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Abstract. A novel approach to tracking athletes in team sports us-
ing multiple cameras is proposed that addresses several issues including
occlusions and propagation of wrong information. The strength of this
approach lies in the use of belief propagation which enables good ob-
servations in some views to compensate for poor observations in other
views due e.g. to occlusions. Each target is tracked in each view by a ded-
icated particle-filter-based local tracker. The trackers in different views
interact with each other via belief propagation so that a local tracker
operating in one view is able to take advantage of additional information
from other views. By combining particle filters and belief propagation
in a unified framework, we develop a sequential belief propagation al-
gorithm to perform inference of multi-view target states collaboratively.
We demonstrate the effectiveness of our method on sequences of soccer
games.

1 Introduction

Athlete tracking is a basic task in sports video analysis that provides quantitative
data for high-level processing such as tactics analysis and highlight extraction.
Applications range from golf [1] and tennis [2] to team sports such as soccer [3,
4], american football [5], and hockey [6], many of which involve tracking athletes
with multiple overlapping cameras separated by wide baselines. In this paper,
we focus on team-sports scenarios where athletes move on a ground plane and
pan-tilt-zoom (PTZ) cameras are used.

Our objective is to estimate the trajectories of athletes—in particular, players
in soccer games—using observations from multiple cameras. Several issues need
to be addressed:

– Occlusion: Occlusions often cause incomplete or missing image observations.
In sports scenarios, due to spatial proximity of similar objects, the even more
difficult situation of spurious observations arises. For instance, a soccer player
is often occluded by teammates, and these players are in general not easily
distinguishable from each other.

This work was sponsored by the Région Wallonne under DGTRE/WIST contract
031/5439 (TRICTRAC Project).
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– Wrong information propagation: One important issue in multi-camera track-
ing is the collaboration among multiple views. With a proper collaboration
scheme, good observations in some views can compensate for poor observa-
tions in other views due e.g. to occlusions. A less sophisticated collaboration
scheme may cause wrong information to be propagated across views so that
the failure of one tracker breaks the whole system.

A new stochastic approach is proposed to solve these problems. In the multi-
camera tracking context, target states in different views and in 3D are repre-
sented by different but dependent random variables. The conditional dependence
between them is expressed by graphical models [7]. To infer the multi-view tar-
get states based on the multi-view observations, Belief Propagation (BP) [8] is
employed to solve the inference problem. Intuitively, a target is tracked in a view
by a dedicated local tracker. The trackers in different views interact with each
other via a message passing process, BP, so that each local tracker is able to
take advantage of additional information from other views. By combining parti-
cle filters and BP in a unified framework, Sequential Belief Propagation (SBP)
[9] is adopted to have a set of particle-filter-based local trackers collaborate and
to perform the inference of the multi-view target states. In doing so, we largely
overcome the occlusion problem as BP enables information to be exchanged
across views, while the asymmetric property of the message passing in BP [10]
guarantees that information propagation is mainly from high-confidence views to
low-confidence views, so that the propagation of wrong information is avoided.

It is well known that single-camera tracking faces the difficulties of track-
ing 3D targets using only 2D information, and is particularly challenged by
occlusions. Many algorithms address this problem by tracking multiple targets
simultaneously [6, 11, 12]. However, as multiple cameras provide several highly
disparate views, which is desirable for occlusion handling, multi-camera tracking
has received growing attention in the field of visual tracking [3, 4, 13–18]. Most
related work on multi-camera tracking uses a centralized fusion framework, e.g.
for soccer player tracking [3, 4] and for video surveillance [13–16], where targets
are tracked independently in different views and a fusion module integrates the
tracks obtained from each view [19]. However, with no interaction between in-
dividual trackers, these methods suffer from the problem that the fusion results
are biased by the tracking error in one view. To overcome this problem, many
approaches perform occlusion reasoning and tracking performance assessment to
obtain a confidence weight for each view [14–16]. Still, since the weight of a view
is computed according to the quality of the tracking results, the risk of wrong
target association is high if the targets being tracked are approached by other,
similar objects, which is usual in sports scenarios.

