller
sequencing expands the capabilities of the primitive ailetrs and allows one to build a system that can adapt to
many operational contexts.

4.2 Constructing Models of Control Dynamics

When controllerr; is active, the observed system dynamics are partially abddoy noisy sensors and actuators,
so probabilistic models are appropriate. The use of parismabdels to represent a sequence of observations
is common practice in the dynamical systems literature @g Fraser [23]), especially where insight about the
underlying phenomena is available.

Parametric models presume the existence of a (parame&n®rgtor mechanism for the data observed; the
structure of the parametric model must be chosen accordittget phenomenon one wants to model. We define
an observatione = [¢ ¢]T wheree andé¢ are the squared residual and its time rate of change, résggciVe
assume the the observation will evolve along a piecewiséiragyus contour in the “residual” phase portrait. to
an equilibrium configuratione, 0]7. We model these trajectories using linear segments — tisisngstion is
justified for our controllers in [13]. A particular modé&V/,,, with parameters, and K, predicts an observation
6 = [e —K(e—¢9)]* giventhe observed residual squared etrave further assume thamay have superimposed
noise~ N (0, 0?) so that probabilistic membership of observatioim M., can be estimated by:

—

n=(0-9)
1

1 —n"n
M, (970) = Zmexp( 202 )7 1)

where the parameter vect®r= [K ¢, o2]T andL is a normalization constant.
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The complete representation of system dynamics underypolicequires a set ofn observation models,
expressed ad(m;) = Ui, My, (0x,0). The setM(r;) expresses empirical knowledge acquired by the agent
during the execution of policy;. Each model is valid only within a bounded domd, M, (0x,0) = 0if o is
notin Dy,.

The derivation ofM (r;) involves sampling system dynamics for a predetermined murobepochs-, while
recording the dat® = {o;,0-,...,0,} observed as the control error evolves toward equilibriuhe Thstan-
tiation of new models involves two steps, (1) the derivatidn- observation models corresponding to the ob-
servation sequences recorded in each ofrtlepochs, and (2) the elimination of redundant observatiodeiso
when|f; — 6;| < §. Many optimization procedures can be used to derive thenpetiex vecto®;, under the as-
sumptions stated earlier. Model construction is conclusledn M(r;) has been constructed for every € 1.
Any single object will present several unique models and el®dets are not disjoint for different objects. Once
M(m;) is available, Bayesian estimation is used to identify thesstiq C M (m;) of models compatible with a
sequence of run-time observations. Htateof the system is defined as the concatenation of the contxoduiad
the membership patterfy;, q).

The evolution of the grasp process captured by the sequ@rzan be plotted in phase space, as illustrated
in Figure 4. The left panel in Figure 4 depicts the grasp dyinarfior a typical two-fingered grasp of an irregular
triangle. Configuration changes underare represented by a path in the phase plane. Initially,dh&acts are in
configuration (a)x. drives the system to an intermediate grasp configuratigrafig) converges to configuration
(c) —a minimum in the squared wrench residamlhere the velocity is zero. Many other paths lead to the same
attractor; in fact, the shaded region in Figure 4 repredéetset of all states leading to the attractor corresponding
to configuration (c). This region is termed thasin of attractiorof the grasp attractor.

me

-0.005 |—

-0.010 |—

Fig. 4. Left panel depicts the evolution of a two fingered grasp friafn configuration (a) to (b) and to (c), the convergent
configuration. The complete, two-fingered phase portraittfe irregular triangle is shown on the right.

The evolution of the grasp state (and the basin of attradseif) can be represented by a set of paths, each of
which captures a characteristic dynamic response. Pgthssenting the same environmental context can be com-
bined to form a model of prototypical system behavior. Famegle, an illustration of all dynamic models for the
irregular triangle is depicted in Figure 4 (right panelhdts three attractors and basins of attraction, correspgndi
to the three possible combinations of two contacts and ttiistnct edges. The convergent grasp configurations
and respective quality indiceg are also shown in Figure 4. The indgyx is the minimum friction coefficient re-
quired for a null space in the grip Jacobigh,with rank> 1 — it is a performance oriented label for each attractor
and it is associated with all precursor states in the basattcdction.

