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Abstra
t

Properties of the human embodiment { sensorimotor apparatus and neurologi
al

stru
ture { parti
ipate dire
tly in the growth and development of 
ognitive pro-


esses against enormous worst 
ase 
omplexity. It is our position that relationships

between morphology and per
eption over time lead to in
reasingly 
omprehensive

models that des
ribe the agent's relationship to the world. We are applying insight

derived from neuros
ien
e, neurology, and developmental psy
hology to the design

of advan
ed robot ar
hite
tures. To investigate developmental pro
esses, we have

begun to approximate the human sensorimotor 
on�guration and to engage sen-

sory and motor subsystems in developmental sequen
es. Many su
h sequen
es have

been do
umented in studies of infant development, so we intend to bootstrap 
og-

nitive stru
tures in robots by emulating some of these growth pro
esses that bear

an essential resemblan
e to the human morphology. In this paper, we will show two

related examples in whi
h a humanoid robot determines the models and represen-

tations that govern its behavior. The �rst is a model that 
aptures the dynami
s of

a hapti
 exploration of an obje
t with a dextrous robot hand that supports skillful

grasping. The se
ond example 
onstru
ts 
onstellations of visual features to predi
t

relative hand/obje
t postures that lead reliably to hapti
 utility. The result is a

�rst step in a traje
tory toward asso
iative visual-hapti
 
ategories that bounds the

in
remental 
omplexity of ea
h stage of development.
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1 Introdu
tion

Human infants display a tremendous assortment of time-varying stru
ture

in their physiologi
al and neurologi
al responses to the world. We spe
ulate

that this growth pro
ess provides important insight into how infants manage

the 
omplexity of learning while a
quiring in
reasingly sophisti
ated mental

representations. Developmental psy
hologists and roboti
ists are proposing

similar theories of sensorimotor development { namely, that latent aptitudes

expressed by virtue of the kinemati
, dynami
, and \neurologi
al" properties

of a developing agent are exploited to simplify and stru
ture learning in the


ontext of an on-going intera
tion with the world. The temporal sequen
e

of developmental pro
esses appears to lead to tra
table in
remental learning

tasks. We present a framework developed to provide the basi
 me
hanisms

in support of 
ognitive growth for a humanoid robot. The proposed system

ar
hite
ture has been used to study methods for learning 
ontrol [30℄, a
quired

representations [12℄, and on visual behavior [54,24℄.

The intera
tionist representation grounds human knowledge in a
tivity. From

this perspe
tive, \motor timing in skilled a
tions is dis
overed . . . through per-


eptual exploration of the body's intrinsi
 (or autonomous) dynami
s within

a 
hanging task and physi
al spa
e [69℄." It is the potential for ri
h and varied

intera
tion with the world that we 
ontend ne
essitates 
ognitive organization

and development in humans { this is a 
riti
al issue that has been largely

overlooked by the AI 
ommunity.

The human hand has often been 
ited as an important fa
tor in the develop-

ment of the apparently superior ability of the human brain to form 
riti
al


ategories in sensorimotor experien
e [74℄. Many are of the opinion that this

fa
ulty for building predi
tive models underlies mu
h of what we re
ognize as

human-level 
ognitive ability. While experts disagree on 
ause and e�e
t, it is


lear that the me
hani
al dexterity and redundan
y a�orded in the hand re-

quires a neural ar
hite
ture 
apable of modeling a huge variety of intera
tions

with the world. Our de
ision to study rea
hing, grasping, and manipulation is

motivated by our desire to understand one of the important missing aspe
ts

of intelligent systems resear
h as well as by our desire to 
onstru
t general

purpose end e�e
tors and integrated per
eptual abilities for robots. We pos-

tulate that the pro
esses underlying multifa
eted world models e�e
t problem

solving in general as well as the formulation of skillful manipulation strategies.

We pose the development of robot programs as an in
remental sear
h for

strategies that exploit the intrinsi
 dynami
s of the robot/world intera
tion.

\Intrinsi
 dynami
s" is interpreted fairly broadly as any kinemati
, dynami
,

per
eptual or motor synergy that produ
es 
hara
teristi
 and invariant tem-

poral sequen
es of observable state variables. Humanoid robots are simply
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too 
omplex to make use of traditional approa
hes from roboti
s and 
om-

puter vision. The range of intera
tion possible and the kinds of per
eptual

distin
tion required 
hallenge 
ommonly used methodologies for 
ontrol and

programming. Consequently, the ar
hite
ture proposed in this paper adopts

an in
remental and automati
 approa
h to programming modeled after the

sensorimotor development of human 
hildren in the �rst two years of life. In

this period, geneti
ally-mediated maturational me
hanisms fo
us the infant

on simple problems �rst and subsequently enri
h these poli
ies by in
lud-

ing additional motor and per
eptual systems. Infants are 
onstantly learning

about the 
apabilities of their motor systems and adapting motor strategies

in a

ord with their 
urrent level of sensory and motor 
ontrol [4℄. Early sen-

sorimotor programs are not burdened with the full 
omplexity of the infant

neuroanatomy. Instead, maturational me
hanisms in the brain, 
o-
ontra
tion

of distal degrees of freedom, evolving neurologi
al stru
ture, and 
hanging

morphology and strength organize and dire
t evolving motor programming.

Attentional me
hanisms parti
ipate in this growth pro
ess and, therefore, it

is 
riti
al that 
exible means of dire
ting attention in humanoid robots are

developed that 
an be varied as a fun
tion of time. The framework reported

in this paper is intended to be a �rst step in that dire
tion.

2 Relationship to the Literature

Three prin
iple threads in the resear
h 
ommunity are immediately relevant

to our on-going proje
t. The �rst is the body of analyti
al results in the robot

grasping 
ommunity. The se
ond is the growing interest among behavioral

s
ientists and roboti
ists regarding the use of models of dynami
s and the

desire to exploit the intrinsi
 dynami
s of 
ontrolled pro
esses. Finally, we

review methods for learning visual re
ognition strategies as they have been

applied in 
omputational systems.

2.1 Grasp Me
hani
s

A great deal of progress has been made in the mathemati
al analysis of phe-

nomena asso
iated with grasping and manipulation tasks [49℄. We have rel-

atively standard models of 
onta
t types 
onsisting of point 
onta
ts with

and without fri
tion, and soft-�ngers that 
an produ
e torque around the


onta
t normal [41,17℄. To move 
ontrol 
onta
t during manipulation, work

has been done on how to exploit slippage [20,8,14,73,36℄, and rolling 
onta
t

geometries [47,28,10,49℄. Some of the most widely read literature on grasping


on
erns the 
onditions under whi
h a grasp 
an restrain an obje
t. Motivated

by �xturing problems in ma
hining operations, a form 
losure grasp typi
ally
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onsiders the pla
ement of fri
tionless point 
onta
ts so as to fully restrain

an obje
t [40℄. For
e 
losure properties speak to the ability of a grasp to re-

je
t disturban
e for
es and usually 
onsiders fri
tional for
es [21,52,19℄. We

have adopted insights from these results in the work reported here, however,

the 
ited approa
hes rely ultimately on 
omplete geometri
 models whi
h is

not appropriate for the problem spe
i�
ation we 
onsider. Consequently, we

propose a 
losed-loop grasp primitive that tends lo
ally toward null spa
es in

the grip Ja
obian [61℄ whi
h is a ne
essary 
ondition for for
e 
losure with

fri
tional for
es.

