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Autonomous Learning of Object-specific Grasp Affordance Densities
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In this paper, we address the issue of learning and repre-
senting object grasp affordances. Our first aim is to organize
and memorize, independently of grasp information sources,
the whole knowledge that an agent has about the grasping
of an object, in order to facilitate reasoning on grasping
solutions and their likelihood of success.

By grasp affordance, we refer to the the different ways to
place a hand or a gripper near an object so that closing the
gripper will produce a stable grip. The grasps we consider are
parametrized by a 6D gripper pose and a grasp (preshape)
type. The gripper pose is composed of a 3D position and
a 3D orientation, defined within an object-relative reference
frame. We represent the affordance of an object for a certain
grasp type through a continuous probability density function
defined on the 6D object-relative gripper pose space SE(3),
similar to the approach of de Granville et al. [2]. The com-
putational encoding is nonparametric: A density is simply
represented by the samples we see from it. The samples sup-
porting a density are called particles; the probabilistic density
in a region of space is given by the local density of the
particles in that region. The underlying continuous density
is accessed by assigning a kernel function to each particle –
a technique generally known as kernel density estimation [6].
The kernel functions essentially capture Gaussian-like shapes
on the 6D pose space SE(3) (see Fig. 1). The expressiveness
of a single kernel is rather limited: location and orientation
components are both isotropic, and within a kernel, location
and orientation are modeled independently. Nonparametric
methods account for the simplicity of individual kernels by
employing a large number of them: a grasp density will
typically be supported by a thousand particles. An object
is linked to a separate grasp density for each type of grasp
it affords, e.g. one density for pinch grasp affordance and
another density for or power grasps.

The second contribution of this paper is a framework that
allows an agent to learn initial affordances from various grasp
cues, and enrich its grasping knowledge through experience.

Affordances are initially constructed from human imi-
tation, or from model-based methods [1]. The grasp data
produced by these grasp sources is used to build contin-
uous grasp hypothesis densities. Given the nonparametric
representation, building a density from a set of grasps is
straightforward – grasps can directly be used as particles
representing the density. These densities are attached to a
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Fig. 1. Grasp density representation. The top image of Fig. (a) illustrates a
particle from a nonparametric grasp density, and its associated kernel widths:
the translucent sphere shows one position standard deviation, the cone shows
the variance in orientation. The bottom image illustrates how the schematic
rendering used in the top image relates to a physical gripper. Fig. (b) shows
a 3D rendering of the kernels supporting a grasp density for a table-tennis
paddle (for clarity, only 30 kernels are rendered). Fig. (c) indicates with a
green mask of varying opacity the values of the location component of the
same grasp density along the plane of the paddle (orientations were ignored
to produce this last illustration).

(pre-existing) 3D visual object model [3], [5], which will
allow a robotic agent to execute samples from a grasp
hypothesis density under arbitrary object poses, by using the
visual model to estimate the 3D pose of the object. The
visual model has the form of a hierarchy of increasingly
expressive object parts called features; the single top feature
of a hierarchy represents the whole object. A hierarchy is
implemented in a Markov tree, features corresponding to
hidden nodes. A grasp affordance is attached to this model
simply as a new grasp feature linked to the top feature of the
network. Probabilistically speaking, this effectively stores an
expression of the joint distribution p(Xo, Xg), where Xo is
the pose object, and Xg is the grasp affordance.

Visual inference of the hierarchical model is performed
using a belief propagation algorithm (BP) [4], [7], [3].
BP derives a posterior pose density for the top feature of
the hierarchy, thereby producing a probabilistic estimate of
the object pose. When an object model has been visually
aligned to an object instance, the grasp affordance of the
object instance is computed through the same BP inference.
Intuitively, this corresponds to transforming the grasp density
to align it to the current object pose, yet explicitly taking the
uncertainty on object pose into account to produce a posterior
grasp density that acknowledges visual noise.

Fig. 2a shows samples from a hypothesis density learned
from imitation of human grasps at a tea jug, along with the
visual 3D jug model. Fig. 2b shows another imitation-based
hypothesis density, projected on a 2D image in the same way
as Fig. 1.
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Fig. 2. Hypothesis densities learned from imitation. See text for details.

As the name suggests, hypothesis densities do not pretend
to reflect the true properties of an object. Their main defect
is that they may strongly suggest grasps that might not
be applicable at all, for instance because of embodiment
discrepancies between the demonstrator and the robot in
imitation-grounded hypotheses. A second, more subtle issue
is that the grasp data used to learn hypothesis densities will
generally be afflicted with a source-dependent spatial bias. A
very good example can be made from grasps computed from
a visual model [1], which will be more numerous around
parts of the object that have a denser visual resolution, inci-
dentally biasing the corresponding region of the hypothesis
density to a higher value. The next paragraphs explain how
grasping experience can be used to compute new densities
(empirical densities) that better reflect object properties.

Empirical densities are leaned from the execution of
samples from a hypothesis density, allowing the agent to
familiarize itself with the object by discarding wrong hy-
potheses and refining good ones. Familiarization thus essen-
tially consists in autonomously learning an empirical density
from the outcomes of sample executions. A simple way
to proceed is to build an empirical density directly from
a set of successful grasp samples. However, this approach
would inevitably propagate the spatial bias mentioned above
to the new densities. Instead, we use importance sampling
to properly weight successful grasps, allowing us to draw
samples from the physical grasp affordance of an object.
The weight associated to a grasp sample x is computed
as a(x) /q(x), where a(x) is 1 if the execution of x
has succeeded, 0 else, and q(x) corresponds to the value
of the continuous hypothesis density at x. A set of these
weighted samples directly forms a grasp empirical density.
Each empirical density is associated to the object model in
the same way as hypothesis densities, through a new feature
in the hierarchical network.

Fig. 3a shows the particles supporting a hypothesis density
computed from visual cues [1]. Fig. 3b shows an empirical
density learned from the hypothesis density of Fig. 3a. The
feedback on grasp execution needed to build the empirical
density of Fig. 3b was provided by a human teacher, through
visualization of the grasps and the object in a 3D rendering
software. The main evolution from Fig. 3a to Fig. 3b is
the removal of a large number of grasps for which the
gripper wrist collides with the object. Grasps also tend to
approach the paddle along paths contained in the paddle
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Fig. 3. Particles from grasp densities. Fig. (a) corresponds to a hypothesis
density learned from visual cues. Fig. (b) is an empirical density learned
from Fig. (a). See text for details.

plane, preventing fingers from colliding with the object
during hand servoing.

A unified representation of grasp affordances can poten-
tially lead to many applications. An interesting example
is their use within a grasp planner, which would combine
a grasp density with hardware physical capabilities (robot
reachability) and external constraints (obstacles) in order to
select the grasp that has the largest chance of success within
the subset of achievable grasps.
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