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Abstract—This paper presents a novel sequential variational
inference algorithm for distributed multi-sensor tracking and
fusion. The algorithm is based on a multi-sensor target rep-
resentation where a target is represented jointly by its states at
different sensors and a global state fusing all sensor data. A tree-
structured graphical model is adopted to model the dependencies
between these states at a time instant. In contrast to previous
work, most of which are based on Belief Propagation, we propose
an alternative variational inference algorithm, which combines
importance sampling techniques and variational methods for
graphical models, to infer the multi-sensor target states in
time. In particular, the sequential variational inference algorithm
distributes the global inference to each node in graphical models.
With a message-passing scheme which is similar to the one in
BP, the inference processes at different nodes collaborate so that
each integrates information from all sensors. One contribution
of this paper is the proper design of an importance function
for generating samples to approximate the target distributions.
Experiments on a synthetic example show that our method
achieves comparable results with those by the BP-based methods.

Keywords: belief propagation, particle fitler, variational
inference, graphical model, importance sampling.

I. INTRODUCTION

In many applications such as environment monitoring and
robotics, multiple distributed sensors are used to collect mea-
surements in a scene. The measurements from these sensors
have to be fused to extract useful information. A lot of systems
have been developed based on either centralized or distributed
architectures. It has been shown that centralized architectures
have disadvantages of high communication and computation
load at a single site and low survivability due to a single point
of failure, thus distributed architectures are more preferable in
practise [2], [4].

Commonly, a distributed architecture contains a set of sen-
sor nodes, for collecting and processing measurements from
each sensor, and a communication scheme for exchanging
information between sensors. One advantage of this archi-
tecture is that it nicely incorporates graphical models [10]
for modeling the dependencies between sensor data, which
facilitates the use of a number of inference algorithms such
as Belief Propagation (BP) [21]]. Alternative to BP, variational
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methods have also proved powerful tools for solving inference
problems on graphical models [[10]], [11]].

In this paper, we present a novel sequential variational
inference algorithm for distributed multi-sensor tracking and
fusion. The algorithm is based on a multi-sensor target repre-
sentation where a target is represented jointly by its states at
different sensors and a global state fusing all sensor data. A
graphical model is adopted to model the dependencies between
these states. As the target states at different sensors are only
connected to the global state, a tree-structured graphical model
is formed. Thus, we distribute the inference of the multi-sensor
target state at each node of the graphical model. In particular,
the process at each sensor tracks the targets by processing
local measurements. A central process fuses the local estimates
collected from each sensor and sends the fusion results back
to each sensor. Then, the local estimates at different sensors
are updated by taking into account the information from other
sensors. Although with a tree structure, the bidirectional con-
nection between the central process and each sensor process
allows the integration of the sensor data at all nodes of the
graphical model. To have the inference processes at different
nodes collaborate, a sequential variational inference algorithm
is developed that combines the strength of both particle filters
and variational methods for graphical models. Experiments
on a synthetic example show that our method achieves good
performance even in the presence of heavy level noise.

Given most related work on distributed inference in sensor
networks are based on graphical models, BP is usually the
first choice for solving the inference problem. For example,
Paskin et al. and Cetin et al. proposed a similar algorithm
for general inference in sensor networks based on Non-
parametric Belief Propagation (NBP) [15]], [1], [[16]], [9]]. Thler
et al. and Kantas et al. used NBP for distributed sensor
calibration or registration [8]], [12]. In our previous work, we
developed a Sequential Belief Propagation (SBP) algorithm
for the inference in multi-sensor tracking and fusion [3]]. As
above-mentioned work used sampling based methods such
as particle filters for approximating the target distributions,
variational methods can also be used as an alternative. Jordon
et al. described the use of variational methods for graphical
models, which is considered a classic work in this field [11]].
To the best of our knowledge, Vermaak et al. was the first



to introduce variational methods in the field of tracking [18].
Hua et al. proposed an interesting method for solving inference
problems on dynamic Markov models. The method combines
importance sampling techniques with variational methods for
graphical models, which is suitable for sequential inference
tasks such as tracking [6], [7]. However, one of the important
issues in Hua et al.’s method is the design of the importance
function, which is not described clearly. In this paper, we
adapt the sequential variational inference algorithm for the
task of multi-sensor tracking and fusion. With a specifically-
designed dynamic Markov model, we incorporate a suitable
importance function for generating samples in state space.
Somehow, the variational inference algorithm is similar to the
BP-based inference methods in that they both pass messages
between nodes. However, the messages in variational methods
are different from those in BP. We tested our method on a
synthetic example and achieved reliable results.