Theoreti
al analysis of the stability of an obje
t within a grasp is typi
ally

fo
used on the size and steepness of a potential well determined by the grasp

that tends to restore the obje
t to an equilibrium position [72,29℄. This is

auseful insight, espe
ially when 
omparing otherwise equivalent alternatives,

but it is noteworthy to mention that humans use many grasps in everyday life

that are te
hni
ally unstable by this analysis. Moreover, it is quite diÆ
ult in

pra
ti
e to provide useful spe
i�
ations of stability, espe
ially in the 
ontext

of other 
ompeting obje
tives.

Despite the signi�
ant theoreti
al impa
t of this literature, we have not yet de-

veloped an adequate model of the sensory and motor pro
ess of grasping and

manipulation. This pro
ess moves 
uidly through multiple 
onta
t regimes

and 
an trade stability margins early during manipulation for 
onstru
tive

intera
tions later in the operation, e.g. as usually imposed by pi
k-and-pla
e


onstraints. Moreover, nearly all the work on multi�ngered grasping 
onsiders

a 
omplete geometri
al model of the obje
t and most depend on geometri
al

reasoning to 
ompute a grasp { this despite the fa
t that grasping is inherently

a for
e domain task. Finally, we feel that the real 
hallenge and opportunity

a�orded by multi�ngered hands is the automati
 modeling of 
omplex and

non-stationary modes of intera
tion between a robot and the world. Modeling

end-to-end manipulation sequen
es leads immediately to issues of representa-

tion and learning { issues that have been largely ignored to date.

2.2 Dynami
al Systems { Movement Units for Robot Control

The human 
entral nervous system (CNS) is organized a

ording to movement

patterns [2℄. The basi
 form of pa
kaged movement pattern is the re
ex, whi
h


an reside at many levels of the 
entral and peripheral nervous system. These

pro
esses 
ontribute to the organization of behavior at the lowest levels. This

form of native 
ontrol stru
ture speaks to the vegetative needs of the organ-

ism and provides an \instru
tion set" for 
omposing more 
omplex behavioral

programs. All map stimulus to response { the so-
alled simple segmental re
ex

does so in a predominately open-loop fashion and the more advan
ed brain
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stem and 
erebellar-mediated re
exes in a more 
losed-loop fashion. It is gen-

erally understood that re
exes exer
ise the mus
ulature and provide useful

motor responses to simple reo

urring situations, but it may also be true that

they serve to in
rease the exposure of learning and developmental pro
esses

to 
onditions underlying important developmental milestones.

Infants are born with neural and skeletomus
ular systems that produ
e pat-

terned and timed movements. Constru
tive intera
tions within the anatomi
al

substrate 
an be stimulated by a variety of environmental 
ontexts. During the

�rst several months in an infant's life, re
exive responses begin to organize into


oherent motor strategies, sensory modalities are 
oordinated and attentional

me
hanisms begin to emerge. Native re
exive responses like the primary walk-

ing re
ex and the palmar grasp re
ex [2℄ provide primitive, 
losed-loop senso-

rimotor behavior that a

omplish sensory-driven work in the world. Bruner [9℄

refers to these types of behaviors as \preadaptation" primitives for learning

skillful motor poli
ies. Subsequently, poli
ies for 
oordinating multiple sen-

sory and motor modalities appear as primary 
ir
ular rea
tions [53℄ whi
h are

pra
ti
ed until the infant �nds it possible to prolong 
ertain intera
tions with

the world.

In 1989, Kodits
hek et al. argued that robot designers should fo
us on \�nding


ontrollers" with inherent dynami
al properties that produ
e valuable arti-

fa
ts in the world rather than 
omputing the artifa
ts dire
tly [59℄. Assertions

about the stability of the 
oupled system usually form the state spa
e for su
h

systems as in the attra
tor lands
ape proposed by Huber et al. [30℄ or the

limit 
y
les proposed by S
haal et al. [62℄. Kodits
hek uses prior stability as-

sertions based on Lyapunov fun
tions to predi
t when dis
rete attra
tors 
an


apture the state of the system. This information supports swit
hing poli
ies

to a
hieve \juggling" tasks [37,60,38℄. This paper adopts these methodologies

as well.

Currently there is a great deal of interest in the resear
h 
ommunity re-

garding adaptive 
ontrol ar
hite
tures for non-stationary, nonlinear pro
esses

[50,27,60,57,7℄. Monolithi
 optimal 
ontrollers don't exist in general for highly

non-linear pro
esses, so these approa
hes postulate a family of lo
al models

that 
an be used to approximate the optimal, global 
ontrol surfa
e [46℄. By

swit
hing 
ontrollers, or by reformulating lo
al models, a linear 
ontrol sub-

strate 
an be applied more generally to nonlinear and/or non-stationary tasks

[57,1℄. As a result, the robot 
ontrol program is generally more robust. Some

of these approa
hes in
orporate learning methods for 
ontrol law synthesis

[46,1,34,42,44℄. If lo
al 
ontrol models are stable (in the sense of Lyapunov),

then they 
an a
tively restri
t the state to a neighborhood surrounding the

attra
tor, thus approximately preserving some property in the system until


onditions permit a transition to another attra
tor [60,34℄. We will employ

this approa
h to express grasping behavior on multiple obje
t types and will
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learn grasping poli
ies that swit
h between 
losed-loop grasp 
ontrollers.

2.3 Learning Dis
riminatory Visual Features

How do humans learn to re
ognize per
eptual 
ues in the world? Two prin
ipal

hypotheses 
an be identi�ed [56℄. A

ording to the S
hema Hypothesis, sen-

sory input is mat
hed to internal representations of obje
ts that are built and

re�ned through experien
e. On the other hand, the Di�erentiation Hypothesis

holds that 
ontrastive relations are learned that make relevant distin
tions.

Psy
hologi
al eviden
e argues strongly in favor of a di�erentiation learning

framework [56,66,75,65℄. As we intera
t, we learn to pay attention to per
ep-

tual 
ues that are behaviorally important. For instan
e, we learn to re
ognize

and distinguish individual obje
ts and form 
ategories on the basis of rele-

van
e. This 
ommunity argues against �xed features and for an a
tive pro
ess

of identifying new features that serve to form a relevant distin
tion in the task.

Most work in ma
hine vision 
on
entrates on S
hema methods without a devel-

opmental 
omponent. Hen
e the performan
e 
hara
teristi
s of most existing

ma
hine vision systems are largely determined a priori by the design of fea-

tures and mat
hing algorithms. Nevertheless, impressive systems exist that

use sophisti
ated statisti
al, texture- and shape-based features and re
ogni-

tion algorithms and perform very well on 
losed tasks where all training data

are available at the outset [45,48,51,63℄. Despite the noteworthy progress ad-

van
ed in the form of the S
hema hypothesis and the visual re
ognition tasks,

there has been a dearth of results drawing on the Di�erentiation hypothe-

sis. This approa
h appears, nonetheless, 
riti
al for embedded and developing

per
eptual systems in open domains. These te
hniques promise to �nd a basis

for learning dis
riminative abilities on the basis of behavioral utility [54℄ and

hold a great deal of promise as des
riptive 
omputational a

ounts of infant

development.

3 The UMASS Humanoid Platforms

The results reported in this paper require 
ertain essential relationships to the

human morphology. Perhaps foremost among these is a multi�ngered robot

hand. As we 
ited previously, these devi
es require a

ompanying te
hnologies

for modeling the variety of intera
tions that they a�ord in open environments.

We have previously reported results employing the Utah/MIT robot hand, but

the work we des
ribe here employs the Stanford/JPL (or Salisbury) hand. The

Utah/MIT hand would not easily a

ommodate �ngertip ta
tile sensation that

was 
riti
al for this work. Bro
k sensors were �tted to the Stanford/JPL hand
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to provide observations of 
onta
t position and normal. This feedba
k provides

the basis for our 
losed-loop grasp 
ontrollers. The hand requires a degree of

mobility in spa
e so as to permit the 
exible appli
ation of 
onta
t resour
es.

