
Affine Warp Propagation
for Fast Simultaneous Modelling and Tracking

of Articulated Objects

Arnaud Declercq and Justus Piater

Montefiore Institute, University of Liège, Belgium
Arnaud.Declercq@ulg.ac.be, Justus.Piater@ulg.ac.be

Abstract. We propose a new framework that allows simultaneous modelling
and tracking of articulated objects in real time. We introduce a non-probabilistic
graphical model and a new type of message that propagates explicit motion infor-
mation for realignment of feature constellations across frames. These messages
are weighted according to the rigidity of the relations between the source and
destination features. We also present a method for learning these weights as well
as the spatial relations between connected feature points, automatically identify-
ing deformable and rigid object parts. Our method is extremely fast and allows
simultaneous learning and tracking of nonrigid models containing hundreds of
feature points with negligible computational overhead.

1 Introduction

Articulated object models have become an active research topic in recent years. In the
vast majority of applications, an object is represented by a graphical model connecting
rigid body parts [1, 2]. While those models are usually designed by hand, some solutions
have been proposed to automatically learn articulated models from tracks of feature
points [3, 4]. Unfortunately, robust feature tracking proves to be a challenge on its own
in long sequences.

Tracking those points becomes much easier when they can rely on a feature graph
to assist them. Since good tracking requires a model and a model is learnt based on
good tracking, the most obvious solution is to simultaneously track and learn the fea-
ture graph. While some solutions have already been proposed for offline learning [5] or
learning based on a short initialisation period [6], very few are dedicated to online learn-
ing. This domain is indeed very challenging: not only must both learning and tracking
be computed in real time, but also tracking must rely on an incomplete intermediate
model. Although we addressed the latter issue with an uncertain Gaussian model that
explicitly accounts for its predictive power [7], we were then only able to achieve real-
time tracking on very small feature graphs. Most of the computational time was not
dedicated to learning but to tracking using the popular Belief Propagation solution [8,
9] to propagate position likelihoods between nodes of the graph.

Here, we propose a new tracking solution that sacrifices the multimodality of non-
parametric, probabilistic methods for a significant gain in computational efficiency. The

4VSG��%'':�������7TVMRKIV�02'7������TT�����������(3-���������������������������C��
%YXLSV�TSWX�TVMRX��8LI�SVMKMREP�TYFPMGEXMSR�MW�EZEMPEFPI�EX�[[[�WTVMRKIVPMRO�GSQ�

2 Declercq and Piater

main idea here is to keep the benefits of a propagation scheme to share information be-
tween nodes, but formulated for a new, non-probabilistic feature graph. While each node
of the graph still represents the current position of its associated feature point, propa-
gated messages do not convey a potential function but simply the information needed to
align feature points in the new image. Thanks to this solution, we will show that large
feature graphs can be simultaneously learnt and tracked in real time. As feature points,
we will present our method using edgels (i.e. points along edges) because they are more
robust to illumination changes and lack of texture. This also allows us to show that, even
if each edgel only provides a 2D translational constraint, it can be tracked properly in a
6-dimensional affine space thanks to our propagation method.

After discussing some background in Section 2, we will introduce in Section 3 the
image alignment of a template based on the motion of a complete set of feature points.
This will give us a first idea of the information that has to be conveyed in order to align
features in a new image. In Section 4, we will consider each feature as a template but
with a connection only to its direct neighbours, and show how information from further
features can be propagated in order to be used in its alignment. In Section 5, we explain
how spatial relations between feature points are learnt and used during Affine Warp
Propagation. Finally, experimental results are presented in Section 6.

2 Related Work

Various methods have been proposed for simultaneous learning and tracking of rigid
graph models [7, 10, 11]. The main drawback of these methods is their limitation to
rigid objects or so small that feature displacements can be assumed spatially coherent.

Unsupervised learning of articulated models from a video sequence usually relies
on existing feature trajectories that are processed off-line [4, 3]. Ramanan et al. [5]
proposed an off-line unsupervised method that simultaneously discovers, tracks and
learns articulated models of animals from video. Unfortunately, their method is slow
and requires the whole video to be treated as a block, making it impossible to adapt to
an on-line process. Krahnstoever et al. [6] presented an automatic on-line acquisition
and initialisation of articulated models. Their method extracts independently moving
surfaces and tracks them using Expectation-Maximisation during a short initialisation
period. An articulated model is deduced from these motions and is used for tracking
in subsequent images. Since no model update is provided, it is strongly dependent on
the key-frames selected for learning. Finally, Droin et al. [12] developed a method to
incrementally segment the rigid parts of an object on-line. It maintains a set of possible
models learnt from previous frames, and uses them for tracking. Although interesting,
their technique suffers two main drawbacks: it requires a foreground extraction, and it
doesn’t learn or use any spatial relations during tracking.