The rest of the paper is organized as follows. Section
briefly introduces variational methods for graphical models.
Section [II] describes our method for distributed multi-sensor
tracking and fusion, including the specifically designed graph-
ical models and the details of the sequential variational infer-
ence algorithm. Results on synthetic examples are illustrated
in Section

II. VARIATIONAL METHODS FOR GRAPHICAL MODELS

Variational methods are well-developed techniques for find-
ing extremal functions. We briefly describe the use of varia-
tional methods for graphical models. Consult [10], [11], [6],
[7] for the details of variational methods and their applications
on graphical models.

Generally, a graphical model consists of a set of state
nodes X = x;,2=1,...,L and a set of measurement nodes
Z = z;,1=1,..., L. We assume each state node x; is linked
with a measurement node z; and the directed link is associated
with a likelihood function p(z;|x;). If two states x; and z;
are dependent on each other, an undirected link connects
them and the link is associated with a potential function
1,5 (4, z;). Thus, the joint probability density function (pdf)
corresponding to such a graphical model is

p(X,Z)O( H d}(x“x])Hp(ZZ'xl)v
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where ¢ is the set of undirected links between state nodes and
v is the set of directed links from state nodes to measurement
nodes.

Our task is to infer the posterior p(X|Z) which is in general
intractable. Thus, we often infer each p(z;|Z), i = 1,...,L,
instead where BP has been widely used. Alternative to BP,
variational methods can also be used to achieve an approx-
imate solution. We assume a fully factorized approximation,
i.e., we adopt the mean field approximation

p(X|Z) ~ Q(X) = HQi(xi), 2)

where Q;(x;) is an independent approximation to p(x;|Z).
Then we consider the well-known cost function

J(Q) = log(p(Z)) — DxL (H Qi(z:) || P(XZ)> )

where Dy, is the KL divergence or relative entropy between
two distributions. To maximize J(Q) is to minimize the KL
divergence. Differentiating J(Q) with respect to Q;(z;) and
setting it to 0, we have the following Euler-Largange equation,

log Q;(x;) = Eq{logp(X, Z)|x;} + constant,  (4)
where
Eollogp(X. Z)fai} = [ T] Qsla;)logp(X.2)d{a;}\ o
{3\i
&)

is the expectation of logp(X, Z) relative to [] ;.\, @;(z; ).
{a}\b denotes all elements in {a} except b. Substituting Eq. []
and |2|into Eq. 4 we obtain the following fixed point equation,

log Qi(x;) = logp(zi|z;) + Z /Qj(a:j)logw(xi,xj)dxj
JEN(D)

+constant,

where N (i) denotes the set of subscripts of the neighboring
nodes of x;.

Eq. [6] is perhaps the most important equation in variational
inference. It can be seen that to calculate Q;(x;), all Q;(z;),
j € N(i), have to be known. This implies the iterative
calculation for each node in graphical models: calculate one
while fixing the rest, and iterate until convergence. Another
observation is that Eq. [ has a similar form as the belief
equation in BP, except that the message product in BP is
replaced by the expectation in Eq. [5| in Variational inference.
In a sense, the expectation in Eq. [5] can be regarded as the
messages from neighboring nodes in variational inference.

III. VARIATIONAL INFERENCE FOR MULTI-SENSOR
TRACKING AND FUSION

We now consider the variational inference in multi-sensor
tracking and fusion. The problem is defined as targets of in-
terest move in 3D and are captured by a few sensors separated
by wide-baseline. Our task is to estimate the target states in
3D based on the noise-corrupted multi-sensor measurements.
To avoid a centralized architecture, we distribute the global
inference to each node in graphical models and perform a
sequential variational inference algorithm.