The robot hand is pla
ed on the end of a 5 DOF GE P50 robot arm. Although

not the subje
t of this paper, this hand/arm 
on�guration permits kinemati


properties of the hand to drive arm movement { a 
apability 
riti
al to our

approa
h. The resulting 14 DOF e�e
tor provides the essential mobility and

re
on�gurability required to model human grasping pro
esses.

In addition to kinemati
 and ta
tile dimensions of the human 
on�guration, we

require visual input to determine spatial targets for rea
hing tasks and to asso-


iate visual features with grasp 
ontrol parameters. The data reported in this

paper was derived from a mono
ular vision system with suÆ
ient additional

knowledge to re
over range to obje
ts. The sear
h for features that parame-

terize grasping behavior is a

omplished in mono
ular image frames a
quired

prior to the rea
h-and-grasp pro
ess. There is no spe
i�
 requirement for the

geometry of the hand and eye.

The ultimate target platform for this work is the newly 
onstru
ted UMass

humanoid torso, Magilla, illustrated in Figure 1. It 
onsists of two Whole Arm

Fig. 1. Magilla { the UMASS Humanoid Torso.

Manipulators (WAMs { Barrett Te
hnologies

TM

), two multi-�ngered Barrett

hands, and a TRC BiSight stereo head. Later, we intend to add a multi-

aural auditory system as well. Ea
h arm is a seven degree-of-freedom (DOF)

ba
kdrivable manipulator with roughly anthropomorphi
 s
ale and kinemat-

i
s. Magilla's hands are two BH8-255 Barrett Hands, ea
h with three �ngers

and a total of 4 DOF. Two of the �ngers tra
k laterally around the perimeter

of the palm through 180 degrees syn
hronously. This supports hook as well as
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alternatives
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π
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π
i
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jq mq
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Q(q, a)
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of programming
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a problem

 Feature 
Learning 

ε
ε

Developmental
Schedule

Fig. 2. Native Stru
ture, Learning, and Development in an Integrated Ar
hite
ture.

opposition grasp types. Ta
tile (ATI Nano17 for
e/torque) sensors are imple-

mented in the �ngertips, allowing re
overy of 
onta
t positions and normals.

Visual information for Magilla is provided by the arti
ulated stereo head 
on-

sisting of two video 
ameras mounted on a TRC BiSight head providing four

me
hani
al degrees of freedom: pan, tilt, and independent left and right ver-

gen
e. Six more opti
al degrees of freedom are 
ontrollable: iris, zoom, and

fo
us, independently for ea
h eye. Motion is 
ontrolled via a PMAC/Delta

TAU interfa
e. Images from ea
h 
amera are input to a Data
ube pipelined

array pro
essor.

4 Computational Framework for Humanoid Development

Figure 2 is a sket
h of a 
omputational framework that addresses the devel-

opment of manual skills with robot hands. One dimension of development is

viewed as a s
heduling problem in whi
h roboti
 resour
es are engaged to sat-

isfy a task. Primitive a
tions are 
losed-loop 
ontrol pro
esses 
onstru
ted by


ombining an arti�
ial potential, � 2 �, with a subset of the available sensors,




s

, and e�e
tors, 


e

. As these 
ontrollers intera
t with obje
ts and tasks, a

set of prototypi
al dynami
 models are 
onstru
ted that identify hapti
 
at-

egories during grasp formation. We will introdu
e the 
ontrol pro
esses used

for grasping in Se
tion 4.1.

In the Dynami
 Modeling 
omponent of Figure 2, we show the initial, native

model for all states and a
tions. This model des
ribes 
onvergen
e of the grasp
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ontrollers sin
e it 
ontains the set of states where the time derivative of the


ontrol error, _�, is near zero. This implies that initially 
ontrol de
isions may

only happen when one or more of the working grasp 
ontrollers approa
hes

equilibrium. Moreover, the very �rst poli
ies will move between dis
rete equi-

libria in the working 
ontrollers. As the robot a

umulates experien
e with an

obje
t, additional models are 
onstru
ted that des
ribe prototype transient

responses of the grasp 
ontrollers. The manner in whi
h the grasp 
ontrollers

eliminate error over time depends on obje
t geometry and the lo
al grasp at-

tra
tor, so these hapti
 
ategories 
an be used to predi
t the eventual grasp

quality relative to the reward fun
tion. If the predi
ted quality is una

ept-

able, the hapti
 
ategory 
an be used to make 
ontrol de
isions that 
ause

the system to navigate through a lands
ape of attra
tors toward those that

satisfy end-to-end task spe
i�
ations. The pattern of membership in these

models over a working set of 
ontrollers and the 
ontrollers themselves form

the states and a
tions for a Markov De
ision Problem (MDP). Nodes in the

graph depi
ted in Figure 2 are states and transitions involve 
on
urrent grasp


ontrol pro
esses sele
ted from the set of available a
tions.

To balan
e expressive power against 
omputational tra
tability, the Dis
rete

Event Dynami
 Systems (DEDS) spe
i�
ation 
onstrains the range of inter-

a
tions permitted with the environment to those that:

� are 
onsistent with a resour
e model spe
ifying whi
h 
ombinations of re-

sour
es are relevant;

� satisfy real-time 
omputing 
onstraints;

� guarantee safety spe
i�
ations while learning;

� are 
onsistent with kinemati
 and dynami
 limitations; and

� express a developmental s
hedule to learn 
omplex a
tivities in
rementally.

The DEDS spe
i�
ation is designed to eliminate irrelevant or unsafe 
ontrol


ombinations during on-line, in
remental learning tasks. Together with the

task (reward fun
tion) it fo
uses exploration on the horizon of available 
ontrol

knowledge in order to build internal representations of important (sub)tasks.

This, in and of itself, 
an lead a robot through a sequen
e of developmental

milestones by shaping the sequen
e of poli
ies a
quired [32℄ and making \op-

tions" (temporally extended sequen
es of 
ontrol) available as abstra
t a
tions

[68℄.

Finally, on
e the utility of hapti
 
ategories and poli
ies for moving between

attra
tors are learned and 
ompiled into value fun
tions, we may use mature

hapti
 value fun
tions as the basis for visual dis
rimination tasks. Visual fea-

tures are sampled from a possibly in�nite set of alternatives to dis
riminate

between hapti
 
ategories and index a set of relative hand postures distin-

guished by their utility in the end-to-end manipulation task. In a simple form

of visual guidan
e, the Feature Learning 
omponent of Figure 2 is used to
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onstru
t robust visual features that re
ommend parti
ular spatial goals for

rea
hing. These goals pla
e the hand in positions relative to the obje
t that

are upstream of optimal equilibria in the grasp 
ontrollers. The overall ar
hi-

te
ture is designed to extend a native representation in two ways:

(1) to a

umulate models of grasp dynami
s to enhan
e state and to derive

temporally extended a
tions, and

(2) to identify important visual distin
tions on the basis of dis
ernible di�er-

en
es in hapti
 utility.

Visual 
ategories provide auxiliary (non-native) state information with whi
h

to make 
ontrol de
isions. The manipulation poli
y informed by this additional

state may leapfrog toward valuable attra
tors by rea
hing dire
tly to them

rather than groping through intermediate and suboptimal hapti
 
ategories.