Figure 5 depicts a set of hypothetical models correspontdinplicy ;. If each model is given a discrete
label (4, B,C, D, E), one can describe the transitions between subsets of miodiglems of a discrete graph,
shown in the right panel of Figure 5. As depicted, the reginmhase space in which two or more models overlap
are identified with the labels corresponding to the oveilagppnodels;(B, C) is one example. The resulting
representation defines a discrete state space that desitréibevolution of information in this grasping process.
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Policy m,

0

|

Yo

Lo}

Fig. 5. Diagrams depict the phase portrgité] for policy m; (left) and all possible context transitions (right).

5 Context-Dependent Grasp Policies

The transformation from a set of continuous models to a gedipliscrete states can be carried out for each control
policy w; € II. The discrete state space allows the system to experimémsaguences of control policies, within
the reinforcement learning framework. After convergertioe,system will be able to employ the best policy for
each state, and reduce the variability and uncertaintgdioired by the many possible objects and overcome (to a
certain degree) the locality of the component policigs

Figure 6 illustrates how policy switching may lead to impedperformance. Initially the system adopts policy
7, to grasp an object of unknown geometry. The phase spaceinateds found and the information state is
identified in the discrete context transition graph. Nowymse that prior experience recommends switching to
policy r,1 2, followed by mr 2. This sequence has caused the grasp configuration to tramBfam a trajectory
toward a suboptimal attractor to one headed toward the Wesfingered attractor through and intermediate three-
fingered control context. Switching policies, as in this tiygetical example, forms finger gaits toward optimal
contact configurations.

5.1 Pilot Data— Interaction Dynamics

Figure 7 illustrates a typical instant in the process of fioigra haptically-guided grasp with the GE-P50 robot arm
and Salisbury hand. The system attempts to identify seaseniccontrol engagements that pass through robust
haptic landmarks toward good grasps and in the processsleagneat deal about the coupled dynamics of the
hand/object/control system.

Dynamic programming-based Reinforcement Learning (RL)iga natural paradigm for programming these
systems since RL does not require external supervisionrzeaties policies asequencesf actions with associated
rewards. In general, these rewards can be rare, occurfirgjirently and only after extended sequences of actions.
In the pilot study presented here, a simulation of our Stati#®’L robot hand with Brock tactile sensors interacts
with three simulated object types. We used a family of cydirsdand rectangular and triangular prisms with random
variations in geometric parameters. The identity and ¢aigon of the object are unknown at the beginning of each
trial. Grasp policies are expressed as sequences of thgffasip controllers discussed earlier and RL is used to
solve the temporal credit assignment problem for an optpubty. The experimentinvolve$b grasps using each
of the four grasp controllers (exclusively) on each of ttobgects yieldingt x 3 x 35 = 420 data sets from which
61 separate models were retained.

The grasp controller makes a control decision every timeptiteern of membership in the dynamic models
changes — this event signals the fact that extra informétianbeen acquired in the grasp experiment. Q-learning
was used to derive the optimal switching policy using a Bolimn exploration. The total number of training trials
was 1600; in each trial a new object type with new geometriapaters was chosen randomly. The utility of
pursuing a different control law at a decision point was eatdd after each state transition — the system has the
choice of terminating the trial or invoking a different coolter. If a grasp trial generaté® contact movements, it
times out and the current grasp configuration is scored. inatrgrasp configurations receive a scoré bf- o),
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Fig. 6. A hypothetical context-dependent grasp of a cube (top viBwlicy sequencer,:, 7r,1,2, 7,2 accomplishes the best
available two-fingered grasp configuration by using an mgsfiate three-fingered control context.

wherepyg is the minimum coefficient of friction required to build a hepace in the grip Jacobian with rapk 1
in the final grasp configuration [12].