A. Graphical Models

Suppose L sensors are used and each sensor collects one
measurement for a target at each time instant. Denote the
target state in 3D by x; o and its states at different sensors
by x;;, and let z; ; the measurement in sensor j at time ¢,
j=1,..., L. Thus, we can define X; = {x¢1,..., 1} the
multi-sensor target state at time ¢, Z; = {zy1,..., 2,1} the
multi-sensor measurement at time ¢, and Z' = {zy,...,z}
the multi-sensor measurements up to time .



Given the above definitions, a graphical model is built,
shown in Fig. [T(a), to model the dependencies between target
states in 3D and at different sensors at time ¢. The model
consists of three types of nodes: the central node associated
with x; 0, the sensor nodes associated with x;;, and the
measurement nodes associated with z;;, j = 1,..., L. We
assume that x; 5, j = 1,..., L, are independent given x; g so
that a tree-structured model is formed. Note that the central
node is not associated with a measurement and each sensor
node is associated with the measurement captured by the
sensor. Connecting the graphical models at different times
results in a dynamic Markov model, shown in Fig. Ekb),
which describes the evolution of the system in time. As x ;,
j =1,..., L, are dependent on x;y, we add temporal links
between z;_1, and z; ;, making the dynamic Markov model
asymmetric. The reason for not adding links between x;_1 ;
and ¢ ¢ to make a fully coupled model is to reduce the model
complexity. We will show that the adding of these temporal
links is beneficial in the design of the importance function in
the next section.

In both models in Fig. E], the undirected link between x; ;,
j=1,..., L, and o describes the mutual influence between
each sensor node and the central node, and is associated with a
potential function 4§ ; (¢ 0, % ;). The directed link from x;
to z;4, 7 = 1,..., L, represents the measurement process
and is associated with a likelihood function p;(z; ;| ;). In
Fig. E[b), the directed links from z;_;; to z;;,4=0,..., L,
and from x;_19 to z;;, 5 = 1,...,L represent the state
transition processes and are associated with motion models
p(xeilxi—1,) and p(zy j|zi—1,0) respectively.

According to Bayes’ rule, the recursive inference of
p(X¢|Z) is formulated as

P(X;|Z") P(Zt|Xt)/P(Xt|Xt,1)P(Xt,l\Zt_l)dXt,l

(N
However, direct inference according to Eq. [/| is often in-
tractable. Thus, we approximate each p(z;;|Z") by a vari-
ational distribution Q¢ ;(x¢;), ¢ =0,..., L, as shown below.
B. Sequential Variational Inference

To perform sequential inference, the temporal information
has to be taken into account. Based on the dynamic Markov
model in Fig. [T{b), we have

L L
p(Xy, Z") Hiﬁ(xt,o,ﬂﬁt,j)Hp(Zﬂfj)x
j=1

j=1
/p(Xt|Xt—1)p(Xt—1 1Z 1 d X1, (8)

Again, we adopt the mean field approximations

L
P(Xio1|Zis1) & Q(Xio1) = [[Qi-rilzi-1i), 9
Lz:O
p(XilZ) ~ QX)) =[] Quilxes). (10)
=0

(b)

Figure 1. (a) Tree-structured graphical model for modeling the dependencies
at time ¢. (b) Dynamic Markov model for the evolution of the system in time.

Then, given Q;—1(X¢—1) = [ [, Q¢—1,i(x¢—1,;) which approxi-
mates p(X;_1]Z*71), we need to find Q¢ (X;) = [, Qu,i(z¢)
to approximate p(X;|Z;). Similar to the steps in Section
we can construct the cost function

L
J1(Qr) = log(p(Z")) — Dk, (H Qui(zes) | p(Xt|Zt)> :

i=0
(1)
Assuming independent motion models for each node, we
have

L

L
P(Xe| Xe—1) = Hp(illt,i|$t—1,i) HP(It,j|l’t—1,o)- (12)
i=0 j=1

Embedding Eqs. [8] 0] [I0l and [12]into [I1] and differentiating
J¢(Q¢) with respect to Q¢,;(z,;) and setting it to 0, we obtain
the following fixed point equations for sensor nodes

log Qt,j(xt,j) 10gp(2t7j|$t7j)

