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Abstrat

Properties of the human embodiment { sensorimotor apparatus and neurologial

struture { partiipate diretly in the growth and development of ognitive pro-

esses against enormous worst ase omplexity. It is our position that relationships

between morphology and pereption over time lead to inreasingly omprehensive

models that desribe the agent's relationship to the world. We are applying insight

derived from neurosiene, neurology, and developmental psyhology to the design

of advaned robot arhitetures. To investigate developmental proesses, we have

begun to approximate the human sensorimotor on�guration and to engage sen-

sory and motor subsystems in developmental sequenes. Many suh sequenes have

been doumented in studies of infant development, so we intend to bootstrap og-

nitive strutures in robots by emulating some of these growth proesses that bear

an essential resemblane to the human morphology. In this paper, we will show two

related examples in whih a humanoid robot determines the models and represen-

tations that govern its behavior. The �rst is a model that aptures the dynamis of

a hapti exploration of an objet with a dextrous robot hand that supports skillful

grasping. The seond example onstruts onstellations of visual features to predit

relative hand/objet postures that lead reliably to hapti utility. The result is a

�rst step in a trajetory toward assoiative visual-hapti ategories that bounds the

inremental omplexity of eah stage of development.
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1 Introdution

Human infants display a tremendous assortment of time-varying struture

in their physiologial and neurologial responses to the world. We speulate

that this growth proess provides important insight into how infants manage

the omplexity of learning while aquiring inreasingly sophistiated mental

representations. Developmental psyhologists and robotiists are proposing

similar theories of sensorimotor development { namely, that latent aptitudes

expressed by virtue of the kinemati, dynami, and \neurologial" properties

of a developing agent are exploited to simplify and struture learning in the

ontext of an on-going interation with the world. The temporal sequene

of developmental proesses appears to lead to tratable inremental learning

tasks. We present a framework developed to provide the basi mehanisms

in support of ognitive growth for a humanoid robot. The proposed system

arhiteture has been used to study methods for learning ontrol [30℄, aquired

representations [12℄, and on visual behavior [54,24℄.

The interationist representation grounds human knowledge in ativity. From

this perspetive, \motor timing in skilled ations is disovered . . . through per-

eptual exploration of the body's intrinsi (or autonomous) dynamis within

a hanging task and physial spae [69℄." It is the potential for rih and varied

interation with the world that we ontend neessitates ognitive organization

and development in humans { this is a ritial issue that has been largely

overlooked by the AI ommunity.

The human hand has often been ited as an important fator in the develop-

ment of the apparently superior ability of the human brain to form ritial

ategories in sensorimotor experiene [74℄. Many are of the opinion that this

faulty for building preditive models underlies muh of what we reognize as

human-level ognitive ability. While experts disagree on ause and e�et, it is

lear that the mehanial dexterity and redundany a�orded in the hand re-

quires a neural arhiteture apable of modeling a huge variety of interations

with the world. Our deision to study reahing, grasping, and manipulation is

motivated by our desire to understand one of the important missing aspets

of intelligent systems researh as well as by our desire to onstrut general

purpose end e�etors and integrated pereptual abilities for robots. We pos-

tulate that the proesses underlying multifaeted world models e�et problem

solving in general as well as the formulation of skillful manipulation strategies.

We pose the development of robot programs as an inremental searh for

strategies that exploit the intrinsi dynamis of the robot/world interation.

\Intrinsi dynamis" is interpreted fairly broadly as any kinemati, dynami,

pereptual or motor synergy that produes harateristi and invariant tem-

poral sequenes of observable state variables. Humanoid robots are simply
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too omplex to make use of traditional approahes from robotis and om-

puter vision. The range of interation possible and the kinds of pereptual

distintion required hallenge ommonly used methodologies for ontrol and

programming. Consequently, the arhiteture proposed in this paper adopts

an inremental and automati approah to programming modeled after the

sensorimotor development of human hildren in the �rst two years of life. In

this period, genetially-mediated maturational mehanisms fous the infant

on simple problems �rst and subsequently enrih these poliies by inlud-

ing additional motor and pereptual systems. Infants are onstantly learning

about the apabilities of their motor systems and adapting motor strategies

in aord with their urrent level of sensory and motor ontrol [4℄. Early sen-

sorimotor programs are not burdened with the full omplexity of the infant

neuroanatomy. Instead, maturational mehanisms in the brain, o-ontration

of distal degrees of freedom, evolving neurologial struture, and hanging

morphology and strength organize and diret evolving motor programming.

Attentional mehanisms partiipate in this growth proess and, therefore, it

is ritial that exible means of direting attention in humanoid robots are

developed that an be varied as a funtion of time. The framework reported

in this paper is intended to be a �rst step in that diretion.

2 Relationship to the Literature

Three priniple threads in the researh ommunity are immediately relevant

to our on-going projet. The �rst is the body of analytial results in the robot

grasping ommunity. The seond is the growing interest among behavioral

sientists and robotiists regarding the use of models of dynamis and the

desire to exploit the intrinsi dynamis of ontrolled proesses. Finally, we

review methods for learning visual reognition strategies as they have been

applied in omputational systems.

2.1 Grasp Mehanis

A great deal of progress has been made in the mathematial analysis of phe-

nomena assoiated with grasping and manipulation tasks [49℄. We have rel-

atively standard models of ontat types onsisting of point ontats with

and without frition, and soft-�ngers that an produe torque around the

ontat normal [41,17℄. To move ontrol ontat during manipulation, work

has been done on how to exploit slippage [20,8,14,73,36℄, and rolling ontat

geometries [47,28,10,49℄. Some of the most widely read literature on grasping

onerns the onditions under whih a grasp an restrain an objet. Motivated

by �xturing problems in mahining operations, a form losure grasp typially
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onsiders the plaement of fritionless point ontats so as to fully restrain

an objet [40℄. Fore losure properties speak to the ability of a grasp to re-

jet disturbane fores and usually onsiders fritional fores [21,52,19℄. We

have adopted insights from these results in the work reported here, however,

the ited approahes rely ultimately on omplete geometri models whih is

not appropriate for the problem spei�ation we onsider. Consequently, we

propose a losed-loop grasp primitive that tends loally toward null spaes in

the grip Jaobian [61℄ whih is a neessary ondition for fore losure with

fritional fores.