Due to their tremendous success in visual tracking, particle filters were intro-
duced into multi-camera tracking by Nummiaro et al. [17] and Wang et al. [18],
among others. Both contributions are based on the best-view selection strategy:
The real target states are estimated using the view that contains the most likely
observations. In a sense, these methods exploit multi-view information by au-
tomatically switching observation models from one view to another. However,



3

a problem is that the target of interest may not be very distinct from clutter
in the chosen view. As a result, poor selection of the best view may cause the
complete loss of tracks of targets.

These methods are thus not sufficient to solve the occlusion problem in that
they do not properly model the correlation between the states of a target in dif-
ferent views. In contrast to previous work, we build a two-level, tree-structured
graphical model to describe the dependence between the target states in dif-
ferent views and in 3D. The model contains a set of leaf nodes and a central
node. Bidirectional belief propagation between them enables the exchange of
information across views. An efficient sequential belief propagation algorithm is
adopted for the collaboration of a set of particle-filter-based local trackers. SBP
is a sequential version of the non-parametric belief propagation algorithm [20,
21], which was first introduced by Hua et al. [9] to multi-scale visual tracking.
We borrow the idea and adapt it to our multi-camera tracking task. The pro-
posed algorithm proves robust, particularly to occlusions introduced either by
clutter in the background or by similar objects, without any explicit occlusion
reasoning or tracking performance assessment.

The rest of the paper is organized as follows. Section 2 describes the multi-
view target representation and the graphical models designed for the multi-
camera tracking problem. The theory of SBP and the details of the tracking
algorithm are introduced in Section 3. Results on soccer game sequences are
illustrated in Section 4.

2 Model Description

The target state in view j is denoted by xt,j , j = 1, . . . , L, and the target
state in 3D is denoted by xt,0. Putting all states together results in a multi-view
target state, denoted by Xt = {xt,0, . . . , xt,L}. A benefit of this representation is
that it facilitates the integration of multi-view image observations, which helps
overcome the occlusion problem. The image observation associated with xt,j is
denoted by zt,j and Zt = {zt,1, . . . , zt,L} is the multi-view image observation.
Note that there is no image observation associated with xt,0.

Given the above definitions, a graphical model (Fig. 1) is built to model
the dependence between different states. The model consists of a central node
associated with xt,0, a set of leaf nodes associated with xt,j , and observation
nodes associated with zt,j , j = 1, . . . , L. We assume that target states in different
views are independent given xt,0 so that a tree-structured model is formed.
One advantage of this model is that it is acyclic so that BP can perform exact
inference [8]. Connecting the graphical models at different times results in a
dynamic Markov model shown in Fig. 2, which describes the evolving process.

In both models, the undirected link between xt,j , j = 1, . . . , L, and xt,0

describes the mutual influence between each leaf node and the central node, and
is associated with a potential function ψt

0,j(xt,0, xt,j). The directed link from xt,j

to zt,j , j = 1, . . . , L, represents the image observation processes and is associated
with an image likelihood function pj(zt,j |xt,j). In Fig. 2, the directed link from
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Fig. 1. Tree-structured graphical model. Fig. 2. Dynamic Markov model.

xt−1,j to xt,j , j = 0, . . . , L, represents the prediction process p(xt,j |xt−1,j) and
is associated with a motion model.

According to Bayes’ rule and the Markov assumption, the recursive inference
of the marginal posterior p(Xt|Zt) is formulated as

p(Xt|Zt) ∝ p(Zt|Xt)
∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Zt−1),

where Xt is the multi-view state at time t, and Zt = {Z1, . . . , Zt} denotes the
multi-view observation up to time t.

Direct inference of p(Xt|Zt) is intractable due to the lack of a closed-form
solution and the high dimensionality of the joint state space. In practice, we
infer p(xt,j |Zt), j = 0, . . . , L, collaboratively, as shown in the following sections.

