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Abstract

Model learning and tracking are two important topics in
computer vision. While there are many applications where
one of them is used to support the other, there are currently
only few where both aid each other simultaneously. In this
work, we seek to incrementally learn a graphical model
from tracking and to simultaneously use whatever has been
learned to improve the tracking in the next frames. The main
problem encountered in this situation is that the current in-
termediate model may be inconsistent with future observa-
tions, creating a bias in the tracking results. We propose an
uncertain model that explicitly accounts for such uncertain-
ties by representing relations by an appropriately weighted
sum of informative (parametric) and uninformative (uni-
form) components. The method is completely unsupervised
and operates in real time.

1. Introduction
Graphical models are popularly used to represent objects

in terms of local appearance and spatial relations for detec-
tion, classification and tracking applications [3, 12, 14, 15].
Unsupervised learning of such feature graphs from images
is difficult because of the correspondence problem of fea-
tures between images. If learning is based on a video se-
quence, tracking can be used to solve this problem. On the
other hand, tracking a set of features requires a good model
if we want to avoid problems due to occlusion and clutter.
In this paper, we address these two tasks simultaneously in
a way that they help each other.

The idea is to incrementally learn models of relations
that exist between local features, and to use what we have
already learned to improve tracking. Since tracking is on-
line, it is important to use models with a low computational
cost. In practice, we are only interested in learning specific
types of relations (rigid, articulated, . . . ). For this purpose,
parametric models or mixtures of a small number of Gaus-
sians are more suitable than nonparametric models.

In this paper, we seek to identify, while tracking, ap-

proximately rigid spatial relations whose distributions are
roughly Gaussian-shaped, and simultaneously use them to
aid the tracking by biasing the observation likelihoods. This
will be helpful if the learned model is accurate, but detri-
mental if it is not.

The three main sources of undue bias are observations
that are far from Gaussian, inaccurate parameter estimates
based on few observations early during learning, and pa-
rameters that change over time. For example, consider an
object sitting on a table: The system will learn rigid rela-
tions between the object and the table that have to be un-
learned when the object is moved.

To manage such situations, we develop in this paper an
uncertain graphical model that explicitly accounts for its
predictive power by representing each pairwise potential as
a mixture of a Gaussian (reliable relation) and a uniform
density (ignorance).

After discussing some background in Section 2, the un-
certain model is introduced in Section 3. The method for
tracking the features using the current, learned model is ex-
plained in Section 4. Section 5 describes the learning of an
uncertain model. Finally, experimental results are presented
in Section 6.

2. Related Work
Appearance- and structure-based approaches have been

widely used for object representation. Appearance-based
models usually model an object as color histograms [2], im-
age templates [1] or neighborhood features such as SIFT.
Structural models typically represent an object using 2D
edges or 3D geometric models [7]. A natural way to com-
bine the shape and appearance of an object is to use a graph-
ical model whose nodes and edges correspond to local fea-
tures and spatial relations between them [13, 14, 15].

On-line tracking is often addressed by using a prior
model of the object. This model can be learned from train-
ing examples during a learning phase [13]. Another solution
is to design the prior model of the object by hand [14]. This
means that the model is specific to a particular object and
is difficult to reuse in other situations. The model can also



be defined in starting frames [1, 10], taking the risk that it
no longer corresponds to changed appearances of the object
over time. If we are only concerned with tracking, we can
also use a dynamic model that is updated to accommodate
the object appearance and structural changes [15].

Unsupervised learning of object models is computation-
ally demanding because it has to find feature correspon-
dence between images [12]. The temporal information from
video can be used to solve this problem. Leordeanu and
Collins [8] use tracking to group features into objects by
observing their co-occurrences. Ramanan et al. [11] use a
video sequence to build models of animals from temporally
coherent clusters that represent body parts. While the for-
mer work does not use the learned relationships between
parts to refine the matching process, the latter does not al-
low corrections of the model once it as been learned.