Theoretial analysis of the stability of an objet within a grasp is typially

foused on the size and steepness of a potential well determined by the grasp

that tends to restore the objet to an equilibrium position [72,29℄. This is

auseful insight, espeially when omparing otherwise equivalent alternatives,

but it is noteworthy to mention that humans use many grasps in everyday life

that are tehnially unstable by this analysis. Moreover, it is quite diÆult in

pratie to provide useful spei�ations of stability, espeially in the ontext

of other ompeting objetives.

Despite the signi�ant theoretial impat of this literature, we have not yet de-

veloped an adequate model of the sensory and motor proess of grasping and

manipulation. This proess moves uidly through multiple ontat regimes

and an trade stability margins early during manipulation for onstrutive

interations later in the operation, e.g. as usually imposed by pik-and-plae

onstraints. Moreover, nearly all the work on multi�ngered grasping onsiders

a omplete geometrial model of the objet and most depend on geometrial

reasoning to ompute a grasp { this despite the fat that grasping is inherently

a fore domain task. Finally, we feel that the real hallenge and opportunity

a�orded by multi�ngered hands is the automati modeling of omplex and

non-stationary modes of interation between a robot and the world. Modeling

end-to-end manipulation sequenes leads immediately to issues of representa-

tion and learning { issues that have been largely ignored to date.

2.2 Dynamial Systems { Movement Units for Robot Control

The human entral nervous system (CNS) is organized aording to movement

patterns [2℄. The basi form of pakaged movement pattern is the reex, whih

an reside at many levels of the entral and peripheral nervous system. These

proesses ontribute to the organization of behavior at the lowest levels. This

form of native ontrol struture speaks to the vegetative needs of the organ-

ism and provides an \instrution set" for omposing more omplex behavioral

programs. All map stimulus to response { the so-alled simple segmental reex

does so in a predominately open-loop fashion and the more advaned brain
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stem and erebellar-mediated reexes in a more losed-loop fashion. It is gen-

erally understood that reexes exerise the musulature and provide useful

motor responses to simple reourring situations, but it may also be true that

they serve to inrease the exposure of learning and developmental proesses

to onditions underlying important developmental milestones.

Infants are born with neural and skeletomusular systems that produe pat-

terned and timed movements. Construtive interations within the anatomial

substrate an be stimulated by a variety of environmental ontexts. During the

�rst several months in an infant's life, reexive responses begin to organize into

oherent motor strategies, sensory modalities are oordinated and attentional

mehanisms begin to emerge. Native reexive responses like the primary walk-

ing reex and the palmar grasp reex [2℄ provide primitive, losed-loop senso-

rimotor behavior that aomplish sensory-driven work in the world. Bruner [9℄

refers to these types of behaviors as \preadaptation" primitives for learning

skillful motor poliies. Subsequently, poliies for oordinating multiple sen-

sory and motor modalities appear as primary irular reations [53℄ whih are

pratied until the infant �nds it possible to prolong ertain interations with

the world.

In 1989, Koditshek et al. argued that robot designers should fous on \�nding

ontrollers" with inherent dynamial properties that produe valuable arti-

fats in the world rather than omputing the artifats diretly [59℄. Assertions

about the stability of the oupled system usually form the state spae for suh

systems as in the attrator landsape proposed by Huber et al. [30℄ or the

limit yles proposed by Shaal et al. [62℄. Koditshek uses prior stability as-

sertions based on Lyapunov funtions to predit when disrete attrators an

apture the state of the system. This information supports swithing poliies

to ahieve \juggling" tasks [37,60,38℄. This paper adopts these methodologies

as well.

Currently there is a great deal of interest in the researh ommunity re-

garding adaptive ontrol arhitetures for non-stationary, nonlinear proesses

[50,27,60,57,7℄. Monolithi optimal ontrollers don't exist in general for highly

non-linear proesses, so these approahes postulate a family of loal models

that an be used to approximate the optimal, global ontrol surfae [46℄. By

swithing ontrollers, or by reformulating loal models, a linear ontrol sub-

strate an be applied more generally to nonlinear and/or non-stationary tasks

[57,1℄. As a result, the robot ontrol program is generally more robust. Some

of these approahes inorporate learning methods for ontrol law synthesis

[46,1,34,42,44℄. If loal ontrol models are stable (in the sense of Lyapunov),

then they an atively restrit the state to a neighborhood surrounding the

attrator, thus approximately preserving some property in the system until

onditions permit a transition to another attrator [60,34℄. We will employ

this approah to express grasping behavior on multiple objet types and will
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learn grasping poliies that swith between losed-loop grasp ontrollers.

2.3 Learning Disriminatory Visual Features

How do humans learn to reognize pereptual ues in the world? Two prinipal

hypotheses an be identi�ed [56℄. Aording to the Shema Hypothesis, sen-

sory input is mathed to internal representations of objets that are built and

re�ned through experiene. On the other hand, the Di�erentiation Hypothesis

holds that ontrastive relations are learned that make relevant distintions.

Psyhologial evidene argues strongly in favor of a di�erentiation learning

framework [56,66,75,65℄. As we interat, we learn to pay attention to perep-

tual ues that are behaviorally important. For instane, we learn to reognize

and distinguish individual objets and form ategories on the basis of rele-

vane. This ommunity argues against �xed features and for an ative proess

of identifying new features that serve to form a relevant distintion in the task.

Most work in mahine vision onentrates on Shema methods without a devel-

opmental omponent. Hene the performane harateristis of most existing

mahine vision systems are largely determined a priori by the design of fea-

tures and mathing algorithms. Nevertheless, impressive systems exist that

use sophistiated statistial, texture- and shape-based features and reogni-

tion algorithms and perform very well on losed tasks where all training data

are available at the outset [45,48,51,63℄. Despite the noteworthy progress ad-

vaned in the form of the Shema hypothesis and the visual reognition tasks,

there has been a dearth of results drawing on the Di�erentiation hypothe-

sis. This approah appears, nonetheless, ritial for embedded and developing

pereptual systems in open domains. These tehniques promise to �nd a basis

for learning disriminative abilities on the basis of behavioral utility [54℄ and

hold a great deal of promise as desriptive omputational aounts of infant

development.

3 The UMASS Humanoid Platforms

The results reported in this paper require ertain essential relationships to the

human morphology. Perhaps foremost among these is a multi�ngered robot

hand. As we ited previously, these devies require aompanying tehnologies

for modeling the variety of interations that they a�ord in open environments.