In terms of feature-graph tracking, the most popular solution is Belief Propagation
(BP) [8, 9] and its derivatives like Nonparametric Belief Propagation or Sequential Be-
lief Propagation [13, 14, 9] that combine BP with particle filters. Although our method is
completely different from BP since it is a non-probabilistic solution, its message pass-
ing process is strongly inspired from it. Apart from that, our method is more closely
related to image alignment techniques such as the Lucas-Kanade algorithm [15, 16].

Affine Warp Propagation 3

3 Image Alignment via Affine Warps

Consider, first, that we have a model of the object we want to track. This model consists
of a weighted set of n edgels and their positions X = (x1, . . . ,xn) in the model’s
referential. In order to align this model with a set of target positions T = (t1, . . . , tn)
in a given image, we use an affine warp:

W (xi; p) =
[

1 + p1 p3 p5

p2 1 + p4 p6

]xiyi
1

 (1)

where p = [p1, p2, p3, p4, p5, p6] corresponds to the warp’s parameters, and xi =
[xi, yi]. Alignment of the model with target positions is given by the warp that min-
imises the sum of squared residuals

R =
∑
i

wi‖W (xi; p)− ti‖2 (2)

with wi representing the weight of point i.
In the case of tracking, we can assume that a current estimate of p is known and

target positions T = (t1, . . . , tn) can be obtained using the new image (using the
closest contour points to each edgel for example). Alignment of the template in the new
image is then obtained by minimising R for the incremental warp W (x, ∆p) :

R =
∑
i

wi‖W (W (xi; p);∆p)− ti‖2 (3)

Then parameters p are updated such that

W (x; pnew) = W (W (x; pold);∆p). (4)

In order to solve the warp update, the expression in equation 3 is linearised by perform-
ing a first-order Taylor expansion on W (W (x; p);∆p) to give:

R =
∑
i

wi

∥∥∥∥W (W (xi; p); 0) +
∂W

∂p
∆pi − ti

∥∥∥∥2

(5)

Since W (x; 0) is the identity warp, W (W (x; p); 0) then simplifies to W (x; p). Fol-
lowing the notational convention that partial derivatives with respect to a column vector
are laid out as a row vector and with W (x; p) = [Wx,Wy]T , the Jacobian ∂W

∂p of the
warp at equation 5 is given by:

∂W

∂p
=

[
∂Wx

∂p1
∂Wx

∂p2
· · · ∂Wx

∂p6
∂Wy

∂p1

∂Wy

∂p2
· · · ∂Wy

∂p6

]
=
[
x 0 y 0 1 0
0 x 0 y 0 1

]
(6)

Notice that ∂W
∂p is computed for W (W (x; p);∆p), which means that values used in

equation 6 are the current coordinates of the points in the image.

4 Declercq and Piater

The solution to the minimisation of equation 5 is obtained by setting to zero its
partial derivatives with respect to ∆p:

∆p = H−1
∑
i

wi

[
∂W

∂p

]T
Di (7)

where Di = [ti −W (xi; p)]T is the displacement required of point i, and H is the
n× n Hessian matrix (here with n = 6):

H =
∑
i

wi

[
∂W

∂p

]T [
∂W

∂p

]
(8)

The warp update then consists of iteratively applying equations 7 and 4 until estimates
of the parameters p converge (in the case of affine transformation, one iteration is suf-
ficient since the system is linear in the parameters which wouldn’t be the case with a
parameter such as orientation for example).

The solution obtained in equations 7 and 8 is interesting because it means that ∆p

is computed using only the two matrices H and S =
∑
i wi

[
∂W
∂p

]T
Di whose sizes are

independent of the number of points used. The fact that both matrices are computed as a
sum over the points is also advantageous since information provided by new points will
be easily added to the current matrices. Those two conditions met, a message containing
them seems an attractive candidate to propagate motion information.