4.1 A Closed-Loop Motor Control Basis

All su

essful organisms exploit some form of native stru
ture (neurologi
al,

mus
ular, skeletal), many employ me
hanisms for neural adaptation, and all

su

essful spe
ies settle into a stable dynami
 relationship with their environ-

ment. Su

essful biologi
al systems exploit the intrinsi
 dynami
s of bodies

and tasks. Moreover, humans learn, by means of a developmental traje
tory,

to exploit favorable dynami
 relationships to the world by using a
quired 
on-

trol knowledge. The design of a native 
ontrol repertoire for a syntheti
 system

should be both 
exible and expressive enough without introdu
ing undue 
om-

plexity. The motor unit in this paper employs a 
losed-loop 
ontrol basis, this

design is 
onsistent with perspe
tives in infant motor development and adult

motor 
ontrol [71,70,4,5℄ and roboti
s [25,18℄.

The 
ontrol basis � = f�

1

; �

2

; : : : ; �

n

g represents the agent's native 
ontrol

stru
ture. In our formulation, ea
h �

i

2 � is a 
losed-loop 
ontroller based

on simple, lo
al models of how the agent a�e
ts its environment by applying

inputs to its a
tuators. To stru
ture 
ontrol and to redu
e the 
omplexity

of behavior 
omposition, the 
ontrol basis approa
h uses a small set of feed-

ba
k 
ontrol laws to 
onstru
t 
omplex behavior on-line. End-to-end tasks are

solved by 
ombining and sequen
ing elements of � as proposed in [34℄. The


ontrol basis e�e
tively organizes a 
ontinuous, high dimensional state spa
e

into an enumerable set of attra
tors. In its simplest form, 
ontrol is expressed

in terms of a
tivation and 
onvergen
e events in the parti
ipating 
ontrollers.

Navigation 
ontrollers [15,16℄, 
onta
t 
ontrollers [12℄, and kinemati
 
ondi-

tioning 
ontrollers [26℄ have been used in experiments in 
omplex, multiple

hand-and-arm systems [11,67℄, in adaptive, aperiodi
 walking gaits [33,39℄, in

foraging tasks [1℄, and in visual servoing tasks [64℄.
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Figure 3 depi
ts the 
losed-loop 
ontrol s
heme proposed. The plant 
onsists

of an k-
onta
t grasp 
on�guration on an unknown obje
t geometry. The

feedba
k 
ontroller relies on a fri
tionless point 
onta
t model represented

by a unit for
e oriented along the inward dire
ted surfa
e normal. Sensor

eviden
e in the form of 
onta
t positions and normals is used to 
onstru
t the

instantaneous grip Ja
obian, G, with whi
h to transform 
onta
t for
es into

obje
t frame wren
hes. This lo
al 
hara
terization 
aptures the ability of the

obje
t surfa
e to 
arry 
onta
t for
es and to generate obje
t frame wren
hes.

G

Control
actions

Grasp
Controller

Contact normals
and positions

Σ

Plant

Object
wrench

Reference
wrench

Fig. 3. Grasp synthesis as a 
ontrol problem.

A ne
essary 
ondition for for
e 
losure requires that the grip Ja
obian, G [61℄,


ontains a null spa
e 
onsisting of wren
hes derived from stri
tly positive-sense


onta
t for
es. The 
ontroller 
onstru
ts the grasp 
on�guration by 
ontinu-

ously adjusting the 
onta
t 
oordinates to a
hieve a referen
e net wren
h. If

there exists a 
onta
t wren
h that 
an be written as a positive linear 
ombina-

tion of other 
onta
t wren
hes, !

i

=

P

j 6=i

!

j

, then the obje
t may be squeezed

within a null spa
e of the grip Ja
obian without applying a net wren
h to the

obje
t. It follows that the 
ondition

P

!

i

= 0 satis�es a ne
essary 
ondition

for for
e 
losure with fri
tional for
es. While most resear
hers des
ribe grasp

synthesis as an optimization problem, we proposed that it is best 
hara
terized

as a robust 
ontrol problem. In this framework, the robot uses ta
tile feedba
k

to 
ompute in
remental 
onta
t displa
ements.

Conta
t displa
ements are determined by the grasp 
ontroller �




des
ribed in

[12℄ whose potential �eld gradients are based on lo
al models of intera
tion

between the 
onta
ts and the obje
t surfa
e, and are aimed at redu
ing the

squared wren
h residual �measured at the obje
t's 
enter of mass. The squared

wren
h residual � is de�ned as the sum of squared for
e and torque residuals.

Given the wren
h residual ve
tor for n 
onta
ts

� =

n

X

i=1

h

f

i

x

f

i

y

f

i

z

�

i

x

�

i

y

�

i

z

i

T

; (1)

then the squared wren
h residual is de�ned by

� = �

T

�: (2)

The 
ontroller �




displa
es the subset 
 of 
onta
ts until a lo
al minimum for �

is rea
hed. Minima in � 
orrespond to the existen
e of a null spa
e of rank 1 or

11



higher in the grasp matrix, G. The subset of 
onta
ts 
 spe
ify whi
h �ngers

and surfa
es are enlisted in the grasp task. A hand with 3 �ngers labeled

fT; 1; 2g permits 4 distin
t �ngertip 
onta
t subsets, assuming that two or

more �ngers are required to grasp the obje
t:

C = f(T; 1); (T; 2); (1; 2); (T; 1; 2)g:

Ea
h instan
e of 
 2 C de�nes a new 
ontrol law. The 
ontroller �




is an

element in the family of grasp 
ontrollers � = f�




j
 2 Cg:

The 
ontrol a
tions of the 
ontroller �




are dependent solely on instantaneous,

lo
al ta
tile feedba
k. Convergent 
on�gurations for �





orrespond to lo
al

minima of �. Ea
h 
hoi
e of 
ontrol law �




2 � leads to distin
t 
onvergent

grasp 
on�guration for a given obje
t orientation. Therefore, there exists an

optimal 
hoi
e of grasp resour
es, 
, for ea
h orientation of the obje
t that

yields a 
onvergent 
on�guration with the minimum �. The idea 
an be ex-

tended to 
ontroller sequen
ing: given a 
ertain initial 
on�guration, there

exists an optimal sequen
e of 
ontrollers that lead the system state to the

solution with the smallest possible �. More importantly, 
ontroller sequen
ing

expands the 
apabilities of the primitive 
ontrollers and allows one to build a

system that 
an adapt to many operational 
ontexts.

4.2 Constru
ting Models of Control Dynami
s

The evolution of the grasp pro
ess 
aptured by the sequen
e O 
an be plotted

in phase spa
e, as illustrated in Figure 4. The left panel in Figure 4 depi
ts

the grasp dynami
s for a typi
al two-�ngered grasp of an irregular triangle.

Con�guration 
hanges under �




are represented by a path in the phase plane.

Initially, the 
onta
ts are in 
on�guration (a). �




drives the system to an

intermediate grasp 
on�guration (b), and 
onverges to 
on�guration (
) {

a minimum in the squared wren
h residual � where the velo
ity _� is zero.

Many other paths lead to the same attra
tor; in fa
t, the shaded region in

Figure 4 represents the set of all states leading to the attra
tor 
orresponding

to 
on�guration (
). This region is termed the basin of attra
tion of the grasp

attra
tor.