We have previously reported results employing the Utah/MIT robot hand, but

the work we desribe here employs the Stanford/JPL (or Salisbury) hand. The

Utah/MIT hand would not easily aommodate �ngertip tatile sensation that

was ritial for this work. Brok sensors were �tted to the Stanford/JPL hand
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to provide observations of ontat position and normal. This feedbak provides

the basis for our losed-loop grasp ontrollers. The hand requires a degree of

mobility in spae so as to permit the exible appliation of ontat resoures.

The robot hand is plaed on the end of a 5 DOF GE P50 robot arm. Although

not the subjet of this paper, this hand/arm on�guration permits kinemati

properties of the hand to drive arm movement { a apability ritial to our

approah. The resulting 14 DOF e�etor provides the essential mobility and

reon�gurability required to model human grasping proesses.

In addition to kinemati and tatile dimensions of the human on�guration, we

require visual input to determine spatial targets for reahing tasks and to asso-

iate visual features with grasp ontrol parameters. The data reported in this

paper was derived from a monoular vision system with suÆient additional

knowledge to reover range to objets. The searh for features that parame-

terize grasping behavior is aomplished in monoular image frames aquired

prior to the reah-and-grasp proess. There is no spei� requirement for the

geometry of the hand and eye.

The ultimate target platform for this work is the newly onstruted UMass

humanoid torso, Magilla, illustrated in Figure 1. It onsists of two Whole Arm

Fig. 1. Magilla { the UMASS Humanoid Torso.

Manipulators (WAMs { Barrett Tehnologies

TM

), two multi-�ngered Barrett

hands, and a TRC BiSight stereo head. Later, we intend to add a multi-

aural auditory system as well. Eah arm is a seven degree-of-freedom (DOF)

bakdrivable manipulator with roughly anthropomorphi sale and kinemat-

is. Magilla's hands are two BH8-255 Barrett Hands, eah with three �ngers

and a total of 4 DOF. Two of the �ngers trak laterally around the perimeter

of the palm through 180 degrees synhronously. This supports hook as well as
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Fig. 2. Native Struture, Learning, and Development in an Integrated Arhiteture.

opposition grasp types. Tatile (ATI Nano17 fore/torque) sensors are imple-

mented in the �ngertips, allowing reovery of ontat positions and normals.

Visual information for Magilla is provided by the artiulated stereo head on-

sisting of two video ameras mounted on a TRC BiSight head providing four

mehanial degrees of freedom: pan, tilt, and independent left and right ver-

gene. Six more optial degrees of freedom are ontrollable: iris, zoom, and

fous, independently for eah eye. Motion is ontrolled via a PMAC/Delta

TAU interfae. Images from eah amera are input to a Dataube pipelined

array proessor.

4 Computational Framework for Humanoid Development

Figure 2 is a sketh of a omputational framework that addresses the devel-

opment of manual skills with robot hands. One dimension of development is

viewed as a sheduling problem in whih roboti resoures are engaged to sat-

isfy a task. Primitive ations are losed-loop ontrol proesses onstruted by

ombining an arti�ial potential, � 2 �, with a subset of the available sensors,




s

, and e�etors, 


e

. As these ontrollers interat with objets and tasks, a

set of prototypial dynami models are onstruted that identify hapti at-

egories during grasp formation. We will introdue the ontrol proesses used

for grasping in Setion 4.1.

In the Dynami Modeling omponent of Figure 2, we show the initial, native

model for all states and ations. This model desribes onvergene of the grasp
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ontrollers sine it ontains the set of states where the time derivative of the

ontrol error, _�, is near zero. This implies that initially ontrol deisions may

only happen when one or more of the working grasp ontrollers approahes

equilibrium. Moreover, the very �rst poliies will move between disrete equi-

libria in the working ontrollers. As the robot aumulates experiene with an

objet, additional models are onstruted that desribe prototype transient

responses of the grasp ontrollers. The manner in whih the grasp ontrollers

eliminate error over time depends on objet geometry and the loal grasp at-

trator, so these hapti ategories an be used to predit the eventual grasp

quality relative to the reward funtion. If the predited quality is unaept-

able, the hapti ategory an be used to make ontrol deisions that ause

the system to navigate through a landsape of attrators toward those that

satisfy end-to-end task spei�ations. The pattern of membership in these

models over a working set of ontrollers and the ontrollers themselves form

the states and ations for a Markov Deision Problem (MDP). Nodes in the

graph depited in Figure 2 are states and transitions involve onurrent grasp

ontrol proesses seleted from the set of available ations.

To balane expressive power against omputational tratability, the Disrete

Event Dynami Systems (DEDS) spei�ation onstrains the range of inter-

ations permitted with the environment to those that:

� are onsistent with a resoure model speifying whih ombinations of re-

soures are relevant;

� satisfy real-time omputing onstraints;

� guarantee safety spei�ations while learning;

� are onsistent with kinemati and dynami limitations; and

� express a developmental shedule to learn omplex ativities inrementally.

The DEDS spei�ation is designed to eliminate irrelevant or unsafe ontrol

ombinations during on-line, inremental learning tasks. Together with the

task (reward funtion) it fouses exploration on the horizon of available ontrol

knowledge in order to build internal representations of important (sub)tasks.

This, in and of itself, an lead a robot through a sequene of developmental

milestones by shaping the sequene of poliies aquired [32℄ and making \op-

tions" (temporally extended sequenes of ontrol) available as abstrat ations

[68℄.

Finally, one the utility of hapti ategories and poliies for moving between

attrators are learned and ompiled into value funtions, we may use mature

hapti value funtions as the basis for visual disrimination tasks. Visual fea-

tures are sampled from a possibly in�nite set of alternatives to disriminate

between hapti ategories and index a set of relative hand postures distin-

guished by their utility in the end-to-end manipulation task. In a simple form

of visual guidane, the Feature Learning omponent of Figure 2 is used to
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onstrut robust visual features that reommend partiular spatial goals for

reahing. These goals plae the hand in positions relative to the objet that

are upstream of optimal equilibria in the grasp ontrollers. The overall arhi-

teture is designed to extend a native representation in two ways:

(1) to aumulate models of grasp dynamis to enhane state and to derive

temporally extended ations, and

(2) to identify important visual distintions on the basis of disernible di�er-

enes in hapti utility.

Visual ategories provide auxiliary (non-native) state information with whih

to make ontrol deisions. The manipulation poliy informed by this additional

state may leapfrog toward valuable attrators by reahing diretly to them

rather than groping through intermediate and suboptimal hapti ategories.