4 Affine Warp Propagation

In the case of a feature graph, no feature point is connected to a global model. Each one
has only access to a set of learnt relations with its direct neighbours. Since the motion
of an edgel is locally ambiguous, it will require information from the biggest possible
neighbourhood. Moreover, if relations between edgels have to be learnt, it would be
more convenient to express edgel configurations in an affine space instead of simply 2D
space. In order to compute the affine warp needed to align a point and its surrounding in
a new image, information will then have to be propagated in the graph. Before getting
into the details of which information is required and how to propagate it, let’s first
consider the representation of the non-probabilistic graphical model we wish to learn.

4.1 Non-Probabilistic Graphical Model Definition

A node i of a graph contains the set of parameters pi used to warp the corresponding
edgel i and its neighbourhood from the origin to a position that aligns them with the
current image. In that sense, a node is similar to the template discussed in Section 3
except that it doesn’t have direct connection to all the points used for its alignment.

An edge going from node i to node j represents two types of information. First, it
contains the learnt affine parameters ri|j of i as they were previously observed in the
affine space of j, i.e. the parameters that align i and its surroundings from the origin to

Affine Warp Propagation 5

wk|(k+1)

wk|j

wi|jw1|2 wα|β

pα pβ pi pjp1 p2

1

1

0

0

Fig. 1. Simple line graph situation where all spatial relations between connected points are rigid
except for the relation between α and β. This means that this graph represents two uncorrelated
rigid sets of points: one on the left and one on the right of the relation between α and β. The learnt
weights between a node k and the node to its right are given by wk|(k+1) (centre panel). In the
case where messages are propagated from left to right, the bottom panel illustrates the resulting
influence wk|j on the rightmost point j of each upstream point k. Here, the null weight wα|β
eliminates the influence on pj of the points that are not in the same rigid set.

their observed positions in the space of j. Secondly, it contains the weight wi|j node j
should give to the information coming from node i. This weight is directly related to
the rigidity of the relation: the lower the correlation between two features, the lower the
weight and then the smaller the influence of messages passing through this connection.
This means that information coming from points behind a non-rigid connection will
have no influence on image alignment (see Figure 1 for an example).

4.2 Message Definition

In this section, we will use, for the sake of explanation, the simple line graph shown in
Figure 1. If node j had access to the displacement Dk of all the points on the graph, its
warp update using equation 7 would be

∆pj = H−1
j

∑
k≤j

wk|j

[
∂Wk|j

∂pj

]T
Dk, (9)

where we use ∂Wk|j
∂pj

to indicate that the Jacobian is computed for W (W (řk|j ; pj); 0),
i.e. for the projection in the image coordinates of the 2D position řk|j = [rx,k|j , ry,k|j]
of node k in the referential of node j. Now, if we define wk|j = wk|iwi|j for the graph
of Figure 1, the sum can be decomposed the following way:

Sj =
∑
k≤j

wk|j

[
∂Wk|j

∂pj

]T
Dk (10)

= wj

[
∂Wj|j

∂pj

]T
Dj + wi|j

∑
k≤i

wk|i

[
∂Wk|i

∂pi

]T
Dk (11)

= Sj + wi|jSi (12)

6 Declercq and Piater

where wj = wj|j is the weight node j gives to its feature point and, more importantly,
where we made the assumption that

∂Wk|j

∂pj
=
∂Wk|i

∂pi
(13)

This assumption means we consider that point k is projected in the same image co-
ordinates by nodes i and j, i.e. W (řk|j ; pj) = W (řk|i; pj) which is actually correct
if nodes i and j are linked by a perfectly rigid spatial relation. Since the weights are
null for non-rigid relations, this assumption seems valid. Unfortunately, we will see in
Section 4.3 that even if the weights are all correct (which is not guaranteed during the
learning phase), small numerical errors can trigger a drift from the correct tracking re-
sult. While this will motivate a more general formulation in Section 4.3, we propose to
continue with this assumption for now in order to understand more easily what type of
information a message should contain.