Figure 8 depicts a typical learning curve (curve Iabeﬂe@ O, top left curve). The curve is an average of the
ten most recent data points. Each point is the grasp scor¢éeofrénal grasp configuration (normally an attractor
in the set of fixed points of the control basis) for a randonhlgsen object. The data corresponding to each object
are presented as well, the resulting learning curves astddi, D , and(). Because the control terminates with
€ < §; |6] > 0, it will not be the case that the average score will gd.tdhe curves for the individual objects are
close to the optimal, within the limitations of the Q-leargialgorithm.

Figure 9(a) shows a performance histogram dwérgrasp trials. In each trial, a random element of the con-
trol basis was applied to a randomly chosen object from the=gure 9(b) illustrates the distribution of results
achieved orlL00 trials with the acquired grasp policy. The grasp policy seppes the majority of low quality
solutions; 93% of the solutions have scores higher thancOmpared to 56% for the native controllers. The vari-
ance associated with solution quality is also substapt@taller. The same is true if we examine performance
object-by-object (Figure 10).

5.2 Development and Incremental Robot Programming

Closed-loop behavioral primitives lead to models of therabhgeristic dynamics of grasp control interactions with

the open grasping domain. Control activations may be censitin a symbolic state space for which we may
derive an explicit system model (in the transition probitibg). The Discrete Event Dynamic Systems (DEDS)

supervisor in Figure 2 can incorporate logical constragmtghe outcome of actions and can, therefore, direct
exploration and is a useful mechanism &rapingpolicy formation [32]. Time dependent sets of axioms in the
DEDS specification can focus exploration on a sequence opatationally tractable sub-problems. We view this

intervention as a developmental bias in which importantmdinowledge is accumulated over time.

Conjecture 1 (Reflexive Basis for Motor DevelopmeRéflexes are scheduled in a manner consistent with other
developmental mechanisms, in a sequence that leads anthgmrgh a progression of incremental and environ-
mentally-mediated learning tasks. These tasks acquireatfknowledge structures in an appropriate order.

Certain aspects of development appear to proceed throgtihaliresource constraints: from proximal to distal
kinematic chains; from head to tail; from simple to complesis; from quasi-static to dynamic strategies; and from
effects observed late in a behavioral sequence to prospeectuses.
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Fig. 7. The haptic grasping system.

Distinctions in behavioral utility late in a chain of act®(distal actions) can provide metrics for making early
discriminations (proximal categories), For example, Mg at al. studied the initial reach to a spoon laden with
applesauce and presented to infants in left and right atiemis [44]. The developmental trajectory observed is
summarized in Figure 11. Initial policies are biased tow@wdhinant hand strategies which work well when the
spoon is oriented with its handle to the dominant side. Hamewhen it is not, there is significantly less value
to the dominant hand reach. Variations in the applesaucarteferms a discrimination metric space with which
to distinguish important categories in this process — damtiside and non-dominant-side presentations of the
spoon. One hypothesis holds that this process involvesratséar perceptual features that distinguish classes
of behavioral utility. When this happensewperceptual features have bdearnedthat were not present in the
original, native representation. They have been selected & possibly infinite set of alternatives because they
form a valuable distinction in the stream of percepts — \@liog its ability to increase the reward derived from
one’s interaction with the task. One may view this processasn which properties and constraints imposed by the
task are incorporated into a policy incrementally startinth the latter (distal) actions and gradually propagating
back through the action sequence to early (proximal) astidhere are parallels to so-called “pick-and-place”
constraints studied in robotics [36].

6 Visual Context Recovery

When a mature human subject reaches for an object, the haniéiged and shaped appropriately in anticipation
of the grasp. This anticipatory pre-shape takes place befontact with the object is made, and is informed by
visual cues. There is no conclusive evidence regarding wibaal information is extracted and how it is used to
inform the reaching process. At least, the applesauce iempert sheds some light on the developmental trajectory
that leads toward sophisticated pre-shaping behaviorokbhumanoid grasping system, and eventually for the
integrated Magilla platform, we would like to develop anr@mental learning system that produces skilled vision-
based anticipatory behavior, and that parallels the dpwedmtal trajectory observed in humans.