‘Hog/P(xt,j|$t71,j)Qt71,jdxtq,j
+10g/p($t7j|xt—1,0)Qt—l7Odxt—l,O

+ / Qt,0(e,0)log v (w0, e 5) day

+constant, (13)



where j = 1,..., L, and for the central node

IOg‘Qt,o(l’t,o) = log/P(It,0|$t—1,0)Qt—1,0dll?t—l,o

L
+ Z / Q1,5 (¢ 5)logabo (w10, 74,5) Ay
=1

(14)

+constant.

Comparing Eqs. [13] and [T4] with Eq. [6] we can see the only
difference is the extra terms that model the state transition
priors. As stated in Section we infer each z; ;,7 =0,..., L,
iteratively using Eqs. [I3] and [I4] until convergence.

C. Monte Carlo Implementation

As is in Hua et al. [6], the sequential variational inference
algorithm is implemented with Monte-Carlo techniques, i.e.,
each variational distribution @, ;(x;;) is represented by N
weighted samples,

Qui(we) ~ {sp;,mp 0y, i=0,... L.

As the samples are generated by importance sampling
techniques, one issue is the design of the importance function.
Hua et al. [5]] used the state transition function p(zy ;|¢—1,)
for each z;, in similar SBP algorithms. Simple and very
often effective as it is, the problem is that the importance
sampling of each xz,; from p(z;|z,—1,) is independent for
i = 0,...,L. As the samples are supposed to approximate
Qtﬂ;(xm) Wthh, according to Eqgs. E 13| and [14] contains in-
formation from neighboring nodes, the independent sampling
may cause problems when e.g. a sensor is subject to heavy
level noise such as outliers. To overcome this problem, Hua
et al. 6] used the pre-learnt potential function v; ;(z;, T4 ;)
as the importance function, which may not be suitable here
because in our graphical models, all sensor nodes are linked
to the central node, it is not clear how to sample x; o from all
’lﬂo}j(.’ﬂt’o, J}t}j), j = 1, ceey L.

Note that in our dynamic Markov model in Fig. [T(b), for
each sensor node sct,j), there is an extra temporal link from
24—1,0 besides that from x;_; j, j = 1,..., L. This enables us
to develop a simple layered importance sampling technique.
For the central node which fuses sensor data, we use the
simplest state transition function p(x¢ g|z:—1,0) as the impor-
tance function. For the sensor nodes which may be subject
to outliers, we generate samples from both p(z ;|zi—1,;)
and p(x; ;|Ti—1,0), i.e., N samples are generated from
p(x¢ j|i—1,;7) and the rest (1 — a)N samples are generated
from p(x; ;|Ti—1,0). « is a trade-off between two transition
functions and is set to 50% in our experiments. This is
beneficial in maintaining consistency between the inference
processes at different nodes. The Monte-Carlo implementation
of the algorithm is given in Algorithm [[II-C]

D. Performance Analysis

It can be see that the time complexity of the inference
process at the central node is O(LN?), where L is the number
of the sensors and N is the number of samples, and that

Algorithm 1 Sequential Variational Inference for Distributed
Multi-Sensor Tracking and Fusion

Input: Qt_u(xt_u) ~ {8?71]\}.’ 77?7171-}7]2]:1, = O, ceey L
Output: Q;(w1:) ~ {s};, 7 itn=1,1=0,..., L
Re-sampling: Get {10 NIy from
{3?—1,1‘7 W?—l,i}rjyzl’ i=0,..., L
k=0
Prediction: Get {s}(,}n_; from p(z;olzi10) and

{5} 1ixtnet from both p(zy j|z¢—1;) and p(z¢ jlz-1,0).