Decomposing Hj in a similar way to Equation 12, we obtain:

Hj = Hj + wi|jHi (14)

Equations 12 and 14 mean that the warp update for a node j based on all the points of
the graph in Figure 1 can be computed using only the information from itself and that
accumulated by node i. In the case of affine warps, Sj and Hj are given by:

Sj = wj [xjDx,j xjDy,j yjDx,j yjDy,j Dx,j Dy,j]T (15)

Hj = wj



x2
j 0 xjyj 0 xj 0
0 x2

j 0 xjyj 0 xj
xjyj 0 y2

j 0 yj 0
0 xjyj 0 y2

j 0 yj
xj 0 yj 0 1 0
0 xj 0 yj 0 1

 (16)

where we used Dj = [Dx,j , Dy,j], xj = px,j , yj = py,j . Note that Hj has a lot of
null or identical elements. Without any loss of information, we can thus reduce it to the
vector:

H j = wj
[
1 xj yj x2

j xjyj y
2
j

]T
(17)

A message containing the two vectors S and H is then enough to convey all the in-
formation needed to align the nodes in the new image. Notice that the messages are not
expressed in the same space as the feature points or the nodes. This way, displacements
can be accumulated through small 12-element messages in order to compute the affine
alignment of the nodes without any loss of information. Moreover, an affine warp can
be computed (given that enough nodes have been visited) with those messages while
each node only needs to provide a translation. With a propagation scheme inspired
from Belief Propagation [8, 9], the computation of the warp update for each node i can
be summarised in 3 steps :

Affine Warp Propagation 7

1. Initialise the information for each node k of the graph using equations 15 and 17
and send a first message to each neighbouring node i ∈ N (k):

S0
ki = Sk; (18)

H
0

ki = H k; (19)

2. Propagate the information between the nodes for l iterations (for a message sent
from node i to node j):

Slij = Si +
∑

k∈N (i)\j

wk|iS
l−1
ki (20)

H
l

ij = H i +
∑

k∈N (i)\j

wk|iH
l−1

ki (21)

3. Compute the update of the warp parameters for each node j:

Sj = Sj +
∑

k∈N (j)

wk|jSlkj (22)

Hj = H j +
∑

k∈N (j)

wk|jH
l

kj (23)

Hj ← Hj (24)
∆pj = H−1

j Sj (25)

withN (j) representing the set of neighbouring nodes to node j. This solution provides
a very fast propagation method that allows each node to align itself in a new image
using as much information as possible provided by other feature points. Notice that no
information is lost in the message passing process. This means that updating the warp
parameters by Equation 7 using a template or by Equation 25 using the message passing
process will give exactly the same result (given that the messages went once throught
all the nodes of the template).

4.3 Message Correction

In the previous section we made the assumption that W (řk|j ; pj) = W (řk|i; pj) in
order to obtain Equations 12 and 14. This assumption means that a node k should be
expected in the same position by all the nodes belonging to the same rigid block. Even
if all the nodes are indeed rigidly connected to each other, this assumption might not be
correct simply because of numerical inaccuracies in the tracking result. Consider, for
example, the case of tracking a set of nodes as shown in Figure 4.3. Edgels have been
extracted along a line segment and tracked for a few frames. Due to some inaccuracy in
the tracking, the edgels are not in a straight line anymore. If node i aligns itself using its
two direct neighbours’ motion information, it will be pushed up while it should actually
go down (it will also be dramatically scaled down on the vertical direction in case of
affine nodes). Similarly, node j will be forced to move down making it drift even further
from the correct tracking result. The reason for this problem is quite simple: each node

8 Declercq and Piater

p̌i

p̌h p̌j

th

ti

tj

p̌k

tk

p̌i

p̌h p̌j

p̌h|i p̌j|i

th ti tj

Fig. 2. Consider the edgels in Figure 2(a). Those edgels should be in straight line but are not, due
to tracking inaccuracy. If nodes i and j are aligned in this new image using displacement of their
direct neighbours, they will drift even further from each other while they should align along the
contour. On the other hand, if they know where their neighbours should be and compute their
displacement from there, the nodes will be able to correct for the current drift (see Figure 2(b)
where p̌h|i = W (řh|i; pi) and p̌j|i = W (řj|i; pi) represent the positions nodes h and j should
have with respect to node i).

acts as the model described in Section 3 but does not itself evaluate the displacement of
the points used. This displacement is indeed provided by each individual node without
any consideration of whether it belongs to the model of another node or not. If the
assumption W (řk|j ; pj) = W (řk|i; pi) is verified, the points used by a model are
located exactly where they are supposed to be, and the displacement information is
therefore correct. If it is not verified (for numerical reason for example), the node will
simply try to match this new configuration of edgels to the current image instead of
trying to get back to its initial configuration. For the example of Figure 2(a), this means
matching the v-shape form by h, i and j to a line segment.