The evolution of the grasp state (and the basin of attra
tion itself) 
an be

represented by a set of paths, ea
h of whi
h 
aptures a 
hara
teristi
 dynami


response. Paths representing the same environmental 
ontext 
an be 
ombined

to form a model of prototypi
al system behavior. For example, an illustration

of all dynami
 models for the irregular triangle is depi
ted in Figure 4 (right

panel). It has three attra
tors and basins of attra
tion, 
orresponding to the

three possible 
ombinations of two 
onta
ts and three distin
t edges. The 
on-

12
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ε

0.2 0.4

−0.010

−0.005

(a)

(b)

(c)

(c)

(b)

(a)

ε

ε
0.2 0.4 0.6 0.8

−0.020

−0.015

−0.010

−0.005

µ   = 1.320

µ   = 0.280

µ   = 0.680

Fig. 4. Left panel depi
ts the evolution of a two �ngered grasp trial from 
on�gura-

tion (a) to (b) and to (
), the 
onvergent 
on�guration. The 
omplete, two-�ngered

phase portrait for the irregular triangle is shown on the right.

vergent grasp 
on�gurations and respe
tive quality indi
es �

0

are also shown

in Figure 4. The index �

0

is the minimum fri
tion 
oeÆ
ient required for a null

spa
e in the grip Ja
obian, G, with rank � 1 { it is a performan
e oriented

label for ea
h attra
tor and it is asso
iated with all pre
ursor states in the

basin of attra
tion.

Figure 5 depi
ts a 
hara
teristi
 set of models 
orresponding to a poli
y �

i

.

If ea
h model is given a dis
rete label (A;B;C;D;E), one 
an des
ribe the

ε ε

A

B

C
D

E

π

B

A

C

D E

A,B

B,C

A,CB,D,E

D,E

ιPolicy 

Fig. 5. Diagrams depi
t the phase portrait [� _�℄ for poli
y �

i

(left) and all possible


ontext transitions (right).

transitions between subsets of models in terms of a dis
rete graph, shown in

the right panel of Figure 5. As depi
ted, the regions in phase spa
e in whi
h

two or more models overlap are identi�ed with the labels 
orresponding to

the overlapping models; (B;C) is one example. The resulting representation

de�nes a dis
rete state spa
e that des
ribes the evolution of information in

this grasping pro
ess.

13



When 
ontroller �

i

is a
tive, the observed system dynami
s are partially ob-

s
ured by noisy sensors and a
tuators, so probabilisti
 models are appropri-

ate. The use of parametri
 models to represent a sequen
e of observations is


ommon pra
ti
e in the dynami
al systems literature (e.g. see Fraser [23℄),

espe
ially where insight about the underlying phenomena is available.

Parametri
 models presume the existen
e of a (parametri
) generator me
h-

anism for the data observed; the stru
ture of the parametri
 model must be


hosen a

ording to the phenomenon one wants to model. We de�ne an ob-

servation, o = [� _�℄

T

where � and _� are the squared residual and its time

rate of 
hange, respe
tively. We assume the the observation will evolve along

a pie
ewise 
ontinuous 
ontour in the \residual" phase portrait. to an equilib-

rium 
on�guration, [�

0

0℄

T

. We model these traje
tories using linear segments

{ this assumption is justi�ed for our 
ontrollers in [13℄. A parti
ular model,

M

�

i

, with parameters �

0

and K, predi
ts an observation
~
o = [� �K(�� �

0

)℄

T

given the observed residual squared error �. We further assume that � may

have superimposed noise � N(0; �

2

) so that probabilisti
 membership of ob-

servation o in M

�

i


an be estimated by:

�=(o�
~
o)

M

�

i

(�; o)=

1

L

1

p

2��

2

exp(

��

T

�

2�

2

); (3)

where the parameter ve
tor � = [K �

0

�

2

℄

T

and L is a normalization 
onstant.

The 
omplete representation of system dynami
s under poli
y �

i

requires a set

ofm observation models, expressed asM(�

i

) =

S

m

k=1

M

�

i

(�

k

; o). The setM(�

i

)

expresses empiri
al knowledge a
quired by the agent during the exe
ution of

poli
y �

i

. Ea
h model is valid only within a bounded domain D

k

,M

�

i

(�

k

; o) =

0 if o is not in D

k

.

The derivation of M(�

i

) involves sampling system dynami
s for a predeter-

mined number of epo
hs � , while re
ording the data O = fo

1

; o

2

; : : : ; o

n

g

observed as the 
ontrol error evolves toward equilibrium. The instantiation

of new models involves two steps, (1) the derivation of � observation models


orresponding to the observation sequen
es re
orded in ea
h of the � epo
hs,

and (2) the elimination of redundant observation models when j�

j

� �

k

j < Æ.

Many optimization pro
edures 
an be used to derive the parameter ve
tor �

k

under the assumptions stated earlier. Model 
onstru
tion is 
on
luded when

M(�

i

) has been 
onstru
ted for every �

i

2 �. Any single obje
t will present

several unique models and models sets are not disjoint for di�erent obje
ts.

On
e M(�

i

) is available, Bayesian estimation is used to identify the subset

q � M(�

i

) of models 
ompatible with a sequen
e of run-time observations.

The state of the system is de�ned as the 
on
atenation of the 
ontrol law and

the membership pattern, (�

i

;q).
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5 Context-Dependent Grasp Poli
ies

The transformation from a set of 
ontinuous models to a graph of dis
rete

states 
an be 
arried out for ea
h 
ontrol poli
y �

i

2 �. The dis
rete state

spa
e allows the system to experiment with sequen
es of 
ontrol poli
ies,

within the reinfor
ement learning framework. After 
onvergen
e, the system

will be able to employ the best poli
y for ea
h state, and redu
e the variability

and un
ertainty introdu
ed by the many possible obje
ts and over
ome (to a


ertain degree) the lo
ality of the 
omponent poli
ies �

i

.

Figure 6 illustrates how poli
y swit
hing may lead to improved performan
e.

Initially the system adopts poli
y �

T;1

to grasp an obje
t of unknown geometry.

The phase spa
e 
oordinate is found and the information state is identi�ed in

the dis
rete 
ontext transition graph. Now, suppose that prior experien
e re
-

ommends swit
hing to poli
y �

T;1;2

, followed by �

T;2

. This sequen
e has 
aused

the grasp 
on�guration to transform from a traje
tory toward a suboptimal

attra
tor to one headed toward the best two-�ngered attra
tor through and

intermediate three-�ngered 
ontrol 
ontext. Swit
hing poli
ies, as in this hy-

potheti
al example, form �nger gaits toward optimal 
onta
t 
on�gurations.

Policy    Τ,1ε ε
π ε ε

πPolicy    ε ε
πPolicy    

T

1

2 2

TT

1

Τ,1,2 Τ,2

Fig. 6. A hypotheti
al 
ontext-dependent grasp of a 
ube (top view). Poli
y sequen
e

�

T;1

, �

T;1;2

, �

T;2

a

omplishes the best available two-�ngered grasp 
on�guration by

using an intermediate three-�ngered 
ontrol 
ontext.
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5.1 Pilot Data { Intera
tion Dynami
s

Figure 7 illustrates a typi
al instant in the pro
ess of forming a hapti
ally-

guided grasp with the GE-P50 robot arm and Salisbury hand. The system

Fig. 7. The hapti
 grasping system.

attempts to identify sequen
es of 
ontrol engagements that pass through ro-

bust hapti
 landmarks toward good grasps and in the pro
ess learns a great

deal about the 
oupled dynami
s of the hand/obje
t/
ontrol system.

Dynami
 programming-based Reinfor
ement Learning (RL) [3℄ is a natural

paradigm for programming these systems sin
e RL does not require external

supervision and en
odes poli
ies as sequen
es of a
tions with asso
iated re-

wards. In general, these rewards 
an be rare, o

urring infrequently and only

after extended sequen
es of a
tions. In the pilot study presented here, a sim-

ulation of our Stanford/JPL robot hand with Bro
k ta
tile sensors intera
ts

with three simulated obje
t types. We used a family of 
ylinders, and re
tan-

gular and triangular prisms with random variations in geometri
 parameters.

