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Abstract
A moving target produces a coherent cluster of feature
points in the image plane. This motivates our novel method
of tracking multiple targets via feature points. First, the
Harris corner detector and the Lucas-Kanade tracker are
applied in each frame to detect feature points and their as-
sociated velocities. Points that are both spatially co-located
and exhibit similar motion are grouped into clusters. Due to
the non-Gaussian distribution of the points in a cluster and
the multi-modality resulting from multiple targets, a spe-
cial particle filter, the mixture particle filter, is adopted to
model the mixture point distribution over time. Each clus-
ter is treated as a mixture component and is modeled by
an individual particle filter. The filters in the mixture are in-
stantiated and initialized by applying the EM algorithm, are
reclustered by merging overlapping clusters and splitting
spatially disjoint clusters, and are terminated when their
component weights drop below a threshold. The advan-
tage of using mixture particle filtering is that it is capable
of tracking multple targets simultaneously and also of han-
dling appearing and disappearing targets. We demonstrate
the effectiveness of our method on different PETS datasets.

1. Introduction
Feature point tracking is essential to many computer vision
tasks such as image mosaicking [1], structure from motion
[2], object tracking [3], etc. This paper presents a novel
method of tracking multiple targets via feature points. The
principle behind it is simple. As a moving target produces a
coherent cluster of feature points in the image plane, track-
ing is converted to cluster analysis by perceptually grouping
those groups of feature points that are spatially co-located
and exhibit similar motion as well. Throughout the paper,
the term cluster denotes a set of coherent points coming
from a moving target or a group of moving targets.

An intuitive idea of clustering feature points is to con-
struct finite Bayesian finite mixture models. By assuming
Gaussian distribution, it can be easily solved using the EM
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algorithm [4] . However, the Gaussian assumption does
not hold in practice. In fact, the spatial distribution of the
points in a cluster is better approximated by a finite uniform
model. Therefore, a particle filter, which represents the pos-
terior distribution with a set of weighted particles and makes
no assumption at all about the model of the distribution, is
suitable for handling non-Gaussianity [5]. Traditional par-
ticle filters perform poorly at consistently maintaining the
multi-modality in the target distribution that often results
from multiple targets. Vermaak et al. [6] introduced a mix-
ture particle filter (MPF), where each component (mode or,
in our case, cluster) is modeled with an individual particle
filter that forms part of the mixture. The filters in the mix-
ture interact only through the computation of the component
weights. By delegating the resampling step to individual fil-
ters, one avoids the problem of sample depletion, which is
often responsible for the loss of a track [7].

In this paper, we extend the MPF filtering approach to fit
our cluster analysis task. First, feature points and their asso-
ciated velocities are detected in each frame using the Harris
corner detector [8] and the Kanade-Lucas-Tomasi tracker
(KLT) [9]. The MPF is then applied to model the mixture
point distribution over time. Each cluster is treated as a mix-
ture component and is tracked by an individual particle fil-
ter. The filters in the mixture are instantiated and initialized
by applying the EM algorithm, are reclustered by merging
overlapping clusters and splitting spatially disjoint clusters,
and are terminated when their component weights drop be-
low a threshold. The advantage of using MPF is that it is
capable of tracking multiple targets simultaneously and of
handling appearing and disappearing targets. Our method
is especially well suited for the typical video surveillance
configuration where the cameras are still and targets of in-
terest appear relatively small in the image so that feature
points on them show strong coherence in space and motion.
We demonstrate the effectiveness of our method on different
PETS datasets [10].

Most previous work on point tracking focused on recon-
structing individual point trajectories as long as possible.
For instance, the KLT algorithm matches points by mini-
mizing the sum of squared intensity differences [9]. As min-
imization is sensitive to local extrema, KLT fails easily in
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Figure 1: Result of Harris corner detection and KLT tracking. In the left panel, point distributions of clusters are shown in the
image plane. In the right panel, all the corners in the sequence are displayed in the spatio-temporal domain. After removing
background points, the structure of the trajectories of moving targets are clearly seen.

case of occlusions and target deformations. Robust methods
such as optimal matching [11], probabilistic filtering tech-
niques [12], model-based approaches [13], etc. have been
developed to improve the reliability of single-point track-
ing. However, the key problem remains: When occlusions
or deformations occur, feature points become less stable –
corner points are occluded or may turn into edges – making
tracking or matching difficult. With our approach, missing
or unstable feature points will not affect the tracking results
very much as we consider only stochastic properties of the
clusters of feature points. A similar idea was introduced
by Pece [14] where tracking was done by cluster analysis
of regions using the EM algorithm. Borrowing only the
idea of cluster analysis, our contributions are, first, to ap-
ply it to points instead of regions, thus avoiding background
modeling which is sensitive to illumination changes; sec-
ond, to take motion coherence into account when comput-
ing measurements of clusters, which improves the robust-
ness of cluster analysis; third, to integrate the prior motion
model and measurements from the image using the MPF,
which significantly stabilizes the estimation of the cluster
parameters.