By learning the correct relative positions and using them as the origin of the dis-
placement (as shown in Figure 2(b)), the proper relative position of the nodes can be
maintained and the drift problem eliminated. Concerning a message to a node i, this
means that every occurrence of a position p̌k = W (řk|k = 0; pk) must be shifted
to the expected position p̌k|i = W (řk|i; pi). By the same idea, every displacement
Dk = tk − p̌k must be replaced with the expected displacement Dk|i = tk − p̌k|i.
Notice that the target tk is not modified and is then only an approximation of the true
target p̌k|i should have provided. Indeed, the correct target tk|i cannot be computed
since the information about p̌k|i is merged into Si and Hi. However, since the drift is
corrected at each frame, it is kept very small and tk is therefore a good estimate of tk|i.
With these modifications applied, we can see in Figure 2(b) that node i will receive
coherent information, causing it to move downwards as needed.

The correction of the positions and displacements of all the points used in the align-
ment of a node j is a little tricky because a node j has only access to the information
(ri|jand pi) related to its direct neighbours and the messages ml

j,i = {Sl
ji ,H

l

ji} they
send. This means that a message coming from a neighbour i must already be corrected
for i (since no spatial relation has been learnt with further points) and then adapted
for j. Figure 3 shows an example of this situation where, again, we consider the case
where all the points should be in a straight line while they are obviously not. So, as-
sume that all the positions p̌k and displacements Dk of the points k included in the
message ml

j,i have already been corrected into p̌k|i and Dk|i respectively. In order to

Affine Warp Propagation 9

p̌jp̌i
p̌h

p̌g

p̌g|j

p̌h|i p̌i|j
p̌h|j

p̌g|i

Fig. 3. Position correction: p̌k represents the current 2D position of the edgel associated with
node k, p̌k|i its position as expected by i and p̌k|j its position as expected by j. In this example,
nodes should be align along a straight line while they are more in a curve configuration. If node
i has already corrected the position of the nodes on its left into a straight line, all is left to do for
node j is to apply a single warp to all the p̌k|i to align them with the p̌k|j . The warp needed to
do that is the one that aligns the affine parameters pi to pi|j .

obtain the positions p̌k|j expected by j, the only thing left to do is to adapt the positions{
p̌1|i, . . . , p̌i|i

}
proposed by node i to the positions

{
p̌1|j , . . . , p̌i|j

}
expected by node

j. The correction is the same for all the positions included in the message. Given that pi
and pi|j are known by node j they can be used to compute the transformation needed
to go from p̌k|i to p̌k|j . This transformation is simply given by

xk|j = W (W (p̌k|i; p−1
i); pi|j) (26)

for any p̌k|i. Equation 26 means that a position p̌k|i is warped back into the referential
of node i and then warped into the image using the warp parameters pi|j .

Since we do not have direct access to positions p̌k|i, we will have to apply this

transformation directly to the message, i.e. to Sl
ji and H

l

ji. Using the notationxk|jyk|j
1

 = W (W (p̌k|i; p−1
i); pi|j) =

a c vb d w
0 0 1

xk|iyk|i
1

 (27)

for the correction of the points in the message, we will now apply this correction directly
to the Hessian part of the message corrected by node i and sent to j, i.e.

H
l

ji|i =
∑
k

wk|i

[
1 xk|i yk|i x2

k|i xk|iyk|i y
2
k|i

]T
(28)

The corrected Hessian part H
l

ji|j is obtained using equation 27 on each of its terms of,
which gives

H
l

ji|j =


1 0 0 0 0 0
v a c 0 0 0
w b d 0 0 0
v2 2av 2cv a2 2ac c2

vw aw + bv cw + dv ab ad+ bc cd
w2 2bw 2dw b2 2bd d2

H
l

ji|i (29)

10 Declercq and Piater

The correction of Sij is somewhat more difficult because it also depends on Dk|i =
tk− p̌k|i. The target position tk is not modified by the correction, so we replaceDk|i =
[Dx,k|i, Dy,k|i] by [tx,k − xk|i, ty,k − yk|i] in