3 SBP-based Multi-Camera Tracking

3.1 Sequential Belief Propagation

The basic idea is to calculate the inference of the multi-view target states through
a message-passing process. The local message passed from view j to the central
node in the graphical model in Fig. 1 is

m0j(xt,0)←
∫

xt,j

pj(zt,j |xt,j)ψt
0,j(xt,0, xt,j). (1)

Here, pj(zt,j |xt,j) is the image likelihood function of view j, and ψt
0,j(xt,0, xt,j) is

the potential function mapping local information in view j to the central node.
It is symmetric, and its definition will be given later. Likewise, the local message
passed from the central node to view j is

mj0(xt,j)←
∫

xt,0

∏
l 6=j

m0l(xt,0)ψt
0,j(xt,0, xt,j). (2)

As the central node is not associated with any image observation, it simply
passes on the messages received from all the views.
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Our goal is to infer the marginal posteriors p(xt,j |Zt), j = 0, . . . , L, based on
the dynamic graphical model in Fig. 2. We assume independent motion models
in each view, i.e.

p(Xt|Xt−1) =
L∏

j=0

p(xt,j |xt−1,j). (3)

Given the marginal posteriors at the previous time instant p(xt−1,j |Zt−1),
j = 0, . . . , L, the above message-passing equations are updated as

m0j(xt,0)←
∫

xt,j

pj(zt,j |xt,j)ψt
0,j(xt,0, xt,j)

∫
xt−1,j

p(xt,j |xt−1,j)p(xt−1,j |Zt−1),

(4)

mj0(xt,j)←
∫

xt,0

∏
l 6=j

m0l(xt,0)ψt
0,j(xt,0, xt,j)

∫
xt−1,0

p(xt,0|xt−1,0)p(xt−1,0|Zt−1).

(5)
Thus, the marginal posteriors of the state in each view xt,j , j = 1, . . . , L,

and the state in 3D xt,0 are given respectively by

p(xt,j |Zt) ∝ pj(zt,j |xt,j)mj0(xt,j)
∫

xt−1,j

p(xt,j |xt−1,j)p(xt−1,j |Zt−1), (6)

p(xt,0|Zt) ∝
∏

l=1,..., L

m0l(xt,0)
∫

xt−1,0

p(xt,0|xt−1,0)p(xt−1,0|Zt−1). (7)

The above formulation shows that SBP involves both a particle filtering
process that propagates the marginal posteriors over time, and a BP process that
updates and passes messages. For the specific model in this paper, we update
messages and marginal posteriors iteratively using Eqs. 4, 5, 6, 7, and p(xt,0|Zt)
contains the fusion of multi-view information. As the graphical model at each
time instant is a two-level tree, theoretically it converges after two iterations [8].
However, due to the Monte Carlo simulation introduced below, a small number
of additional iterations are required to produce robust results.

3.2 Monte-Carlo Implementation

In the Monte-Carlo implementation of the SBP-based multi-camera tracking
algorithm, both the posteriors of the target states and the messages passed
between leaf nodes and the central node are represented by weighted particles,

p(xt,j |Zt) ∼ {s(n)
t,j , π

(n)
t,j }Nn=1, j = 0, . . . , L,

m0j(xt,0) ∼ {s(n)
t,0 , ω

(j,n)
t,0 }Nn=1, j = 1, . . . , L,

mj0(xt,j) ∼ {s(n)
t,j , ω

(0,n)
t,j }Nn=1, j = 1, . . . , L,

where s(n)
t,j denotes the sampled particles, ω(j,n)

t,0 and ω
(0,n)
t,j are the weights of

the messages passed between leaf nodes and the central node, and π
(n)
t,j is the



6

Algorithm 1 SBP-based Multi-Camera Tracking
1. INITIALIZATION: k ←− 1
1.1 Re-sampling : re-sample {s(n)

t−1,j , π
(n)
t−1,j}

N
n=1 to get {s(n)

t−1,j ,
1
N
}Nn=1, j = 0, . . . , L;

1.2 Prediction: generate {s(n)
t,j,k}

N
n=1 from p(xt,j |xt−1,j), j = 0, . . . , L;

1.3 Message Initialization: for n = 1, . . . , N , j = 1, . . . , L,

ω
(j,n)
t,0,k =

1

N
, ω

(0,n)
t,j,k =

1

N
.