The rest of the paper is organized as follows. Section 2
describes the MPF model and our point cluster model. Au-
tomatic initialization by EM based cluster analysis is given
in Section 3. Section 4 introduces the mixture particle fil-
tering process. Results on sequences from PETS2001 are
illustrated in Section 5.

2. Model Description
The motivation of this work is to develop a multi-target
tracker based on point tracking for video surveillance ap-
plications. By detecting Harris corners and applying KLT
in each frame, a number of feature points with their asso-
ciated velocities in the sequence are obtained, as shown in
Figure 1. Points on moving targets exhibit large displace-
ments, whereas points on the static background are charac-

terized by very little motion. Our task is to detect how many
clusters are present, and to assign each point to a cluster.

2.1. MPF Model
As stated above, MPF is adopted to solve the non-
Gaussianity and multi-modality. In state-space models, the
state sequence {xt} is assumed to be a hidden Markov
process with a prior dynamic model D(xt|xt−1). The ob-
servations up to time t yt = {y1, . . . , yt} are conditionally
independent given the process {xt} with marginal distrib-
ution p(yt|xt). For tracking, the distribution of targets of
interest is the filtering distribution p(xt|yt), which can be
computed recursively:

Prediction : p(xt|yt−1) =
∫

D(xt|xt−1)p(xt−1|yt−1)dxt−1

Update : p(xt|yt) =
p(yt|xt)p(xt|yt−1)∫
p(yt|st)p(st|yt−1)dst

To capture multi-modality, the filtering distribution in
MPF is reformulated as an M -component mixture model

p(xt|yt) =
M∑

m=1

πm,tpm(xt|yt)

where πm,t is the weight of the m-th component and∑M
m=1 πm,t = 1. Assuming that the filtering distribution

at the previous step p(xt−1|yt−1) is known, the new predic-
tion and filtering distributions are obtained as

Prediction : p(xt|yt−1) =
M∑

m=1

πm,t−1pm(xt|yt−1)

where pm(xt|yt−1) is the prediction distribution for the m-
th component, and

Update : p(xt|yt) =
M∑

m=1

πm,tpm(xt|yt)
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where pm(xt|yt) is the filtering distribution for the m-th
component, and the new component weight πm,t is com-
puted from its previous weight and the particle weights.

This is an elegant result and means that the filtering re-
cursion can be performed for each component individually.
Hence in MPF, each component is modeled with an indi-
vidual particle filter. The filters in the mixture interact only
through the computation of the component weights. By dis-
tributing the resampling step to individual filters, the multi-
modal distribution is maintained during the propagation in
time. Consult Vermaak et al. [6] for more detail.

2.2. Point-Cluster Model
We modify the MPF model to fit our specific problem. The
observations are feature points detected in the sequence. A
feature point xi is defined by its image coordinates ui and
its velocity si. Clustering feature points amounts to mod-
eling the mixture point distribution. Assuming we have
the initial mixture distribution, feature points can be asso-
ciated with one of the M clusters. Let Xm

t = {xm
i,t, i =

1, . . . , nm} be the feature points in cluster m at time t.
To apply MPF, a particle filter is instantiated for a cluster

when it is detected. A set of particles are sampled from the
cluster in position-velocity space. Let X ′m

t = {x′mi,t , i =
1, . . . , n′m} be the particles in filter m corresponding to
cluster m at time t. The particles are then propagated, mea-
sured, and resampled in the classical manner. Distinct filters
only interact when updating their component weights. To
handle occlusions and appearing and disappearing targets,
merges and splits are performed when clusters overlap or
become too dispersed, respectively, as is done by Vermaak
et al. [6]. In this way, the mixture point distribution, repre-
sented by weighted particle sets, is propagated in time. Let
Cm

t = {Xm
t , X ′m

t ,Wm
t , πm

t } be the cluster representation,
where Wm

t = {wm
i,t, i = 1, . . . , n′m} is the set of particle

weights, and πm
t is the component weight of the cluster.

Note that it is the moving targets, represented by the
clusters, that we are tracking instead of individual feature
points. Therefore, the real state of a target in the filter is
the distribution of the particles in the cluster, parameterized
by a Gaussian, λm

t = {om,t,Σo
m,t, vm,t,Σv

m,t}, where om,t

is the spatial center, Σo
m,t is the spatial covariance, vm,t is

the average velocity, and Σv
m,t is the velocity covariance.