Slij|i =
∑
k

wk|i [xk|iDx,k|i xk|iDy,k|i yk|iDx,k|i yk|iDy,k|i Dx,k|i Dy,k|i]T (30)

and apply the same correction as for H
l

ji|i to yield

Slij|j =


a 0 c 0 v 0
0 a 0 c 0 v
b 0 d 0 w 0
0 b 0 d 0 w
0 0 0 0 1 0
0 0 0 0 0 1

Slij|i +


0 v 0 a c 0
0 0 v 0 a c
0 w 0 b d 0
0 0 w 0 b d
0 1 0 0 0 0
0 0 1 0 0 0

H
l

ji|i −



H
l

ji|j(4)

H
l

ji|j(5)

H
l

ji|j(5)

H
l

ji|j(6)

H
l

ji|j(2)

H
l

ji|j(3)


(31)

Using these two equations to correct the messages allows us to solve the drift problem
by maintaining the nodes at their learnt relative positions, making the tracking more
robust to occlusions and clutter.

5 Learning Spatial Relations and Weights

As we noted above, the learnt relations are key to successful tracking with Warp Prop-
agation. Not only do they define the shape of the correlated neighbourhood used in the
tracking through their weight, but they also model the expected relative configurations
that keep the feature points in proper relative positions. The relative expected configura-
tion ri|j of a node iwith respect to a node j is learnt from the observed affine parameters
of i in the affine space of j. Since those relations are learnt online during tracking, they
should be reliable from the first frame even with an obviously incomplete data set to
be learnt from. This means that, while the relations are expected to assist in tracking,
they cannot exert an overly strong bias that would hamper it. Earlier we proposed an
Uncertain Potential Function that solves this problem for visual feature graph tracking
with Sequential Belief Propagation by combining an informative Gaussian model learnt
from the previous observations with a non-informative part [7]. This potential function
for the relative position of a node i expressed in the affine space of a node j was given
by

ψi|j(pi, pj) = λi|je
− 1

2 (si|j−ri|j)Σ̃
−1
i|j (si|j−ri|j) + (1− λi|j) (32)

where si|j represents the observed parameters pi expressed in the space defined by
pj , ri|j is the learnt relative configuration (i.e. the mean of the relative configurations
already observed), λi|j is the probability that the model is indeed Gaussian and Σ̃i|j is
a covariance matrix that accounts for the uncertainty related to the incomplete data set.
Due to lack of space here, we refer the interested reader to our earlier work [7] for more
details.

Affine Warp Propagation 11

While this spatial relation representation is specially designed to be used for the
tracking during its learning phase, it is also specific to probabilistic feature graphs,
which our representation is not. Nevertheless, very few changes are needed to adapt
this uncertain model to our problem. Indeed, the computed mean ri|j already represents
the most likely relative affine configuration we used in Section 4, so we simply have to
compute our relational weight using the covariance matrix Σ̃ij and model probability
λi|j from the uncertain model [7]:

wi|j = λi|j
∏
n

e
−
Σ̃nn,i|j

σ2
n,i|j (33)

where Σ̃nn,i|j represents the nth diagonal element of Σ̃i|j , and σi|j = [σ1,i|j , . . . , σ6,i|j]
defines the level of variance accepted for each parameter. This way, the more variance
we observe in the relative configuration of two feature points, the less weight each one
will give to a message coming from the other.

6 Experiments

In this section, we demonstrate the performance of our method on a set of representative
examples of simultaneous learning and tracking. Since we are interested in articulated
objects, we propose to use points extracted along their skeleton (let’s call them skedgels)
in addition to edgels. Those points do not have an appearance in the image and instead
rely on edgels to infer their displacement. Models are initialised as shown in the first
row of Figure 6 where relations are created between each pair of skedgels within a
distance lower than a given threshold and between skedgels and edgels using Delaunay
triangulation. The model is tracked using Warp Propagation with 10 iterations, and
relations between skedgels are updated at each frame with the method explained in
Section 5. Results can be found in Figure 6 where the last row represents the relation
weights between skedgels at the end of the video. Notice that, while edgels and skedgels
on their own would slide long the objects, here their correct position is maintained
thanks to Warp Propagation. Thanks to the learnt relations, the influence neighbourhood
is limited to the rigid parts.