The identity and orientation of the obje
t are unknown at the beginning of

ea
h trial. Grasp poli
ies are expressed as sequen
es of the four grasp 
on-

trollers dis
ussed earlier and RL is used to solve the temporal 
redit assign-

ment problem for an optimal poli
y. The experiment involved 35 grasps using

ea
h of the four grasp 
ontrollers (ex
lusively) on ea
h of three obje
ts yielding

4� 3� 35 = 420 data sets from whi
h 61 separate models were retained.

The grasp 
ontroller makes a 
ontrol de
ision every time the pattern of mem-

bership in the dynami
 models 
hanges { this event signals the fa
t that extra

information has been a
quired in the grasp experiment. Q-learning was used to

derive the optimal swit
hing poli
y using a Boltzmann exploration. The total
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number of training trials was 1600; in ea
h trial a new obje
t type with new

geometri
 parameters was 
hosen randomly. The utility of pursuing a di�erent


ontrol law at a de
ision point was evaluated after ea
h state transition { the

system has the 
hoi
e of terminating the trial or invoking a di�erent 
ontroller.

If a grasp trial generates 50 
onta
t movements, it times out and the 
urrent

grasp 
on�guration is s
ored. Terminal grasp 
on�gurations re
eive a s
ore of

(1 � �

0

), where �

0

is the minimum 
oeÆ
ient of fri
tion required to build a

null spa
e in the grip Ja
obian with rank � 1 in the �nal grasp 
on�guration

[12℄.

Figure 8 depi
ts a typi
al learning 
urve (
urve labeled 4 
, top left


urve). The 
urve is an average of the ten most re
ent data points. Ea
h point

0 400 800 1.2e+03 1.6e+03
-0.28

0.04

0.36

0.68

1

4 


0 116 232 348 464
-0.36

-0.02

0.32

0.66

1

4

0 134 268 402 536
-0.64

-0.23

0.18

0.59

1

0 151 302 453 604
0

0.25

0.5

0.75

1




Fig. 8. A typi
al learning 
urve for the data set and learning 
urves for individual

obje
t types. Verti
al axes are grasp s
ores (1 � �

0

), and horizontal axes are the

trial number.

is the grasp s
ore of a terminal grasp 
on�guration (normally an attra
tor in

the set of �xed points of the 
ontrol basis) for a randomly 
hosen obje
t. The

data 
orresponding to ea
h obje
t are presented as well, the resulting learning


urves are labeled 4, , and
. Be
ause the 
ontrol terminates with _� < Æ;

jÆj > 0, it will not be the 
ase that the average s
ore will go to 1. The 
urves

for the individual obje
ts are 
lose to the optimal, within the limitations of
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the Q-learning algorithm.

Figure 9(a) shows a performan
e histogram over 100 grasp trials. In ea
h

trial, a random element of the 
ontrol basis was applied to a randomly 
hosen

obje
t from the set. Figure 9(b) illustrates the distribution of results a
hieved

Native Controllers Grasp Poli
y

4 


-0.2 0.1 0.4 0.7 1
0

9

18

27

36

4 


-0.2 0.1 0.4 0.7 1
0

9

18

27

36

(a) (b)

Fig. 9. Distribution of grasp s
ores, over 100 trials. Left panel shows the average

performan
e of the native 
ontrollers; right panel shows the result of the grasp poli
y

whose state is derived from the dynami
 models.

on 100 trials with the a
quired grasp poli
y. The grasp poli
y suppresses the

majority of low quality solutions; 93% of the solutions have s
ores higher than

0.7, 
ompared to 56% for the native 
ontrollers. The varian
e asso
iated with

solution quality is also substantially smaller. The same is true if we examine

performan
e obje
t-by-obje
t (Figure 10).

5.2 Development and In
remental Robot Programming

Closed-loop behavioral primitives lead to models of the 
hara
teristi
 dynam-

i
s of grasp 
ontrol intera
tions with the open grasping domain. Control a
ti-

vations may be 
onsidered in a symboli
 state spa
e for whi
h we may derive

an expli
it system model (in the transition probabilities). The Dis
rete Event

Dynami
 Systems (DEDS) supervisor in Figure 2 
an in
orporate logi
al 
on-

straints on the out
ome of a
tions and 
an, therefore, dire
t exploration and

is a useful me
hanism for shaping poli
y formation [31℄. Time dependent sets

of axioms in the DEDS spe
i�
ation 
an fo
us exploration on a sequen
e of


omputationally tra
table sub-problems. We view this intervention as a de-

velopmental bias in whi
h important 
ontrol knowledge is a

umulated over

time.

Conje
ture 5.1 (Re
exive Basis for Motor Development) Re
exes are

s
heduled in a manner 
onsistent with other developmental me
hanisms, in a

sequen
e that leads an agent through a progression of in
remental and en-
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Fig. 10. Distribution of grasp s
ores by obje
t type; 
ylinder (a and b), re
tangular

prism (
 and d), and triangular prism (e and f). The left 
olumn shows the average

performan
e of the native 
ontrollers, and the right 
olumn shows performan
e using

intera
tion dynami
s to provide 
ontext.

vironmentally-mediated learning tasks. These tasks a
quire 
riti
al knowledge

stru
tures in an appropriate order.

Certain aspe
ts of development appear to pro
eed through distin
t resour
e


onstraints: from proximal to distal kinemati
 
hains; from head to tail; from

simple to 
omplex tasks; from quasi-stati
 to dynami
 strategies; and from

e�e
ts observed late in a behavioral sequen
e to prospe
tive 
auses.
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Distin
tions in behavioral utility late in a 
hain of a
tions (distal a
tions)


an provide metri
s for making early dis
riminations (proximal 
ategories),

For example, M
Carty et al. studied the initial rea
h to a spoon laden with

applesau
e and presented to infants in left and right orientations [43℄. The

developmental traje
tory observed is summarized in Figure 11. Initial poli
ies

are biased toward dominant hand strategies whi
h work well when the spoon

is oriented with its handle to the dominant side. However, when it is not, there

is signi�
antly less value to the dominant hand rea
h. Variations in the apple-

transport
radial side 

to mouth

reward?

observe
spoon

position

grasp
w/preferred

hand

manipulate
spoon

grasp
w/preferred

hand

reward

transport
radial side 

to mouth

observe 
hand/spoon
relationship

switch hands rotate wrist

radial
grip?

observe
spoon

position

transport
radial side 

to mouth

grasp

observe
spoon

position/orientation

left arm
reach

right arm
reach

reward

policy
exploration

Fig. 11. Prospe
tive Behavior revealed in the Applesau
e Experiment.

sau
e reward forms a dis
rimination metri
 spa
e with whi
h to distinguish

important 
ategories in this pro
ess { dominant-side and non-dominant-side

presentations of the spoon. One hypothesis holds that this pro
ess involves

a sear
h for per
eptual features that distinguish 
lasses of behavioral utility.