4.1 A Closed-Loop Motor Control Basis

All suessful organisms exploit some form of native struture (neurologial,

musular, skeletal), many employ mehanisms for neural adaptation, and all

suessful speies settle into a stable dynami relationship with their environ-

ment. Suessful biologial systems exploit the intrinsi dynamis of bodies

and tasks. Moreover, humans learn, by means of a developmental trajetory,

to exploit favorable dynami relationships to the world by using aquired on-

trol knowledge. The design of a native ontrol repertoire for a syntheti system

should be both exible and expressive enough without introduing undue om-

plexity. The motor unit in this paper employs a losed-loop ontrol basis, this

design is onsistent with perspetives in infant motor development and adult

motor ontrol [71,70,4,5℄ and robotis [25,18℄.

The ontrol basis � = f�

1

; �

2

; : : : ; �

n

g represents the agent's native ontrol

struture. In our formulation, eah �

i

2 � is a losed-loop ontroller based

on simple, loal models of how the agent a�ets its environment by applying

inputs to its atuators. To struture ontrol and to redue the omplexity

of behavior omposition, the ontrol basis approah uses a small set of feed-

bak ontrol laws to onstrut omplex behavior on-line. End-to-end tasks are

solved by ombining and sequening elements of � as proposed in [34℄. The

ontrol basis e�etively organizes a ontinuous, high dimensional state spae

into an enumerable set of attrators. In its simplest form, ontrol is expressed

in terms of ativation and onvergene events in the partiipating ontrollers.

Navigation ontrollers [15,16℄, ontat ontrollers [12℄, and kinemati ondi-

tioning ontrollers [26℄ have been used in experiments in omplex, multiple

hand-and-arm systems [11,67℄, in adaptive, aperiodi walking gaits [33,39℄, in

foraging tasks [1℄, and in visual servoing tasks [64℄.
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Figure 3 depits the losed-loop ontrol sheme proposed. The plant onsists

of an k-ontat grasp on�guration on an unknown objet geometry. The

feedbak ontroller relies on a fritionless point ontat model represented

by a unit fore oriented along the inward direted surfae normal. Sensor

evidene in the form of ontat positions and normals is used to onstrut the

instantaneous grip Jaobian, G, with whih to transform ontat fores into

objet frame wrenhes. This loal haraterization aptures the ability of the

objet surfae to arry ontat fores and to generate objet frame wrenhes.

G

Control
actions

Grasp
Controller

Contact normals
and positions

Σ

Plant

Object
wrench

Reference
wrench

Fig. 3. Grasp synthesis as a ontrol problem.

A neessary ondition for fore losure requires that the grip Jaobian, G [61℄,

ontains a null spae onsisting of wrenhes derived from stritly positive-sense

ontat fores. The ontroller onstruts the grasp on�guration by ontinu-

ously adjusting the ontat oordinates to ahieve a referene net wrenh. If

there exists a ontat wrenh that an be written as a positive linear ombina-

tion of other ontat wrenhes, !

i

=

P

j 6=i

!

j

, then the objet may be squeezed

within a null spae of the grip Jaobian without applying a net wrenh to the

objet. It follows that the ondition

P

!

i

= 0 satis�es a neessary ondition

for fore losure with fritional fores. While most researhers desribe grasp

synthesis as an optimization problem, we proposed that it is best haraterized

as a robust ontrol problem. In this framework, the robot uses tatile feedbak

to ompute inremental ontat displaements.

Contat displaements are determined by the grasp ontroller �



desribed in

[12℄ whose potential �eld gradients are based on loal models of interation

between the ontats and the objet surfae, and are aimed at reduing the

squared wrenh residual �measured at the objet's enter of mass. The squared

wrenh residual � is de�ned as the sum of squared fore and torque residuals.

Given the wrenh residual vetor for n ontats

� =

n

X

i=1

h

f

i

x

f

i

y

f

i

z

�

i

x

�

i

y

�

i

z

i

T

; (1)

then the squared wrenh residual is de�ned by

� = �

T

�: (2)

The ontroller �



displaes the subset  of ontats until a loal minimum for �

is reahed. Minima in � orrespond to the existene of a null spae of rank 1 or
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higher in the grasp matrix, G. The subset of ontats  speify whih �ngers

and surfaes are enlisted in the grasp task. A hand with 3 �ngers labeled

fT; 1; 2g permits 4 distint �ngertip ontat subsets, assuming that two or

more �ngers are required to grasp the objet:

C = f(T; 1); (T; 2); (1; 2); (T; 1; 2)g:

Eah instane of  2 C de�nes a new ontrol law. The ontroller �



is an

element in the family of grasp ontrollers � = f�



j 2 Cg:

The ontrol ations of the ontroller �



are dependent solely on instantaneous,

loal tatile feedbak. Convergent on�gurations for �



orrespond to loal

minima of �. Eah hoie of ontrol law �



2 � leads to distint onvergent

grasp on�guration for a given objet orientation. Therefore, there exists an

optimal hoie of grasp resoures, , for eah orientation of the objet that

yields a onvergent on�guration with the minimum �. The idea an be ex-

tended to ontroller sequening: given a ertain initial on�guration, there

exists an optimal sequene of ontrollers that lead the system state to the

solution with the smallest possible �. More importantly, ontroller sequening

expands the apabilities of the primitive ontrollers and allows one to build a

system that an adapt to many operational ontexts.

4.2 Construting Models of Control Dynamis

The evolution of the grasp proess aptured by the sequene O an be plotted

in phase spae, as illustrated in Figure 4. The left panel in Figure 4 depits

the grasp dynamis for a typial two-�ngered grasp of an irregular triangle.

Con�guration hanges under �



are represented by a path in the phase plane.

Initially, the ontats are in on�guration (a). �



drives the system to an

intermediate grasp on�guration (b), and onverges to on�guration () {

a minimum in the squared wrenh residual � where the veloity _� is zero.

Many other paths lead to the same attrator; in fat, the shaded region in

Figure 4 represents the set of all states leading to the attrator orresponding

to on�guration (). This region is termed the basin of attration of the grasp

attrator.