The preceding sections described how sophisticated hgqatsping skills can be acquired through exploratory
interaction with the environment. Experience producesefsdf the interaction dynamics between the hand and
the grasped objects. These dynamic models provide relbegtit context for robust, closed-loop grasping strate-
gies. Haptic information provides powerful motor guidaficediscovering high-quality grasps, which are rela-
tively rare regions in the parameter space. However, thigyudi haptic information for broader context recovery
is limited due to its sequential and myopic nature.

Broader context can be provided by vision. Once learnedihapticies have been acquired for a task, the
haptic context recovery component can be subsumed by abasigiwidth visual modality that associates appro-
priate grasp parameters with visual features. If adequstmbfeatures are found that robustly identify the control
context, then these are equivalent in information contetii¢ haptic dynamic models. Importantly, some haptic
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Fig. 9. Distribution of grasp scores, over 100 trials. Left panalvet the average performance of the native controllerst righ
panel shows the result of the grasp policy whose state igetbfiom the dynamic models.
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Fig. 11. Prospective Behavior revealed in the Applesauce Expetimen

context must exist before such visual features can be filthtbecause vision in and of itself cannot provide the
haptic information required for grasping:

Conjecture 2 (Haptic-then-Visual Developmeithaptic subsystem is employed first to discover useful grasp
strategies at the expense of perceptual acuity and efficiefawving identified such, haptic models form the basis
for the acquisition of high-precision, efficient visual ogers that recover important control contexts. This rssul
in a powerful associative multi-modal model of interactigith objects in which haptic experience can be predicted
by visual features and vice versa.

We now describe our current work on visual context recovargupport of the grasping system discussed
above [56]. As a first step, the objective is to develop a ptd&scheme for learning visual features that robustly
correlate with the orientation of the hand during a sucegggfisp. Then, these features can be used to recommend
a hand orientatioanda native grasp controller for a two- or three-fingered gragpshould be engaged before the
first tactile contact occurs, bootstrapping the haptiedliyen grasp and eliminating the need for expensive and
inefficient haptic context recognition. Each type of objaety require a dedicated visual feature to fully capture the
haptic context. Object identities are not known to the systo the need for dedicated features must be discovered
by grasping experience. Visual learning is entirely dritagrihe utility of the features to the haptic system.

6.1 Learning Visual Featuresthat Predict Haptic Utility

To represent visual context, we employ local appearanseebf@atures. Oriented derivatives of 2D Gaussian func-
tions are used to form a steerable basis. This permits trodegffisynthesis of features at arbitrary orientations, as
well as the measurement of feature orientations [59]. Typesyofprimitive features are used: #exelis a vector
consisting of filter responses from Gaussian-derivativeraiprs of the first three orders; adgeluses uses an
orthogonal pair of first-order derivatives only [55]. Spatombinationsf these primitives can express a wide
variety of shape and texture characteristics at variousegsgf specificity. An incremental, on-line learning pro-
cedure assembles such compound features in a simple-tpl@omanner, as the need for increasingly distinctive
features arises. Figure 12 illustrates a geometric arrapgeof oriented primitives that has been generated by
such an approach to form a useful distinction. Visual degtoms in this framework need not be universal in the
sense that they are tagged to particular states and taske imehavior of the system — sometimes inexpensive
constellations of features are adequate for discrimigdtinally between important visual contexts.
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Fig. 12. A geometric feature of order 3, composed of three primitiVd®e feature is defined by the anglesind the distances
d, and the orientation of this specific instance is denotef. lisach primitive is either an edgel or a texel.