The position and velocity distributions are assumed to be
independent.

3. EM based Cluster Analysis
Automatic initialization is crucial to the success of a video
surveillance system. Targets should be detected and located
when they first appear. An EM algorithm is applied when a
large number of feature points exist that are not associated

with any existing clusters. Note that new targets may not
only occur at the borders but anywhere within the image.

Deciding the number of clusters in the data is usually the
hardest problem in clusters analysis. A voting technique
was devised to solve this problem. Intuitively, each point
spreads a weight to its neighbors based on the distance be-
tween them. After voting, each point computes its weight
by collecting all the votes received. Points near the center
of a cluster tend to have a larger weight. This method is
incidentally the first phase (“sparse voting”) of tensor vot-
ing [15]. By looking for local maxima, the number of new
clusters and their centers are detected.

Using these results for initialization, the EM algorithm is
applied to estimate the cluster parameters. The probability
that a feature point i originates from a cluster m can be
estimated from its location and velocity, and is defined as

fm(i) ∝ e− dist(xi,λm) (1)

where the distance between a point and a cluster is

dist(xi, λm) =
[

ui − om

si − vm

]T [
Σo

m

Σv
m

]−1 [
ui − om

si − vm

]
.

(2)
According to Bayes’ theorem, the posterior probability

that point i is generated by cluster m is pm(i) = wmfm(i)
Σwmfm(i) ,

where wm is the prior probability of cluster m defined as the
fraction of image pixels generated from it. Points are asso-
ciated with the cluster that maximizes the posterior proba-
bility. Once all the points are assigned, the parameters of
each cluster are re-estimated by summing the evidence over
all its points. This is iterated until EM converges to a local
maximum of the likelihood of the observed data. A phase
of K-Means clustering is inserted to obtain a better initial-
ization so that the EM algorithm converges with fewer it-
erations. In fact, in cases where objects are well separated,
EM does not change the output of K-Means at all. Results
are shown in Figure 2 .

4. Mixture Particle Filtering
4.1. Initialization of Individual Particle Filters
Given the initial parameters of a cluster obtained from the
cluster analysis step, a particle filter is instantiated. Two
sets of particles are sampled in each filter, one from the
initial distribution of the cluster estimated by the EM al-
gorithm, x′mi,0 = sample(λm

0 ), and the other around each
feature point in the cluster, x′mi,0 = xm

j,0 + [εu, εs]T , where
εu and εs are random variables modeling respectively the
changes in space and in velocity, shown in Figure 2 .

Particles sampled from the cluster distribution can fill the
gaps of particles sampled around feature points so that the
distribution of the cluster is fully and well approximated. In
all experiments, 100 particles are sampled around a feature
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Figure 2: Results of EM-based cluster analysis and initialization of individual particle filters.

point, and the number of particles sampled from the cluster
distribution is proportional to the size of the cluster.

4.2. Tracking by MPF
In MPF, tracking maintains and propagates the mixture dis-
tribution in time. For our specific problem, we also need to
assign feature points in the new frame to a cluster.

A particle in filter m is propagated in the sequence based
on the constant velocity assumption

x′mi,t+1 =
[

1 1
0 1

]
x′mi,t +

[
εu

εs

]
, (3)

and weighted by a function of the distances from the obser-
vations, feature points, defined as

wm
i,t+1 ∝

∑
j

e− dist(x′m
i,t+1,xj,t+1), (4)

where the distance is

dist(x′mi,t+1, xj,t+1) = (5)

(x′mi,t+1 − xj,t+1)T

[
Σ−1

u

Σ−1
s

]
(x′mi,t+1 − xj,t+1).

Σu and Σs are set to balance the influence of the distance
in space and in velocity. Thus, the mixture distribution is
updated, and so are the parameters of the clusters.

However, the weight computed by Equation 4 only re-
flects the similarity of the particle with its neighboring fea-
ture points. It is possible that a “bad” particle is enhanced
by feature points in another cluster, which happens dur-
ing occlusion. To overcome this problem, the particles are
reweighted using the information of the current cluster pa-
rameters

wm
i,t+1 ∝ (1−α)

∑
j

e− dist(x′m
i,t+1,xj,t+1)+α e− dist(x′m

i,t+1,λm
t+1).

(6)

The second term, which is the probability that the particle
originates from a cluster defined by Equation 1, is added to
penalize the similarity measurement of the particle with the
cluster.