Some recent approaches have been developed to simul-
taneously learn and track object models. Lim et al. [9] pro-
pose a method that incrementally learns and adapts a low-
dimensional eigenspace representation to reflect appearance
changes of the target, thereby facilitating the tracking task.
The same kind of model is used by Dowson and Bowden
[4] by their N -tiers model that represents both the appear-
ance and the structure of the object. These models do not
express the uncertainty inherent in the current model. More-
over, they suppose that the selected region of interest only
contains the object to learn.

3. The Uncertain Model
In this paper, we develop an uncertain model of rela-

tions between features that explicitly accounts for their un-
certainty. Thus, a relation will contribute stability to track-
ing without exerting overly strong bias that would ham-
per tracking. For now, features and relations are initialized
manually; in principle, one might use e.g. any suitable key-
point detector and triangulation schemes. No assumptions
are made regarding the number of objects in a video; in fact,
features are not explicitly grouped into objects at all. More
or less informative (Gaussian-like) relations are learned be-
tween features; coherently moving, rigid objects might then
be identified as rigid subgraphs.

To model the features and their relations, we use an undi-
rected graph where the nodes and edges represent the vi-
sual features and the relations between them, respectively.
We denote the state of each feature at time t by xi,t and
its associated image observation by zi,t. The joint target
states and the joint observations are respectively denoted by
Xt = {x1,t, . . . , xN,t} and by Zt = {z1,t, . . . , zN,t}. We
also denote Z0:t = {Z1, . . . , Zt}, the joint observations of
the whole sequence until time t.

A spatial relation between two features is represented by
a potential function ψi,j,t(xi,t, xj,t) that expresses the con-
straint on the relative position of the features i and j. This

pairwise potential depends on time t because it is learned
on-line from the observations up to time t− 1.

For a Markov network, the probability of the posterior of
the joint state Xt given the image measurements Zt can be
written [5]

P (Xt|Zt) =
1
ZQ

∏
(i,j)∈E

ψi,j,t(xi,t, xj,t)
∏
i∈V

pi(zi,t|xi,t),

(1)
where ZQ is a normalization constant, E is the set of edges
in the graph, and V is the set of nodes.

Any suitable feature detector and associated observation
model p(z|x) can be used. In the following, we focus on
the calculation of the potential functions for all edges in E.
These functions represent not only an estimate of the rela-
tions between the features but also a corresponding measure
of uncertainty. We distinguish two sources of uncertainty:

Uncertainty due to tracking. During incremental learn-
ing, observed relations may not come from a stationary
distribution. For example, a feature may remain static
up to time t−1 but start moving at time t. In this case,
the learned model is no longer predictive of future ob-
servations, and its uncertainty is increased.

Uncertainty due to learning. The distribution of observa-
tions may correspond to a lesser or greater extent to
the parametric model of interest, giving rise to higher
or lower predictive uncertainty. Moreover, the uncer-
tainty of a learned model decreases with the number
of observations; even observations drawn from a para-
metric distribution of interest are of little predictive
value at early stages of learning.

The following sections detail the representation and estima-
tion of these uncertainties.

4. Tracking Features Using Uncertain Poten-
tial Functions

The above Markov network is a generative model at one
time instant. To track it, we extend Eqn. 1 to account for a
time dimension. Under the conventional Markov assump-
tion for the time dimension,

P (Xt|Xt−1) =
∏

i

p(xi,t|xi,t−1), (2)

the posterior probability of the joint state Xt given the im-
age measurements Z0:t can be expressed as

P (Xt|Z0:t) =
1
ZQ

∏
(i,j)∈E

ψi,j,t(xi,t, xj,t)

×
∏
i∈V

pi(zi,t|xi,t)p(xi,t|zi,0:t−1),
(3)



where

p(xi,t|zi,0:t−1) =
∫
p(xi,t|xi,t−1)p(xi,t−1|zi,0:t−1)dxi,t−1.