Each featurd is present at a pixel locatidrto a degreas(I) € [0, 1], which is the normalized inner product
of the vector of applicable filter responses atith the pattern vector defininfy A feature is present in an image
I to the degreey = max;cs s¢(l). For more detail on these features, see our earlier work [55]

The vision system observes an object as it is presented dsgguently records the hand orientations asso-
ciated with the best grasp for each object (as measured bytineetric; see Section 4.2). Assuming that these
features respond to the object itself, their image-plarentationfs should be related to the robotic hand orienta-
tion ;, by a constant additive offsetf. A given feature, measured during many grasping tasks,ehgacerates
data points that lie on straight lines on the toroidal siefsganned by the hand and feature orientations (Fig. 13).
There may be more than one straight line because a giverl fésttare may respond to more than one specific ob-
ject orientation (e.g., due to object symmetries), or tesaghdistinct objects that differ in shape. To use these data
for predicting hand orientations given a feature orientgtone needs to find the offsef®. This is an instance of
the K-Means problem in one-dimensional circular (angular) spadth K unknown.

Unwrapped Toroidal Plot Mixture of 2 von Mises distributions
3 - — unit circle
' — mu=0.10, kappa=122.09
2 mu=2.17, kappa=700.92
,+“ )
c . +
c 1 : )
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Orientation of Feature 8

Fig. 13. Left: Data points induced by a given feature on various irsagfean object form straight lines on a torus (two in this
case). Right: A mixture of two von Mises distributions wagdithese data. The probability density at an angle is vizedlby
the distance of the line from the unit circle.

To solve this problem, we assume tié are drawn independently from a mixturevafin Misedistributions.
The von Mises distribution can be regarded as a circulavatprit of the linear Gaussian distribution, and has the
probability density function [22]

er cos(0—pu)

— 0<
alo(r) =S

fom(Olp, k) =

wherel, (-) is the modified Bessel function of order zero. The mean doedf the distribution is given by, and
k is a concentration parameter with= 0 giving a uniform circular distribution, ang = oo to a point distribution.
The mixture distribution (see Fig. 13) is defined by its dgnfsinction

K

fmix(0) = Zpkva(9|Nk, Ki)

k=1
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with mixture proportion® < p;, < 1 and) , pr = 1. For all plausible numbers of clustefs, a (3K — 1)-
dimensional non-linear optimization problem is solved talfthe u;, x; andp. The objective function to be
maximized is the log-likelihood of the observed détgiven a parameterizatianconsisting of theu, x; andpy:

K

log P(Bla) = > log ¥ px fom (Bilar, kr) (2)
7 k=1

The most probable model can then be found using Bayes’ Rulthd case of uniform prior probabilities over

all possible model parameterizatioags,, the modela maximizing P(a|®) is simply the one that maximizes

log P(O@|a) (Eqn. 2). The appropriate number of clustéfds determined according to the Integrated Completed

Likelihood criterion [6].

To recommend a hand orientation, the system selects frofeatlliresf that respond more strongly than a
thresholdte the feature with highest prediction potentlabDy¢, introduced shortly. If the mixture model cor-
responding to this feature has more than one modeat is supported by at least three data points, the mode
with maximalky, is selected. The potential of each feature to make a usefahmmendation is measured by the
Kolmogorov-Smirnoff distanc&SD¢ between the distributions of correct and wrong recommeéndgaimade in
the past. The threshold is selected such as to maximiK& D¢, under the premise that the featdres not con-
sulted if its responser in an image is less thai. The result is that based on previous experience of therayste
the Bayes-optimal feature (i.e., the feature with leaseetgd misprediction rate) is selected from among all super-
threshold features. The recommended hand orientatioemsgiven by the orientation of the strongest occurrence
of the selected featuf&in the present image, and its associated

The system also determines whether to use a two- or a thrgeréid grasp. For this purpose, separate fea-
ture sets (visual context models) are learned for two- anektfingered grasps, and statistics are maintained of
the grasp utilities ) associated with each feature. To form a grasp parametemmeendation, the best hand
orientations are derived, as described above, separatelyd- and three-fingered grasps. Of these two candidate
recommendations, the one with the lower expected frictaefficienty, is chosen.