Feature points are then clustered according to the current
cluster parameters. As stated above, feature points some-
times disappear due to occlusion or deformation, and new
feature points arise. Therefore, new particles are sampled
around each feature point and are weighted using Equa-
tion 5. Together with existing particles, both the mixture
distribution and the cluster parameters are refined. As did
Vermaak et al. [6], the component weight of a cluster
πm,t+1 is updated by summing the weights of its particles
and normalizing among all the clusters, which is the only
place where filters interact.

The final step of a particle filter is to resample particles
based on their weights so that particles with small weights
are likely to be discarded and those with large weights are
duplicated. Note that a fixed number of particles in a filter
are selected during tracking.

In summary, the MPF based tracker consists of the fol-
lowing steps: (1) Prediction: particles are propagated using
Equation 3. (2) Weighting: they are weighted using Equa-
tion 4. (3) Clustering: assign feature points in the current
frame to a cluster, new particles are sampled around each
feature point. (4) Reweighting: particles are reevaluated us-
ing Equation 6, and the component weights of clusters are
computed. (5) Resampling: resample particles using the
Monte Carlo Sampling technique. These steps are iterated
to propagate the mixture distribution in time.

4.3. Which Clusters to Track?
One key issue in the MPF is to determine the correct number
of components (clusters in our case) that are present in the
mixture. Individual filters are initialized in the Clustering
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step when a large number of feature points exist that are not
associated with any existing filters. At the Weighting step,
if the component weight of a filter drops below a threshold,
the filter will be terminated. This happens when the target
is occluded e.g. by foreground objects, or leaves the scene.

Occlusion among targets is solved by merging overlap-
ping clusters and splitting widely dispersed clusters. Basi-
cally, a test of merging is performed when two clusters i and
j overlap or when their centers are close to each other. The
mixture distribution of the merged cluster k is estimated
from the individual distributions. The cost of merging clus-
ters Ci

t and Cj
t into Ck

t is defined as

cost(Ci
t , C

j
t , Ck

t ) = (1−β)
|Σo

k,t|
|Σo

i,t|+ |Σo
j,t|

+β
|Σv

k,t|
|Σv

i,t|+ |Σv
j,t|

.

When this cost is smaller than a predefined threshold, mean-
ing that the clusters overlap not only in space but also in
velocity, the merge is accepted.

Likewise, when a cluster grows substantially, a test of
splitting is performed using the same cost function, except
that the split is accepted only if the cost is larger than a pre-
defined threshold. Note that a conservative threshold should
be set for merging and splitting in order to keep the number
of the clusters stable.

5. Results
The proposed method was evaluated on different sequences
from PETS2001. Figure 3 shows the result of tracking two
crossing targets in a short sequence of 65 frames. Thanks
to the use of motion coherence, they are tracked separately
without being merged during occlusion. In Figure 4, re-
sults of tracking two sequences of 300 frames taken from
the same scene but at different views are shown. Challeng-
ing sequences were also chosen to evaluate the robustness
of the method, as is demonstrated in Figure 5. The first se-
quence, shown in the left panel of Figure 5, contains large
illumination changes and a complete occlusions. As ex-
pected, the algorithm proves robust to illumination changes
but incapable of handling the occlusion. During the occlu-
sion, the two filters are merged and then split as new targets.
The second sequence, shown in the middle panel, contains
large and strong shadows. As shadows have a motion simi-
lar to the targets who cast them, they are tracked as a part of
the targets and introduce only little jitter in the trajectories.
The last sequence, shown in the right panel, is the hardest
which contains illumination changes, shadows, severe oc-
clusions and numerous groups of people entering and leav-
ing. The algorithm has problems to maintain a correct num-
ber of clusters, because shadows connect distinct clusters
and people move from one cluster to another. However, an
advantage of our method is that the errors are not propa-
gated in the sequence so that interactive reinitialization is

unnecessary. Note that the sequences are very noisy and
only long trajectories with large certainties are displayed.

6. Conclusion and Future Work
This paper presents a novel method of tracking moving tar-
gets via feature points. The key of the method is to propa-
gate the mixture point distribution in time using the mixture
particle filter. The EM algorithm is applied to start and ini-
tialize each individual filter. Filters are terminated, merged
and split during occlusion, targets entering and leaving the
scene. As demonstrated, the method is robust and capable
of dealing with partial occlusions. In case of total occlu-
sion, new clusters are detected and are not linked to their
correspondences before occlusion due to the lack of other
information such as the appearance of the targets.

We are currently focusing on tracking in more difficult
situations such as large illumination changes, shadows and
severe occlusions. Complementary methods for tracking in-
dividual targets over long sequences are being developed
using model-based approaches and probabilistic data asso-
ciation. An extension of the current work to moving cam-
eras is also ongoing and will broaden its application to other
fields, for instance, sports analysis.
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