(4)

4.1. Sequential Belief Propagation with Known Po-
tential Functions

Let us first consider the problem with known potential
functions, i.e., the relations learned until time t−1 correctly
predict the relations at time t. As shown by Hua and Wu
[6], inference can be performed by Sequential Belief Prop-
agation through an iterative, local message passing process.
The local message passed from node i to node j at time t
and iteration n is given by

mn
j,i,t(xj,t)←

∫
xi,t

[
pi(zi,t|xi,t)ψi,j,t(xi,t, xj,t)

×
∫

xi,t−1

p(xi,t|xi,t−1)P (xi,t−1|Z0:t−1)dxi,t−1

×
∏

k∈N(xi,t)\j

mn−1
i,k,t(xi,t)

]
dxi,t,

(5)

and the marginal posterior probability at time t is given by

Pn(xi,t|Z0:t) ∝ pi(zi,t|xi,t)
∏

j∈N(xi,t)

mn
i,j,t(xi,t)

×
∫

xi,t−1

p(xi,t|xi,t−1)P (xi,t−1|Z0:t−1)dxi,t−1.

(6)

4.2. Sequential Belief Propagation with Uncertain
Potential Functions

In our scenario, the potential functions are learned in-
crementally, which sometimes leads to situations where an
observation at the current time t is in fact not well predicted
by the relations learned up to time t − 1. This may hap-
pen if, for example, the two features connected through a
relation were motionless until time t − 1, and one of them
starts to move at time t. In this case, it is clear that the rigid
relation learned from previous frames is no longer appropri-
ate to track these features. To account for this uncertainty
due to tracking, we need to augment accordingly the vari-
ance of the learned relations. Therefore, in the following we
distinguish between the potential ψ+

i,j,t−1 learned up to and
including time t−1, and its variance-augmented counterpart
ψ−i,j,t that replaces ψi,j,t in Eqn. 5.

A given relation is only used for tracking in the single
next frame. Given that the observations in a video are spa-
tially correlated over time, the next observations will not
be too far from the current models. If we assume that the
(application-dependent and fixed) likelihood of making an

observation a distance ∆ away from the learned model fol-
lows a Gaussian distribution of variance σ2

∆, a suitably aug-
mented potential ψ−i,j,t can be obtained by convolving the
learned model ψ+

i,j,t−1 with a zero-mean Gaussian with a
variance of this order of magnitude:

ψ−i,j,t = ψ+
i,j,t−1 ~ N(0, σ∆) (7)

The potential functions ψ+
i,j,t−1 are learned from the previ-

ous frames and account for the uncertainty due to learning.
We will see in the next section how they are calculated.

5. Learning the Uncertain Potential Functions
In this paper, we are interested in learning relations of

Gaussian shape. Therefore, the informative part of our po-
tential functions is of the form

ψi,j,t(xi,t, xj,t) = e
−

(rt − µt)2

2σ2
t , (8)

where rt corresponds to the observation of the relative po-
sition xi,t − xj,t between two given features i and j at time
t. The parameters µt and σ2

t are the value of the estimated
rigid relation and the variance of the observations around
this position.

After a brief review of the incremental estimation of
Gaussian parameters, we introduce a potential function for
the uncertain model ψ+

i,j,t(xi,t, xj,t) that augments the ob-
served variance and adds a uniform term to account for two
sources of uncertainty:

• the uncertainty in the true value of the parameters, and

• the uncertainty in the choice of the model (here, a rigid
relation represented by a Gaussian).

5.1. Learning the Maximum Likelihood Model

Let us first consider the incremental learning of the
Gaussian model parameters that maximize the likelihood of
the relations observed in the video:

µ̂t =
πt−1µ̂t−1 + wtrt

πt−1 + wt
, (9)

σ̂2
t =

πt−1(σ̂2
t−1 + (µ̂t − µ̂t−1)2) + wt(rt − µ̂t)2

πt−1 + wt
,

(10)
πt = πt−1 + wt, (11)

where µ̂t and σ̂2
t are the mean and the variance of the Gaus-

sian, and πt is the cumulative weight of preview observa-
tions (with π0 = 0). To account for more or less reliable
observations, the parameter updates are weighted by their
likelihood product wt = p(zi,t|xi,t)p(zj,t|xj,t). For exam-
ple, in the case of an occlusion or a loss of tracking, nothing



can be learned but the tracker will produce a (meaningless)
observation nevertheless. We therefore discount such obser-
vations by using the observation likelihood as an indicator
of reliability.