The evolution of the grasp state (and the basin of attration itself) an be

represented by a set of paths, eah of whih aptures a harateristi dynami

response. Paths representing the same environmental ontext an be ombined

to form a model of prototypial system behavior. For example, an illustration

of all dynami models for the irregular triangle is depited in Figure 4 (right

panel). It has three attrators and basins of attration, orresponding to the

three possible ombinations of two ontats and three distint edges. The on-
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Fig. 4. Left panel depits the evolution of a two �ngered grasp trial from on�gura-

tion (a) to (b) and to (), the onvergent on�guration. The omplete, two-�ngered

phase portrait for the irregular triangle is shown on the right.

vergent grasp on�gurations and respetive quality indies �

0

are also shown

in Figure 4. The index �

0

is the minimum frition oeÆient required for a null

spae in the grip Jaobian, G, with rank � 1 { it is a performane oriented

label for eah attrator and it is assoiated with all preursor states in the

basin of attration.

Figure 5 depits a harateristi set of models orresponding to a poliy �

i

.

If eah model is given a disrete label (A;B;C;D;E), one an desribe the

ε ε

A

B

C
D

E

π

B

A

C

D E

A,B

B,C

A,CB,D,E

D,E

ιPolicy 

Fig. 5. Diagrams depit the phase portrait [� _�℄ for poliy �

i

(left) and all possible

ontext transitions (right).

transitions between subsets of models in terms of a disrete graph, shown in

the right panel of Figure 5. As depited, the regions in phase spae in whih

two or more models overlap are identi�ed with the labels orresponding to

the overlapping models; (B;C) is one example. The resulting representation

de�nes a disrete state spae that desribes the evolution of information in

this grasping proess.
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When ontroller �

i

is ative, the observed system dynamis are partially ob-

sured by noisy sensors and atuators, so probabilisti models are appropri-

ate. The use of parametri models to represent a sequene of observations is

ommon pratie in the dynamial systems literature (e.g. see Fraser [23℄),

espeially where insight about the underlying phenomena is available.

Parametri models presume the existene of a (parametri) generator meh-

anism for the data observed; the struture of the parametri model must be

hosen aording to the phenomenon one wants to model. We de�ne an ob-

servation, o = [� _�℄

T

where � and _� are the squared residual and its time

rate of hange, respetively. We assume the the observation will evolve along

a pieewise ontinuous ontour in the \residual" phase portrait. to an equilib-

rium on�guration, [�

0

0℄

T

. We model these trajetories using linear segments

{ this assumption is justi�ed for our ontrollers in [13℄. A partiular model,

M

�

i

, with parameters �

0

and K, predits an observation
~
o = [� �K(�� �

0

)℄

T

given the observed residual squared error �. We further assume that � may

have superimposed noise � N(0; �

2

) so that probabilisti membership of ob-

servation o in M

�

i

an be estimated by:

�=(o�
~
o)

M

�

i

(�; o)=

1

L

1

p

2��

2

exp(

��

T

�

2�

2

); (3)

where the parameter vetor � = [K �

0

�

2

℄

T

and L is a normalization onstant.

The omplete representation of system dynamis under poliy �

i

requires a set

ofm observation models, expressed asM(�

i

) =

S

m

k=1

M

�

i

(�

k

; o). The setM(�

i

)

expresses empirial knowledge aquired by the agent during the exeution of

poliy �

i

. Eah model is valid only within a bounded domain D

k

,M

�

i

(�

k

; o) =

0 if o is not in D

k

.

The derivation of M(�

i

) involves sampling system dynamis for a predeter-

mined number of epohs � , while reording the data O = fo

1

; o

2

; : : : ; o

n

g

observed as the ontrol error evolves toward equilibrium. The instantiation

of new models involves two steps, (1) the derivation of � observation models

orresponding to the observation sequenes reorded in eah of the � epohs,

and (2) the elimination of redundant observation models when j�

j

� �

k

j < Æ.

Many optimization proedures an be used to derive the parameter vetor �

k

under the assumptions stated earlier. Model onstrution is onluded when

M(�

i

) has been onstruted for every �

i

2 �. Any single objet will present

several unique models and models sets are not disjoint for di�erent objets.

One M(�

i

) is available, Bayesian estimation is used to identify the subset

q � M(�

i

) of models ompatible with a sequene of run-time observations.

The state of the system is de�ned as the onatenation of the ontrol law and

the membership pattern, (�

i

;q).
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5 Context-Dependent Grasp Poliies

The transformation from a set of ontinuous models to a graph of disrete

states an be arried out for eah ontrol poliy �

i

2 �. The disrete state

spae allows the system to experiment with sequenes of ontrol poliies,

within the reinforement learning framework. After onvergene, the system

will be able to employ the best poliy for eah state, and redue the variability

and unertainty introdued by the many possible objets and overome (to a

ertain degree) the loality of the omponent poliies �

i

.

Figure 6 illustrates how poliy swithing may lead to improved performane.

Initially the system adopts poliy �

T;1

to grasp an objet of unknown geometry.

The phase spae oordinate is found and the information state is identi�ed in

the disrete ontext transition graph. Now, suppose that prior experiene re-

ommends swithing to poliy �

T;1;2

, followed by �

T;2

. This sequene has aused

the grasp on�guration to transform from a trajetory toward a suboptimal

attrator to one headed toward the best two-�ngered attrator through and

intermediate three-�ngered ontrol ontext. Swithing poliies, as in this hy-

pothetial example, form �nger gaits toward optimal ontat on�gurations.

Policy    Τ,1ε ε
π ε ε

πPolicy    ε ε
πPolicy    

T

1

2 2

TT

1

Τ,1,2 Τ,2

Fig. 6. A hypothetial ontext-dependent grasp of a ube (top view). Poliy sequene

�

T;1

, �

T;1;2

, �

T;2

aomplishes the best available two-�ngered grasp on�guration by

using an intermediate three-�ngered ontrol ontext.
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5.1 Pilot Data { Interation Dynamis

Figure 7 illustrates a typial instant in the proess of forming a haptially-

guided grasp with the GE-P50 robot arm and Salisbury hand. The system

Fig. 7. The hapti grasping system.

attempts to identify sequenes of ontrol engagements that pass through ro-

bust hapti landmarks toward good grasps and in the proess learns a great

deal about the oupled dynamis of the hand/objet/ontrol system.

Dynami programming-based Reinforement Learning (RL) [3℄ is a natural

paradigm for programming these systems sine RL does not require external

supervision and enodes poliies as sequenes of ations with assoiated re-

wards. In general, these rewards an be rare, ourring infrequently and only

after extended sequenes of ations. In the pilot study presented here, a sim-

ulation of our Stanford/JPL robot hand with Brok tatile sensors interats

with three simulated objet types. We used a family of ylinders, and retan-

gular and triangular prisms with random variations in geometri parameters.