When this happens, new per
eptual features have been learned that were not

present in the original, native representation. They have been sele
ted from a

possibly in�nite set of alternatives be
ause they form a valuable distin
tion in

the stream of per
epts { valued for its ability to in
rease the reward derived

from one's intera
tion with the task. One may view this pro
ess as one in whi
h

properties and 
onstraints imposed by the task are in
orporated into a poli
y

in
rementally starting with the latter (distal) a
tions and gradually propagat-

ing ba
k through the a
tion sequen
e to early (proximal) a
tions. There are

parallels to so-
alled \pi
k-and-pla
e" 
onstraints studied in roboti
s [35℄.
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6 Visual Context Re
overy

When a mature human subje
t rea
hes for an obje
t, the hand is oriented and

shaped appropriately in anti
ipation of the grasp. This anti
ipatory pre-shape

takes pla
e before 
onta
t with the obje
t is made, and is informed by visual


ues. There is no 
on
lusive eviden
e regarding what visual information is

extra
ted and how it is used to inform the rea
hing pro
ess. The applesau
e

data, however, sheds some light on the developmental traje
tory that leads

toward sophisti
ated pre-shaping behavior. For our humanoid grasping sys-

tem, and eventually for the integrated Magilla platform, we have developed

an in
remental learning system that produ
es skilled vision-based anti
ipatory

behavior, and that parallels some aspe
ts of the developmental traje
tory ob-

served in humans.

The pre
eding se
tions des
ribed how sophisti
ated hapti
 grasping skills 
an

be a
quired through exploratory intera
tion with the environment. Experi-

en
e produ
es models of the intera
tion dynami
s between the hand and the

grasped obje
ts. These dynami
 models provide relevant hapti
 
ontext for

robust, 
losed-loop grasping strategies. Hapti
 information provides powerful

motor guidan
e for dis
overing high-quality grasps, whi
h are relatively rare

regions in the parameter spa
e. However, the utility of hapti
 information for

broader 
ontext re
overy is limited due to its sequential and myopi
 nature.

Broader 
ontext 
an be provided by vision. On
e learned hapti
 poli
ies have

been a
quired for a task, the hapti
 
ontext re
overy 
omponent 
an be sub-

sumed by a high-bandwidth visual modality that asso
iates appropriate grasp

parameters with visual features. If adequate visual features are found that

robustly identify the 
ontrol 
ontext, then these are equivalent in informa-

tion 
ontent to the hapti
 dynami
 models. Importantly, some hapti
 
ontext

must exist before su
h visual features 
an be identi�ed, be
ause vision in and

of itself 
annot provide the hapti
 information required for grasping:

Conje
ture 6.1 (Hapti
-then-Visual Development) A hapti
 subsystem

is employed �rst to dis
over useful grasping strategies at the expense of per-


eptual a
uity and eÆ
ien
y. Having identi�ed su
h, hapti
 models form the

basis for the a
quisition of high-pre
ision, eÆ
ient visual operators that re
over

important 
ontrol 
ontexts. This results in a powerful asso
iative multi-modal

model of intera
tion with obje
ts in whi
h hapti
 experien
e 
an be predi
ted

by visual features and vi
e versa.

We now des
ribe our 
urrent work on visual 
ontext re
overy in support of the

grasping system dis
ussed above [55℄. As a �rst step, the obje
tive is to develop

a plausible s
heme for learning visual features that robustly 
orrelate with the

orientation of the hand during a su

essful grasp. Then, these features 
an be

21



�

1

d

1

�

2

d

2

�

3

�

4

�

referen
e point

Fig. 12. A geometri
 feature of order 3, 
omposed of three primitives. The feature

is de�ned by the angles � and the distan
es d, and the orientation of this spe
i�


instan
e is denoted by �. Ea
h primitive is either an edgel or a texel.

used to re
ommend a hand orientation and a native grasp 
ontroller for a two-

or three-�ngered grasp that should be engaged before the �rst ta
tile 
onta
t

o

urs, bootstrapping the hapti
ally-driven grasp and eliminating the need for

expensive and ineÆ
ient hapti
 
ontext re
ognition. Ea
h type of obje
t may

require a dedi
ated visual feature to fully 
apture the hapti
 
ontext. Obje
t

identities are not known to the system, so the need for dedi
ated features must

be dis
overed by grasping experien
e. Visual learning is entirely driven by the

utility of the features to the hapti
 system.

6.1 Learning Visual Features that Predi
t Hapti
 Utility

To represent visual 
ontext, we employ lo
al appearan
e-based features. Ori-

ented derivatives of 2D Gaussian fun
tions are used to form a steerable basis.

This permits the eÆ
ient synthesis of features at arbitrary orientations, as

well as the measurement of feature orientations [58℄. Two types of primi-

tive features are used: A texel is a ve
tor 
onsisting of �lter responses from

Gaussian-derivative operators of the �rst three orders; an edgel uses an or-

thogonal pair of �rst-order derivatives only [54℄. Spatial 
ombinations of these

primitives 
an express a wide variety of shape and texture 
hara
teristi
s at

various degrees of spe
i�
ity. An in
remental, on-line learning pro
edure as-

sembles su
h 
ompound features in a simple-to-
omplex manner, as the need

for in
reasingly distin
tive features arises. Figure 12 illustrates a geometri
 ar-

rangement of oriented primitives that has been generated by su
h an approa
h

to form a useful distin
tion. Visual distin
tions in this framework need not be

universal in the sense that they are tagged to parti
ular states and tasks in

the behavior of the system { sometimes inexpensive 
onstellations of features

are adequate for dis
riminating lo
ally between important visual 
ontexts.

Ea
h feature f is present at a pixel lo
ation l to a degree s

f

(l) 2 [0; 1℄, whi
h

is the normalized inner produ
t of the ve
tor of appli
able �lter responses at

l with the pattern ve
tor de�ning f . A feature is present in an image I to

the degree s

f

= max

l2I

s

f

(l). For more detail on these features, see our earlier

work [54℄.

The vision system observes an obje
t as it is presented and subsequently
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re
ords the hand orientations asso
iated with the best grasp for ea
h obje
t

(as measured by the �

0

metri
; see Se
tion 4.2). Assuming that these features

respond to the obje
t itself, their image-plane orientation �

f

should be related

to the roboti
 hand orientation �

h

by a 
onstant additive o�set ��. A given

feature, measured during many grasping tasks, hen
e generates data points

that lie on straight lines on the toroidal surfa
e spanned by the hand and fea-

ture orientations (Fig. 13). There may be more than one straight line be
ause

a given visual feature may respond to more than one spe
i�
 obje
t orientation

(e.g., due to obje
t symmetries), or to several distin
t obje
ts that di�er in

shape. To use these data for predi
ting hand orientations given a feature ori-

entation, one needs to �nd the o�sets ��. This is an instan
e of the K-Means

problem in one-dimensional 
ir
ular (angular) spa
e, with K unknown.
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H
an

d 
O

rie
nt

at
io

n

Mixture of 2 von Mises distributions

unit circle          
mu=0.10, kappa=122.09
mu=2.17, kappa=700.92

Fig. 13. Left: Data points indu
ed by a given feature on various images of an obje
t

form straight lines on a torus (two in this 
ase). Right: A mixture of two von Mises

distributions was �t to these data. The probability density at an angle is visualized

by the distan
e of the line from the unit 
ir
le.

To solve this problem, we assume the �� are drawn independently from a

mixture of von Mises distributions. The von Mises distribution 
an be re-

garded as a 
ir
ular equivalent of the linear Gaussian distribution, and has

the probability density fun
tion [22℄

f

vM

(�j�; �) =

e

� 
os(���)

2�I

0

(�)

; 0 � � <1

where I

0

(�) is the modi�ed Bessel fun
tion of order zero. The mean dire
tion of

the distribution is given by �, and � is a 
on
entration parameter with � = 0

giving a uniform 
ir
ular distribution, and � =1 to a point distribution. The

mixture distribution (see Fig. 13) is de�ned by its density fun
tion

f

mix

(�) =

K

X

k=1

p

k

f

vM

(�j�

k

; �

k

)
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with mixture proportions 0 < p

k

< 1 and

P

k

p

k

= 1. For all plausible numbers

of 
lustersK, a (3K�1)-dimensional non-linear optimization problem is solved

to �nd the �

k

, �

k

and p

k

. The obje
tive fun
tion to be maximized is the log-

likelihood of the observed data � given a parameterization a 
onsisting of the

�

k

, �

k

and p

k

:

logP (�ja) =

X

i

log

K

X

k=1

p

k

f

vM

(�

i

j�

k

; �

k

) (4)

The most probable model 
an then be found using Bayes' Rule. In the 
ase

of uniform prior probabilities over all possible model parameterizations a

m

,

the model a maximizing P (aj�) is simply the one that maximizes logP (�ja)

(Eqn. 4). The appropriate number of 
lusters K is determined a

ording to

the Integrated Completed Likelihood 
riterion [6℄.