5.2. Uncertainty in the Parameters

When we have only a few observations, the Gaussian
parameters produced by the maximum-likelihood estima-
tion are uncertain. This uncertainty will decrease with the
number of observations. We thus need to augment the vari-
ance of the informative part of the potential ψ (Eqn. 8) as
a function of the number of observations. It turns out that
the influence of the uncertainty in the mean is insignificant
compared to the influence of the uncertainty in the variance;
we therefore neglect the former. We consequently choose a
variance σ̃2 in a way that bounds the risk of underestimating
the true variance, i.e., P (σ̃2 ≤ σ2) = α, where convention-
ally α = 0.95. Since empirical estimates of variance follow
a χ2 distribution,

σ̃2
t =

πt

χ2
πt−1(α)

σ̂2
t , (12)

where χ2
πt−1(α) is the inverse of the cumulative density

function of the χ2 distribution evaluated at probability α.
Notice that the weight πt is used instead of the number of
observations, following the same reasoning as above: We
do not want to excessively decrease the uncertainty in the
model due to unreliable observations.

We can then simply define a new Gaussian model that
takes the uncertainty in the parameters into account:

ψi,j,t(xi,t, xj,t) = e
−

(rt − µ̂t)2

2σ̃2
t . (13)

5.3. Uncertainty in the Parametric Model

As motivated earlier, we are mainly interested in learn-
ing those relations that fit the chosen parametric model. To
make best use of learned, informative relations during track-
ing while avoiding distractive bias due to observed relations
not well represented by the model, we consider the latter
to be completely uninformative and represent them by a
uniform potential. In practice, nothing is black or white
and a model may be more or less appropriate for the rela-
tion. Therefore, we represent the potential function by a
weighted sum of the learned model and a uniform potential.
The probability of observing a relation ri,j,t = xi,t − xj,t

between features i and j at time t is then given by

ψ+
i,j,t(xi,t, xj,t) = λte

−
(rt − µ̂t)2

2σ̃2
t + (1− λt)

1
2
, (14)

where λt is the probability that the relation corresponds to a
Gaussian model (see Fig. 1). To estimate λt, we introduce a

Figure 1. Example of an uncertain relation.

method inspired from the Kolmogorov-Smirnov test. Recall
that the Kolmogorov-Smirnov distance is given by

Kn =
√
n max
−∞<x<∞

∣∣∣F̂ (x)− Fn(x)
∣∣∣ , (15)

where n is the number of observations, Fn(x) is the empir-
ical cumulative distribution function of the n observations,
and F̂ (x) is the cumulative maximum-likelihood distribu-
tion. This distance is compared to a threshold, say, to clas-
sify a sample as Gaussian or non-Gaussian.

Our context is different: We are not interested in pre-
cise Gaussianity but in relations that are about as predictive
as Gaussians. Therefore, the original Kolmogorov-Smirnov
test is unsuitable in that its sensitivity grows without bounds
with n. Instead of Eqn. 15, we use an expression indepen-
dent of the number of observations,

D =
1
|I|

∫
I

∣∣∣F̂ (x)− Fn(x)
∣∣∣ dx, (16)

where I is the interval within which the two functions are
compared. Notice that we use an integral instead of the
maximum as it renders the measure both more robust and
more discriminative in our context: Since it considers more
than a single value it produces smoother curves, and outliers
are more robustly detected because their cumulative effect
is picked up by the integral.

To simplify matters, we assume that this distance D
has a Gaussian distribution, which leads to the pseudo-
probabilistic weighting function

λt = e
−D2

T2
D , (17)

where TD is a user-settable parameter that represents the
allowed deviation of observed relations from Gaussianity.

The resulting uncertain potential function
ψ+

i,j,t(xi,t, xj,t) (Eqn. 14) is plugged into Eqn. 7 for
tracking. As we have seen, this results in a model of
the relation that is not as informative as the maximum
likelihood but exerts less counterproductive bias during
tracking under non-Gaussian and non-stationary relations.