The identity and orientation of the objet are unknown at the beginning of

eah trial. Grasp poliies are expressed as sequenes of the four grasp on-

trollers disussed earlier and RL is used to solve the temporal redit assign-

ment problem for an optimal poliy. The experiment involved 35 grasps using

eah of the four grasp ontrollers (exlusively) on eah of three objets yielding

4� 3� 35 = 420 data sets from whih 61 separate models were retained.

The grasp ontroller makes a ontrol deision every time the pattern of mem-

bership in the dynami models hanges { this event signals the fat that extra

information has been aquired in the grasp experiment. Q-learning was used to

derive the optimal swithing poliy using a Boltzmann exploration. The total
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number of training trials was 1600; in eah trial a new objet type with new

geometri parameters was hosen randomly. The utility of pursuing a di�erent

ontrol law at a deision point was evaluated after eah state transition { the

system has the hoie of terminating the trial or invoking a di�erent ontroller.

If a grasp trial generates 50 ontat movements, it times out and the urrent

grasp on�guration is sored. Terminal grasp on�gurations reeive a sore of

(1 � �

0

), where �

0

is the minimum oeÆient of frition required to build a

null spae in the grip Jaobian with rank � 1 in the �nal grasp on�guration

[12℄.

Figure 8 depits a typial learning urve (urve labeled 4 , top left

urve). The urve is an average of the ten most reent data points. Eah point

0 400 800 1.2e+03 1.6e+03
-0.28

0.04

0.36

0.68

1

4 

0 116 232 348 464
-0.36

-0.02

0.32

0.66

1

4

0 134 268 402 536
-0.64

-0.23

0.18

0.59

1

0 151 302 453 604
0

0.25

0.5

0.75

1



Fig. 8. A typial learning urve for the data set and learning urves for individual

objet types. Vertial axes are grasp sores (1 � �

0

), and horizontal axes are the

trial number.

is the grasp sore of a terminal grasp on�guration (normally an attrator in

the set of �xed points of the ontrol basis) for a randomly hosen objet. The

data orresponding to eah objet are presented as well, the resulting learning

urves are labeled 4, , and. Beause the ontrol terminates with _� < Æ;

jÆj > 0, it will not be the ase that the average sore will go to 1. The urves

for the individual objets are lose to the optimal, within the limitations of
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the Q-learning algorithm.

Figure 9(a) shows a performane histogram over 100 grasp trials. In eah

trial, a random element of the ontrol basis was applied to a randomly hosen

objet from the set. Figure 9(b) illustrates the distribution of results ahieved

Native Controllers Grasp Poliy

4 

-0.2 0.1 0.4 0.7 1
0

9

18

27

36

4 

-0.2 0.1 0.4 0.7 1
0

9

18

27

36

(a) (b)

Fig. 9. Distribution of grasp sores, over 100 trials. Left panel shows the average

performane of the native ontrollers; right panel shows the result of the grasp poliy

whose state is derived from the dynami models.

on 100 trials with the aquired grasp poliy. The grasp poliy suppresses the

majority of low quality solutions; 93% of the solutions have sores higher than

0.7, ompared to 56% for the native ontrollers. The variane assoiated with

solution quality is also substantially smaller. The same is true if we examine

performane objet-by-objet (Figure 10).

5.2 Development and Inremental Robot Programming

Closed-loop behavioral primitives lead to models of the harateristi dynam-

is of grasp ontrol interations with the open grasping domain. Control ati-

vations may be onsidered in a symboli state spae for whih we may derive

an expliit system model (in the transition probabilities). The Disrete Event

Dynami Systems (DEDS) supervisor in Figure 2 an inorporate logial on-

straints on the outome of ations and an, therefore, diret exploration and

is a useful mehanism for shaping poliy formation [31℄. Time dependent sets

of axioms in the DEDS spei�ation an fous exploration on a sequene of

omputationally tratable sub-problems. We view this intervention as a de-

velopmental bias in whih important ontrol knowledge is aumulated over

time.

Conjeture 5.1 (Reexive Basis for Motor Development) Reexes are

sheduled in a manner onsistent with other developmental mehanisms, in a

sequene that leads an agent through a progression of inremental and en-
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Fig. 10. Distribution of grasp sores by objet type; ylinder (a and b), retangular

prism ( and d), and triangular prism (e and f). The left olumn shows the average

performane of the native ontrollers, and the right olumn shows performane using

interation dynamis to provide ontext.

vironmentally-mediated learning tasks. These tasks aquire ritial knowledge

strutures in an appropriate order.

Certain aspets of development appear to proeed through distint resoure

onstraints: from proximal to distal kinemati hains; from head to tail; from

simple to omplex tasks; from quasi-stati to dynami strategies; and from

e�ets observed late in a behavioral sequene to prospetive auses.
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Distintions in behavioral utility late in a hain of ations (distal ations)

an provide metris for making early disriminations (proximal ategories),

For example, MCarty et al. studied the initial reah to a spoon laden with

applesaue and presented to infants in left and right orientations [43℄. The

developmental trajetory observed is summarized in Figure 11. Initial poliies

are biased toward dominant hand strategies whih work well when the spoon

is oriented with its handle to the dominant side. However, when it is not, there

is signi�antly less value to the dominant hand reah. Variations in the apple-

transport
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reward?

observe
spoon

position

grasp
w/preferred

hand

manipulate
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w/preferred

hand
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reach

right arm
reach

reward

policy
exploration

Fig. 11. Prospetive Behavior revealed in the Applesaue Experiment.

saue reward forms a disrimination metri spae with whih to distinguish

important ategories in this proess { dominant-side and non-dominant-side

presentations of the spoon. One hypothesis holds that this proess involves

a searh for pereptual features that distinguish lasses of behavioral utility.

When this happens, new pereptual features have been learned that were not

present in the original, native representation. They have been seleted from a

possibly in�nite set of alternatives beause they form a valuable distintion in

the stream of perepts { valued for its ability to inrease the reward derived

from one's interation with the task. One may view this proess as one in whih

properties and onstraints imposed by the task are inorporated into a poliy

inrementally starting with the latter (distal) ations and gradually propagat-

ing bak through the ation sequene to early (proximal) ations. There are

parallels to so-alled \pik-and-plae" onstraints studied in robotis [35℄.
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6 Visual Context Reovery

When a mature human subjet reahes for an objet, the hand is oriented and

shaped appropriately in antiipation of the grasp. This antiipatory pre-shape

takes plae before ontat with the objet is made, and is informed by visual

ues. There is no onlusive evidene regarding what visual information is

extrated and how it is used to inform the reahing proess. The applesaue

data, however, sheds some light on the developmental trajetory that leads

toward sophistiated pre-shaping behavior. For our humanoid grasping sys-

tem, and eventually for the integrated Magilla platform, we have developed

an inremental learning system that produes skilled vision-based antiipatory

behavior, and that parallels some aspets of the developmental trajetory ob-

served in humans.