To re
ommend a hand orientation, the system sele
ts from all features f that

respond more strongly than a threshold t

f

the feature with highest predi
tion

potential KSD

f

, introdu
ed shortly. If the mixture model 
orresponding to this

feature has more than one mode k that is supported by at least three data

points, the mode with maximal �

k

is sele
ted. The potential of ea
h feature to

make a useful re
ommendation is measured by the Kolmogorov-Smirno� dis-

tan
e KSD

f

between the distributions of 
orre
t and wrong re
ommendations

made in the past. The threshold t

f

is sele
ted su
h as to maximize KSD

f

, under

the premise that the feature f is not 
onsulted if its response s

f

in an image

is less than t

f

. The result is that based on previous experien
e of the system,

the Bayes-optimal feature (i.e., the feature with least expe
ted mispredi
tion

rate) is sele
ted from among all super-threshold features. The re
ommended

hand orientation is then given by the orientation of the strongest o

urren
e

of the sele
ted feature f in the present image, and its asso
iated ��.

The system also determines whether to use a two- or a three-�ngered grasp. For

this purpose, separate feature sets (visual 
ontext models) are learned for two-

and three-�ngered grasps, and statisti
s are maintained of the grasp utilities

(�

0

) asso
iated with ea
h feature. To form a grasp parameter re
ommendation,

the best hand orientations are derived, as des
ribed above, separately for two-

and three-�ngered grasps. Of these two 
andidate re
ommendations, the one

with the lower expe
ted fri
tion 
oeÆ
ient �

0

is 
hosen.

Features are learned as follows. Given an image, the responses of all features

are measured. The best feature is sele
ted as des
ribed above, and is used to

re
ommend a hand orientation. The robot then exe
utes the grasp, starting

with the re
ommended hand orientation. If the hand orientation turns out

not to be appropriate, i.e. it needs to be 
orre
ted by more than a given

threshold, then all mixture models are re-estimated based on a 
ase list of

previous experien
es. A new predi
tion is made based on the new models.
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If this new predi
tion is still wrong, then two new features are generated: A

primitive feature is randomly sampled from the image, and a new 
ompound

feature is generated by randomly expanding an existing feature by adding a

new point as illustrated in Fig. 12. If a feature performs well, its KSD will

in
rease over time, and it will in
reasingly be employed. If it performs poorly,

its KSD will de
rease, and it will eventually 
ease to be used at all. Unused

features are dis
arded periodi
ally.

6.2 Pilot Data { Hand Pre-Shaping Using Learned Visual Features

A series of pilot experiments was performed in simulation, using data gen-

erated by the real grasping system, and photo-realisti
ally rendered, noise-

degraded images. Three obje
t types were used (Fig. 14). La
king the ability

to perform large numbers of grasps on the real robot, the re
ommended grasps

were simulated by 
omparing the re
ommended hand orientation with the a
-

tually exe
uted hand orientation asso
iated with the training image, modulo

the known rotational symmetry properties of the obje
t. Sin
e 
ylinders have

in�nite-fold rotational symmetry, no features were ever learned for 
ylinders.

Fig. 14. Example views of obje
ts used to test the system.
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Fig. 15. Quantitative results of hand orientation predi
tion.

Our pilot studies indi
ate that the system learns to make useful re
ommenda-

tions (Figure 15). All results were 
omputed in 2-fold 
ross-validation. If the

training set 
ontains a single obje
t 
lass and little noise in the training signal

(the a
tual hand orientation during the grasp), the training set is typi
ally

learned during a single iteration. Performan
e on an independent test set is

almost always ex
ellent, with predi
tion error magnitudes on the order of the

variation in the training signal. If the training set 
ontains outliers, i.e. hand
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Fig. 16. Utility of the learned visual 
ontext to the hapti
 system when grasping

re
tangular and triangular prisms. The �rst two rows show the performan
e of the

two- and three-�ngered native 
ontrollers. The third row shows the performan
e

a
hieved if the visual system determines the initial hand orientation, and whi
h of

the two native 
ontrollers to employ.

orientations that produ
ed a poor grasp, then the training set is harder to

learn be
ause the system expends substantial e�ort trying to learn these out-

liers. However, performan
e degrades gra
efully be
ause features are sele
ted

by Kolmogorov-Smirno� distan
e, whi
h prefers reliable features modeling the

the majority of useful training examples. On a noisy test set, most poor re
om-

mendations o

ur on outliers. Notably, two-�ngered grasps of the triangular

obje
t are inherently unstable and unpredi
table.
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Figure 16 demonstrates the utility of the learned visual 
ontext to the hap-

ti
 grasping system. The bottom row illustrates that neither two- nor three-

�ngered native 
ontrollers alone are suÆ
ient to exe
ute high-quality grasps re-

liably. The two-�ngered native 
ontroller works well on re
tangular but poorly

on triangular prisms; for the three-�ngered 
ontroller the opposite is true. If

the re
ommendation of the visual system is followed, the a
hieved grasp qual-

ity is 
onsistently high. Moreover, the proportion of extremely fast single-probe

grasps in
reases drasti
ally, and very long trials (more than about 20 probes)

are pra
ti
ally eliminated (
f. the two-�ngered native 
ontroller on the left).

This visual/native-hapti
 poli
y performs about equally well as the \blind"

learned poli
y des
ribed in Se
tion 5 (
f. Figure 9b). Thus, visual 
ontext has

almost subsumed hapti
 
ontext in that it provides equivalent information

before the onset of the grasp. We are 
urrently evaluating the performan
e of

the learned poli
y primed by the visual system { a 
ross-modal, redundant


ompound poli
y that 
orresponds quite 
losely to human grasping behavior.

7 Con
lusion

We have presented a philosophy and motivation for studying humanoid robots

and a perspe
tive that aims to exploit insight from the so
ial and behav-

ioral s
ien
es. We have also introdu
ed our humanoid platforms and have

reported preliminary results regarding the in
remental a
quisition of rea
hing

and grasping skills. In our model, 
losed-loop hapti
 
ontrol models are a
-

quired �rst, and are later augmented by visual 
ontext. A 
riti
al limitation of

our present, simpli�ed model is that the hapti
 and visual learning stages are

expli
itly sequential. In order to develop inherently 
ross-modal asso
iative

models of intera
tion, a tighter integration of the hapti
 and visual modalities

is required.

Our \Magilla" platform will shortly see the full-s
ale integration of these ideas

with the obje
tive of produ
ing a \normally-on" robot whose internal repre-

sentations are only indire
tly 
ontrolled by the human programmer and the

range and frequen
y of tasks submitted to it. We hope to 
onstru
t a robot

with 
learly dis
ernible preferen
es for engaging sensory and motor resour
es

and an intrinsi
 in
entive for understanding the world around it. We are en-


ouraged by the inherently 
ross-modal and expli
itly asso
iative models that

result from this paradigm.
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