(a) frame 001 (b) frame 020 (c) frame 050 (d) frame 100 (e) frame 113 (f) frame 130

(g) frame 142 (h) frame 200 (i) frame 227 (j) frame 246 (k) frame 305 (l) frame 338

(m) frame 378 (n) frame 457 (o) frame 509 (p) frame 580 (q) frame 700 (r) frame 900

Figure 2. Representative results. Thick lines correspond to relations of low variance σ̃ and vice versa; red saturation is proportional to the
probability λt. Each feature is tracked twice, with relations (green) and without (blue). Frame indices are given below each image.
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Figure 3. Evolution of the relations. The two relations between mouth and background are superimposed, as are those between the forehead
and the background. In (a), all three mouth relations are superimposed.

6. Experiments

In this section, we demonstate the performance of our
method on a representative example of learning and track-
ing of 2D rigid relations. More results as well as videos can
be found at http://intelsig.montefiore.ulg.ac.be/˜declercq/.
To emphasize the contribution of the relations we chose
to use a very simple feature descriptor. Features are rep-
resented by fixed image templates extracted from the first
frame, and their likelihoods are computed using the sum of
squared pixel differences. Their 2D coordinates are tracked
with particle filters; no orientation or scale changes are

considered. The informative part of the relations is repre-
sented by a Gaussian model for each 2D coordinate. We
use σ∆ = 5 pixels and TD = 0.04 pixels; these are the only
user-settable parameters of our method.

Figure 2 shows the result sequence taken with a web-
cam at a resolution of 320 × 240 and processed on-line.
Four features were selected by hand, two from the face and
two from the background. Relations were also selected by
hand. In this example, the relations are first learned as rigid
because the scene is initially motionless. As seen in Figs.
2(b) and 3(a), the relations related to the mouth are learned
more slowly than the others due to their lower likelihood



in the image. Once the head starts to move, the rigid re-
lations connecting it with the background are rapidly un-
learned. The probabilities λt of these relations become in-
significant, and their variances increase. This clearly sep-
arates the graph into two subgraphs, one for the face and
another for the background. Over the following frames, the
face is successfully tracked despite the occlusions and its
out-of-plane motions. Once the face–background relations
have been detected as non-rigid, they do not influence the
tracking anymore.

To illustrate the effect of the uncertain models on track-
ing, we track duplicate versions of the features without re-
lations, represented in blue in Fig. 2. As the figure reveals,
these features are tracked very poorly and have to be reini-
tialized many times during the sequence. It is thus clear
that it would have been very difficult to learn a relational
model from them without exploiting the – albeit uncertain
– partially-learned relations from the start.

The end of the sequence (frames 700–900) is mostly
motionless. Figure 3 shows that the probability of the
forehead–mouth relation slowly increases and that all vari-
ances decrease. The probabilities of the relations between
the facial features and the background do not increase be-
cause they were clearly non-rigid during the major part of
the sequence. It will thus take much more time for their
observation distributions to return to a Gaussian shape.

We implemented our algorithm on a Pentium Core 2 Duo
2× 2 GHz. For a number of features between 4 and 10 with
3 relations each, it runs at between 8 and 20 frames per
second.

7. Conclusions
In this paper we presented a new framework for on-line

learning of feature graphs. This method is completely un-
supervised and uses tracking to find correspondences be-
tween features. At the same time, information extracted
from previous frames is immediately used to aid the track-
ing in the new frame. For representing this information,
we proposed an uncertain model of relations based on a
parametric model that incurs only a low computational cost.
Several sources of uncertainty were identified and incorpo-
rated into the representation of the relations. The resulting
uncertain model contributes stability to tracking without ex-
erting overly strong, counterproductive bias.

The experiment demonstrates the ability of the uncer-
tain model to assist tracking without biasing it, and – con-
versely – that tracking was essential for learning the uncer-
tain model. The algorithm performed successfully under
various difficulties such as occlusions, clutter and spurious
connections between uncorrelated features.

In this paper, we presented the theory for the case of
learning rigid, Gaussian relational models, but similar de-
velopments are possible for other parametric distributions.

This work can be applied to the efficient learning of ob-
ject models for various applications such as object detec-
tion, recognition, classification and tracking. We will ex-
plore some of these in future work.
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