On a Pentium Core 2 Duo 2x2 GHz with 2Gb of RAM, the tracking time for each
frame (including the likelihood propagation) is between 1.6 and 3.6ms, and the learning
time is between 0.3 and 0.7ms. The slowest sequence is the hand with 99 skedgels, 319
edgels and 99 relations. The fastest is the finger with 42 skedgels, 203 edgels and 41
relations.

7 Discussion

We presented a new framework for efficient propagation of alignment information
through a feature-point graph. Instead of propagating potential functions as is usually
done, we propagate only the motion information needed to align feature points and their

12 Declercq and Piater

Fig. 4. Examples of simultaneous modelling and tracking of articulated objects. The first row
shows the graphs as they are initialised in the first frame. The three central rows show intermediate
results during the video (arm: frames 40, 90 and 255, body: 60, 130 and 330, finger: 90, 230, 310
and hand: 70, 230 and 310). Connections in red between skedgels correspond to relations with
a weight lower than 0.5. The last row shows the weights of the relations in the last frame of the
video. The y-axis corresponds to the weights (range between 0 and 1) and the x-axis correspond
to the index of the relation. Although the correspondences of these indices to the feature graphs
are not shown, it is evident that there are clean cuts in the graph with weights close to 0 that
correspond to non-rigid parts, while the rigid relations have a weight close to one.

Affine Warp Propagation 13

surroundings in the image. We showed that this solution allows us to simultaneously
track and learn unknown, articulated objects in a few milliseconds per frame, making
our solution practical in real-time scenarios even with a large number of feature points.
This article focused mainly on tracking but, in the future, it would be interesting to
provide a learning scheme for articulated relations instead of simple Gaussian models.

8 Acknowledgement

This work is supported by a grant from the Belgian National Fund for Research in
Industry and Agriculture (FRIA) to A. Declercq and by the EU Cognitive Systems
project PACO-PLUS (IST-FP6-IP-027657).

References

1. Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S.: Visual hand tracking using
nonparametric belief propagation. In: CVPRW’04 - Volume 12, Washington, DC, USA,
IEEE Computer Society (2004)

2. Wu, Y., Hua, G., Yu, T.: Tracking articulated body by dynamic markov network. In:
ICCV’03, Washington, DC, USA, IEEE Computer Society (2003) 1094

3. Ross, D.A., Tarlow, D., Zemel, R.S.: Unsupervised learning of skeletons from motion. In:
ECCV’08, Berlin, Heidelberg, Springer-Verlag (2008) 560–573

4. Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajectories of ar-
ticulated objects. In: CVPR’06, Washington, DC, USA, IEEE Computer Society (2006)
712–719

5. Ramanan, D., Forsyth, D.A., Barnard, K.: Building models of animals from video. PAMI’06
28 (2006) 1319–1334

6. Krahnstoever, N., Yeasin, M., Sharma, R.: Automatic acquisition and initialization of artic-
ulated models. Mach. Vision Appl. 14 (2003) 218–228

7. Declercq, A., Piater, J.H.: On-line simultaneous learning and tracking of visual feature
graphs. Online Learning for Classification Workshop, CVPRW’07 (2007)

8. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its general-
izations. (2003) 239–269

9. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation.
In: CVPR’03. Volume 1. (2003) I–605–I–612 vol.1

10. Leordeanu, M., Collins, R.: Unsupervised learning of object features from video sequences.
In: CVPR’05 - Volume 1, IEEE Computer Society (2005) 1142–1149

11. Yin, Z., Collins, R.: On-the-fly object modeling while tracking. In: CVPR’07, IEEE Com-
puter Society (2007) 1–8

12. Drouin, S., Hébert, P., Parizeau, M.: Incremental discovery of object parts in video se-
quences. Comput. Vis. Image Underst. 110 (2008) 60–74

13. Briers, M., Doucet, A., Singh, S.S.: Sequential auxiliary particle belief propagation. In:
Information Fusion, 2005 8th Int. Conf. on. Volume 1. (2005) 8 pp.+

14. Hua, G., Wu, Y.: Multi-scale visual tracking by sequential belief propagation. CVPR’04 1
(2004) 826–833

15. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Int. J. Comput.
Vision 56 (2004) 221–255

16. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to
stereo vision. In: IJCAI’81. (1981) 674–679