Features are learned as follows. Given an image, the respafigll features are measured. The best feature
is selected as described above, and is used to recommend atiamtation. The robot then executes the grasp,
starting with the recommended hand orientation. If the haiehtation turns out not to be appropriate, i.e. it needs
to be corrected by more than a given threshold, then all méxtoodels are re-estimated based on a case list of
previous experiences. A new prediction is made based oretluermodels. If this new prediction is still wrong, then
two new features are generated: A primitive feature is rangsampled from the image, and a nhew compound
feature is generated by randomly expanding an existingfedty adding a new point as illustrated in Fig. 12. If a
feature performs well, its KSD will increase over time, ahdill increasingly be employed. If it performs poorly,
its KSD will decrease, and it will eventually cease to be useall. Unused features are discarded periodically.

6.2 Pilot Data—Hand Pre-Shaping Using L earned Visual Features

A series of pilot experiments was performed in simulaticsing data generated by the real grasping system, and
photo-realistically rendered, noise-degraded imagesedbbject types were used (Fig. 14). Lacking the ability to
perform large numbers of grasps on the real robot, the re@mded grasps were simulated by comparing the rec-
ommended hand orientation with the actually executed herdtation associated with the training image, modulo
the known rotational symmetry properties of the objectc8ioylinders have infinite-fold rotational symmetry, no
features were ever learned for cylinders.

e

Fig. 14.Example views of objects used to test the system.

Our pilot studies indicate that the system learns to makkilsseommendations (Figure 15). All results were
computed in 2-fold cross-validation. If the training sehtains a single object class and little noise in the training
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Fig. 15. Quantitative results of hand orientation prediction.

signal (the actual hand orientation during the grasp),thiaing set is typically learned during a single iteration.
Performance on an independent test set is almost alwayeskc&vith prediction error magnitudes on the order
of the variation in the training signal. If the training seintains outliers, i.e. hand orientations that produced a
poor grasp, then the training set is harder to learn becdugssyistem expends substantial effort trying to learn
these outliers. However, performance degrades gracdfattguse features are selected by Kolmogorov-Smirnoff
distance, which prefers reliable features modeling thertaprity of useful training examples. On a noisy test set,
most poor recommendations occur on outliers. Notably,fimpered grasps of the triangular object are inherently
unstable and unpredictable.

Figure 16 demonstrates the utility of the learned visuatexirto the haptic grasping system. The bottom row
illustrates that neither two- nor three-fingered nativetaalers alone are sufficient to execute high-quality geasp
reliably. The two-fingered native controller works well @ttangular but poorly on triangular prisms; for the three-
fingered controller the opposite is true. If the recommeindaif the visual system is followed, the achieved grasp
quality is consistently high. Moreover, the proportion sfremely fast single-probe grasps increases drastically,
and very long trials (more than about 20 probes) are prdistieminated (cf. the two-fingered native controller
on the left). This visual/native-haptic policy performsabequally well as the “blind” learned policy described
in Section 5 (cf. Figure 9b). Thus, visual context has alnsasumed haptic context in that it provides equivalent
informationbeforethe onset of the grasp. We are currently evaluating the pegoce of the learned policy primed
by the visual system — a cross-modal, redundant compouiyploat corresponds quite closely to human grasping
behavior.

7 Conclusion

We have presented a philosophy and motivation for studyimgdnoid robots and a perspective that aims to
exploit insight from the social and behavioral sciences. hafee also introduced our humanoid “Magilla” and
reported preliminary results regarding the incrementgligition of reaching and grasping skills. In our model,
closed-loop haptic control models are acquired first, andader augmented by visual context. A critical limitation
of our present, simplified model is that the haptic and vifeehing stages are largely separate. In order to develop
inherently cross-modal associative models of interactiotighter integration of the haptic and visual modalities
is required.

Magilla will shortly see the full-scale integration of tiesisleas with the objective of producing a “normally-on”
robot whose internal representations are only indireatlytiolled by the human programmer and the range and
frequency of tasks submitted to it. We hope to construct atrelith clearly discernible preferences for engaging
sensory and motor resources and an intrinsic incentiverfderstanding the world around it. We are encouraged
by the inherently cross-modal and explicitly associativails that result from this paradigm.
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