The preeding setions desribed how sophistiated hapti grasping skills an

be aquired through exploratory interation with the environment. Experi-

ene produes models of the interation dynamis between the hand and the

grasped objets. These dynami models provide relevant hapti ontext for

robust, losed-loop grasping strategies. Hapti information provides powerful

motor guidane for disovering high-quality grasps, whih are relatively rare

regions in the parameter spae. However, the utility of hapti information for

broader ontext reovery is limited due to its sequential and myopi nature.

Broader ontext an be provided by vision. One learned hapti poliies have

been aquired for a task, the hapti ontext reovery omponent an be sub-

sumed by a high-bandwidth visual modality that assoiates appropriate grasp

parameters with visual features. If adequate visual features are found that

robustly identify the ontrol ontext, then these are equivalent in informa-

tion ontent to the hapti dynami models. Importantly, some hapti ontext

must exist before suh visual features an be identi�ed, beause vision in and

of itself annot provide the hapti information required for grasping:

Conjeture 6.1 (Hapti-then-Visual Development) A hapti subsystem

is employed �rst to disover useful grasping strategies at the expense of per-

eptual auity and eÆieny. Having identi�ed suh, hapti models form the

basis for the aquisition of high-preision, eÆient visual operators that reover

important ontrol ontexts. This results in a powerful assoiative multi-modal

model of interation with objets in whih hapti experiene an be predited

by visual features and vie versa.

We now desribe our urrent work on visual ontext reovery in support of the

grasping system disussed above [55℄. As a �rst step, the objetive is to develop

a plausible sheme for learning visual features that robustly orrelate with the

orientation of the hand during a suessful grasp. Then, these features an be
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Fig. 12. A geometri feature of order 3, omposed of three primitives. The feature

is de�ned by the angles � and the distanes d, and the orientation of this spei�

instane is denoted by �. Eah primitive is either an edgel or a texel.

used to reommend a hand orientation and a native grasp ontroller for a two-

or three-�ngered grasp that should be engaged before the �rst tatile ontat

ours, bootstrapping the haptially-driven grasp and eliminating the need for

expensive and ineÆient hapti ontext reognition. Eah type of objet may

require a dediated visual feature to fully apture the hapti ontext. Objet

identities are not known to the system, so the need for dediated features must

be disovered by grasping experiene. Visual learning is entirely driven by the

utility of the features to the hapti system.

6.1 Learning Visual Features that Predit Hapti Utility

To represent visual ontext, we employ loal appearane-based features. Ori-

ented derivatives of 2D Gaussian funtions are used to form a steerable basis.

This permits the eÆient synthesis of features at arbitrary orientations, as

well as the measurement of feature orientations [58℄. Two types of primi-

tive features are used: A texel is a vetor onsisting of �lter responses from

Gaussian-derivative operators of the �rst three orders; an edgel uses an or-

thogonal pair of �rst-order derivatives only [54℄. Spatial ombinations of these

primitives an express a wide variety of shape and texture harateristis at

various degrees of spei�ity. An inremental, on-line learning proedure as-

sembles suh ompound features in a simple-to-omplex manner, as the need

for inreasingly distintive features arises. Figure 12 illustrates a geometri ar-

rangement of oriented primitives that has been generated by suh an approah

to form a useful distintion. Visual distintions in this framework need not be

universal in the sense that they are tagged to partiular states and tasks in

the behavior of the system { sometimes inexpensive onstellations of features

are adequate for disriminating loally between important visual ontexts.

Eah feature f is present at a pixel loation l to a degree s

f

(l) 2 [0; 1℄, whih

is the normalized inner produt of the vetor of appliable �lter responses at

l with the pattern vetor de�ning f . A feature is present in an image I to

the degree s

f

= max

l2I

s

f

(l). For more detail on these features, see our earlier

work [54℄.

The vision system observes an objet as it is presented and subsequently
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reords the hand orientations assoiated with the best grasp for eah objet

(as measured by the �

0

metri; see Setion 4.2). Assuming that these features

respond to the objet itself, their image-plane orientation �

f

should be related

to the roboti hand orientation �

h

by a onstant additive o�set ��. A given

feature, measured during many grasping tasks, hene generates data points

that lie on straight lines on the toroidal surfae spanned by the hand and fea-

ture orientations (Fig. 13). There may be more than one straight line beause

a given visual feature may respond to more than one spei� objet orientation

(e.g., due to objet symmetries), or to several distint objets that di�er in

shape. To use these data for prediting hand orientations given a feature ori-

entation, one needs to �nd the o�sets ��. This is an instane of the K-Means

problem in one-dimensional irular (angular) spae, with K unknown.
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Fig. 13. Left: Data points indued by a given feature on various images of an objet

form straight lines on a torus (two in this ase). Right: A mixture of two von Mises

distributions was �t to these data. The probability density at an angle is visualized

by the distane of the line from the unit irle.

To solve this problem, we assume the �� are drawn independently from a

mixture of von Mises distributions. The von Mises distribution an be re-

garded as a irular equivalent of the linear Gaussian distribution, and has

the probability density funtion [22℄

f

vM

(�j�; �) =

e

� os(���)

2�I

0

(�)

; 0 � � <1

where I

0

(�) is the modi�ed Bessel funtion of order zero. The mean diretion of

the distribution is given by �, and � is a onentration parameter with � = 0

giving a uniform irular distribution, and � =1 to a point distribution. The

mixture distribution (see Fig. 13) is de�ned by its density funtion

f

mix

(�) =

K

X

k=1

p

k

f

vM

(�j�

k

; �

k

)
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with mixture proportions 0 < p

k

< 1 and

P

k

p

k

= 1. For all plausible numbers

of lustersK, a (3K�1)-dimensional non-linear optimization problem is solved

to �nd the �

k

, �

k

and p

k

. The objetive funtion to be maximized is the log-

likelihood of the observed data � given a parameterization a onsisting of the

�

k

, �

k

and p

k

:

logP (�ja) =

X

i

log

K

X

k=1

p

k

f

vM

(�

i

j�

k

; �

k

) (4)

The most probable model an then be found using Bayes' Rule. In the ase

of uniform prior probabilities over all possible model parameterizations a

m

,

the model a maximizing P (aj�) is simply the one that maximizes logP (�ja)

(Eqn. 4). The appropriate number of lusters K is determined aording to

the Integrated Completed Likelihood riterion [6℄.