2. ITERATION: SBP
2.1 Importance Sampling : Sample {s(n)

t,j,k+1}
N
n=1 from p(xt,j |xt−1,j), j = 0, . . . , L;

2.2 Message Re-weight : for n = 1, . . . , N, j = 1, . . . , L,

ω
(j,n)
t,0,k+1 =

∑N

m=1
{pj(z

(m)
t,j,k|s

(m)
t,j,k)[ 1

N

∑N

r=1
p(s

(m)
t,j,k|s

(r)
t−1,j)]ψ0,j(s

(n)
t,0,k+1, s

(m)
t,j,k)}

1
N

∑N

r=1
p(s

(n)
t,0,k+1|s

(r)
t−1,0)

,

ω
(0,n)
t,j,k+1 =

∑N

m=1
{[

∏
l6=j

ω
(l,m)
t,0,k ][ 1

N

∑N

r=1
p(s

(m)
t,0,k|s

(r)
t−1,0)]ψ0,j(s

(m)
t,0,k, s

(n)
t,j,k+1)}

1
N

∑N

r=1
p(s

(n)
t,j,k+1|s

(r)
t−1,j)

.

Normalize so that
∑

n
ω

(0,n)
t,j,k+1 = 1 and

∑
n
ω

(j,n)
t,0,k+1 = 1;

2.3 Belief Re-weight : for n = 1, . . . , N,

π
(n)
t,0,k+1 = [

∏
l=1...., L

ω
(l,n)
t,0,k+1][

1

N

N∑
r=1

p(s
(n)
t,0,k+1|s

(r)
t−1,0)],

π
(n)
t,j,k+1 = pj(z

(n)
t,j,k+1|s

(n)
t,j,k+1)ω

(0,n)
t,j,k+1[

1

N

N∑
r=1

p(s
(n)
t,j,k+1|s

(r)
t−1,j)], j = 1, . . . , L.

Normalize so that
∑

n
π

(n)
t,j,k+1 = 1, j = 0, . . . , L;

2.4 Iteration: k ←− k + 1, iterate several times.

belief of a particle. Note that the same particle sets are used to represent the
messages and the marginal posteriors. The Monte-Carlo implementation of the
SBP-based multi-camera tracking algorithm is given in Algorithm 1.

The occlusion problem is effectively solved by Algorithm 1 unless the targets
are persistently occluded in all views. Our approach is superior to the centralized
fusion strategy [3, 4, 13–16] and the best-view selection strategy [17, 18] proposed
previously in that the full information in all views is taken into consideration
during tracking. Even a view in which the target is completely occluded “con-
tributes” to the tracking results by propagating uniformly-distributed belief to
other views. Since this view is not informative, it will not affect the inference of
the target states in other views. As pointed out by Sun et al. [10], the message
passing in BP is asymmetric: the entropy of the messages from high-confidence
nodes to low-confidence nodes is smaller than the entropy of the messages from
low-confidence nodes to high-confidence nodes. Consequently, the propagation
of incorrect information is avoided.
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Fig. 3. A mosaic illustrating the incremental homography update.

3.3 Potential Function and Geometric Camera Calibration

One issue in Algorithm 1 is the proper definition of the potential function that
describes the relationships between different target states. We model the target
in a view as a rectangle, xt,j = (ut,j , vt,j , ht,j , wt,j), where (ut,j , vt,j) is the image
coordinate of the feet of the athlete and (ht,j , wt,j) is the 2D size, j = 1, . . . , L,
and the corresponding target in 3D as a cylinder, xt,0 = (ut,0, vt,0, ht,0, wt,0),
where (ut,0, vt,0) is the position on the ground plane and (ht,0, wt,0) is its 3D
size.

Under the assumption that the athletes move on a ground plane, full camera
calibration is not necessary as (ut,0, vt,0) can be related to (ut,j , vt,j) through
an image-to-ground homography Ht,j . In soccer scenarios where PTZ cameras
are used, we update Ht,j either by using known features such as border lines
on the court where enough of them are visible, e.g. near the penalty area, or by
cumulating small estimates of motion between consecutive frames where no or
few features are visible [3]. Figure 3 illustrates the result of homography updates.
The 3D size (ht,0, wt,0) is related to the 2D size (ht,j , wt,j) through some reference
object in the sequence that has a known height, e.g. the goalpost.

The potential function ψt
0,j is defined as

ψt
0,j(xt,0, xt,j) ∝ λN(xt,0;µxt,0 , Λ0) + (1− λ)N(xt,0;Πt

j(xt,j), Γ t
j (xt,j)), (8)

where the first term is a standard Gaussian outlier process, the second term mod-
els the spatial correlation between xt,0 and xt,j and can intuitively be thought
of as the distance between xt,0 and xt,j after mapping xt,j from the image plane
to the ground-plane reference frame using Πt

j . Γ
t
j propagates the uncertainties

of xt,j from view j to the ground plane using perturbation theory [22]. Figure 4
shows the results of the uncertainty propagation.

We find that the potential function is critical to the success of the multi-
camera tracking algorithm. An important issue to stress is that the mapping
of the target positions from the image plane to the ground plane has large
uncertainty if the camera view direction is highly oblique. In this case, a relatively
large number of particles is needed to model the target distribution on the ground
plane. This motivates the use of more views to reduce the uncertainty.
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Top view

View M View B

Fig. 4. Uncertainty propagation between the positions in each view and on the ground
plane. Yellow ellipses depict the estimated covariance for a ground position given a
target in View M or B (red). White ellipses give the result of the reverse propagation.

4 Results

The algorithm is tested on sequences of a soccer game taken from two uncali-
brated cameras. Here, we assume the standard constant-velocity motion model
for all states. Following Pérez et al. [23], a classical observation model based
on HSV color histograms is adopted due to the advantage of its insensitivity
to illumination effects. Thus, the observation process amounts to matching the
color histograms in a set of sampled regions with a previously-learned reference
model, where the Bhattacharyya coefficient is computed to measure the similar-
ity. In all experiments, we manually initialize the regions of the athletes in the
first frame of each camera and learn the reference color models. Some results are
shown in Figs. 5 and 7.

To compare with classical work in this field, we implemented the Conden-
sation algorithm [24]. As expected, the result of Condensation on the same se-
quence of Camera M in Fig. 5, shown in Fig. 6, are hampered by occlusion and
nearby clutter of similar appearance, and, in the end, Condensation loses track
and follows a wrong target. In contrast, our algorithm integrates information
from other cameras to compensate for poor observations, and is thus able to
keep track of the correct target.

This comparison illustrates the strength of our algorithm. The proximity of
similar objects poses the fundamental problem of selecting the correct mode
that represents the true target from a multi-modal distribution produced jointly
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by multiple, similar objects. Neither the centralized fusion nor the best-view
selection strategy are able to deal with this problem: the former will integrate
the wrong results from camera M, and the latter method may select camera M as
the best view, in which the wrong estimate happens to have a high match score.
In contrast, our SBP-based multi-camera tracking algorithm enables the cameras
to “talk” to each other so that the correct mode in a multi-modal distribution
can be enhanced by receiving messages from other views.

5 Conclusion and Future Work

We presented a novel multi-camera tracking algorithm for tracking athletes in
team sports. The strength of the method lies in the fact that each local tracker
integrates information from multiple views via a message-passing process, BP,
resulting in collaborative inference of multi-view target states. Technically, the
method is insensitive to occlusions present in only some of the views. However,
due to the use of SBP, the method itself has some capacity of dealing with total
occlusions in all views as the SBP-based tracking algorithm generates target
hypotheses according to a motion model. In practice, chances are that these
hypotheses are not far from the truth if the duration of the occlusion is not
too long. We are currently developing algorithms for multi-target, multi-camera
tracking, which involves the association of the target observations both in time
and across views. Another interesting extension is to adapt the algorithm to
non-overlapping cameras.
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