To reommend a hand orientation, the system selets from all features f that

respond more strongly than a threshold t

f

the feature with highest predition

potential KSD

f

, introdued shortly. If the mixture model orresponding to this

feature has more than one mode k that is supported by at least three data

points, the mode with maximal �

k

is seleted. The potential of eah feature to

make a useful reommendation is measured by the Kolmogorov-Smirno� dis-

tane KSD

f

between the distributions of orret and wrong reommendations

made in the past. The threshold t

f

is seleted suh as to maximize KSD

f

, under

the premise that the feature f is not onsulted if its response s

f

in an image

is less than t

f

. The result is that based on previous experiene of the system,

the Bayes-optimal feature (i.e., the feature with least expeted mispredition

rate) is seleted from among all super-threshold features. The reommended

hand orientation is then given by the orientation of the strongest ourrene

of the seleted feature f in the present image, and its assoiated ��.

The system also determines whether to use a two- or a three-�ngered grasp. For

this purpose, separate feature sets (visual ontext models) are learned for two-

and three-�ngered grasps, and statistis are maintained of the grasp utilities

(�

0

) assoiated with eah feature. To form a grasp parameter reommendation,

the best hand orientations are derived, as desribed above, separately for two-

and three-�ngered grasps. Of these two andidate reommendations, the one

with the lower expeted frition oeÆient �

0

is hosen.

Features are learned as follows. Given an image, the responses of all features

are measured. The best feature is seleted as desribed above, and is used to

reommend a hand orientation. The robot then exeutes the grasp, starting

with the reommended hand orientation. If the hand orientation turns out

not to be appropriate, i.e. it needs to be orreted by more than a given

threshold, then all mixture models are re-estimated based on a ase list of

previous experienes. A new predition is made based on the new models.
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If this new predition is still wrong, then two new features are generated: A

primitive feature is randomly sampled from the image, and a new ompound

feature is generated by randomly expanding an existing feature by adding a

new point as illustrated in Fig. 12. If a feature performs well, its KSD will

inrease over time, and it will inreasingly be employed. If it performs poorly,

its KSD will derease, and it will eventually ease to be used at all. Unused

features are disarded periodially.

6.2 Pilot Data { Hand Pre-Shaping Using Learned Visual Features

A series of pilot experiments was performed in simulation, using data gen-

erated by the real grasping system, and photo-realistially rendered, noise-

degraded images. Three objet types were used (Fig. 14). Laking the ability

to perform large numbers of grasps on the real robot, the reommended grasps

were simulated by omparing the reommended hand orientation with the a-

tually exeuted hand orientation assoiated with the training image, modulo

the known rotational symmetry properties of the objet. Sine ylinders have

in�nite-fold rotational symmetry, no features were ever learned for ylinders.

Fig. 14. Example views of objets used to test the system.
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Fig. 15. Quantitative results of hand orientation predition.

Our pilot studies indiate that the system learns to make useful reommenda-

tions (Figure 15). All results were omputed in 2-fold ross-validation. If the

training set ontains a single objet lass and little noise in the training signal

(the atual hand orientation during the grasp), the training set is typially

learned during a single iteration. Performane on an independent test set is

almost always exellent, with predition error magnitudes on the order of the

variation in the training signal. If the training set ontains outliers, i.e. hand
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Fig. 16. Utility of the learned visual ontext to the hapti system when grasping

retangular and triangular prisms. The �rst two rows show the performane of the

two- and three-�ngered native ontrollers. The third row shows the performane

ahieved if the visual system determines the initial hand orientation, and whih of

the two native ontrollers to employ.

orientations that produed a poor grasp, then the training set is harder to

learn beause the system expends substantial e�ort trying to learn these out-

liers. However, performane degrades graefully beause features are seleted

by Kolmogorov-Smirno� distane, whih prefers reliable features modeling the

the majority of useful training examples. On a noisy test set, most poor reom-

mendations our on outliers. Notably, two-�ngered grasps of the triangular

objet are inherently unstable and unpreditable.
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Figure 16 demonstrates the utility of the learned visual ontext to the hap-

ti grasping system. The bottom row illustrates that neither two- nor three-

�ngered native ontrollers alone are suÆient to exeute high-quality grasps re-

liably. The two-�ngered native ontroller works well on retangular but poorly

on triangular prisms; for the three-�ngered ontroller the opposite is true. If

the reommendation of the visual system is followed, the ahieved grasp qual-

ity is onsistently high. Moreover, the proportion of extremely fast single-probe

grasps inreases drastially, and very long trials (more than about 20 probes)

are pratially eliminated (f. the two-�ngered native ontroller on the left).

This visual/native-hapti poliy performs about equally well as the \blind"

learned poliy desribed in Setion 5 (f. Figure 9b). Thus, visual ontext has

almost subsumed hapti ontext in that it provides equivalent information

before the onset of the grasp. We are urrently evaluating the performane of

the learned poliy primed by the visual system { a ross-modal, redundant

ompound poliy that orresponds quite losely to human grasping behavior.

7 Conlusion

We have presented a philosophy and motivation for studying humanoid robots

and a perspetive that aims to exploit insight from the soial and behav-

ioral sienes. We have also introdued our humanoid platforms and have

reported preliminary results regarding the inremental aquisition of reahing

and grasping skills. In our model, losed-loop hapti ontrol models are a-

quired �rst, and are later augmented by visual ontext. A ritial limitation of

our present, simpli�ed model is that the hapti and visual learning stages are

expliitly sequential. In order to develop inherently ross-modal assoiative

models of interation, a tighter integration of the hapti and visual modalities

is required.

Our \Magilla" platform will shortly see the full-sale integration of these ideas

with the objetive of produing a \normally-on" robot whose internal repre-

sentations are only indiretly ontrolled by the human programmer and the

range and frequeny of tasks submitted to it. We hope to onstrut a robot

with learly disernible preferenes for engaging sensory and motor resoures

and an intrinsi inentive for understanding the world around it. We are en-

ouraged by the inherently ross-modal and expliitly assoiative models that

result from this paradigm.
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