Re-weighting: For n. = 1,...,N, let 77y, = + and
e = Pzealstjp)s 7= 1,..., L.
repeat
k=Fk+ 1
Importance ~ Sampling:  Get {s},})_, from
{SZO,k—1a7720,k—1}r]y:1 and {S?,O,k}nzl from both
{S?,j,kflv Wﬁj,kq}gﬂ and p(z¢j|zi-1,0), j=1,..., L.
Expectation Calculation: Forn =1,..., N,
L N
Ext,o(s?,o,k) = Z Z ﬂ-glj,k-—l log %/JO,j(SZo,k:STj,k—Oa
j=1m=1

N
Z 77?,10,1@—1 log %,j(sfo,k—la S?,j,k)a
1

El‘t,J (St,],k) =

j=1,...,L.

Re-weighting: Forn =1,... N,

Wgo,k WZo,k—ﬁXP(Ext,o(Szo,k))v
7725,1@ = ﬂ-tn,j7k71p(zt>j|82j7k)exp(E$t,j(82j7k)>7
j=1,...,L.
Normalization: 77',, = ﬂ:’lk/zm VT ©0=

0,....,L,mn=1,...,N.

until convergent or k > 5

(n) _

Estimation: For i = 0,..., L, let sgz) = siz)k and 7, ;" =

(n)
Ty i ko then

Qui(wei) ~ {7, Y 1y, and @ ; = Z sy

at each sensor node is O(N?). It seems that the central-



node tracker is the bottleneck of the whole system. However,
note that the central node processes no measurements. Indeed,
Eqs. [I3] and [I4] shows clearly that the central node calculates
the expectation relative to all Qy j(x¢ ), j = 1,..., L, which
is similar to the message product in BP, while each sensor
node calculates the product of the local likelihood and the
expectation relative to Q¢ o(zt,0). For most systems with a
reasonably small number of sensors, the time consumption at
the central node is comparable with that at each sensor node.
Thus, the algorithm is very suitable for parallel implemen-
tation. For those systems with a large number of sensors, a
hierarchical architecture is preferable.

One important issue in distributed multi-sensor tracking and
fusion is that the measurements from different sensors are
often inconsistent, which causes the disagreement among the
inference processes at different nodes. It has been shown that
BP solves this inconsistency effectively due to the asymmetric
property of the message passing scheme [3]], [[17]. Likewise,
the sequential variational inference algorithm also maintains
the consistency among the distributed inference processes
with a similar “message-passing” scheme, which assures the
inference at each node is performed based on the information
from all sensors. Thus, the final decision at each node is always
made based on the consensus.

IV. RESULTS ON A SYNTHETIC EXAMPLE

To best demonstrate the strengths of our sequential vari-
ational inference algorithm, we present experimental results
on a simulated, multi-sensor tracking scenario. The problem
considered here is a point target moving along a circular
trajectory in a plane. Noise-corrupted observations in four
different sensors are synthesized by projecting the point into
each sensor. To make the problem challenging, 10% of the
true measurements in each sensor are removed to simulate
occlusions, and outliers are added to the four sensors but at
different times to simulate distractor objects. In particular, the
outliers are around the true measurements at time 40 in Sensor
1, at time 60 in Sensor 2, at time 70 in Sensor 3, and at
time 80 in Sensor 4 respectively. This synthetic example is
representative of the problems that are difficult to solve using
classical multi-sensor fusion techniques, as the outliers are not
distinguishable from the true measurements.

Figure [2] presents the tracking result of our algorithm in
a typical simulation. It can be seen that the measurements
missing in some sensors are compensated by other sensors.
The true modes are correctly selected among the multi-modal
distributions introduced by the outliers in each sensor.

We compared our algorithm to the BP-based methods. In
particular, we have developed a SBP algorithm for the same
multi-sensor tracking and fusion task [3|]. The results of the
SBP algorithm on the same data is shown in Fig. 3] Both
methods succeed in all simulations with heavy level noise.
The error between the estimates and the ground truth of both
methods is shown in Fig. ] It can be seen that our algorithm
achieves reliable results that are comparable with those by the
BP-based methods.

We also compared our algorithm to other particle-filter-
based multi-sensor tracking algorithms in [14], [[19]. To over-
come the problem of inconsistent measurements, both contri-
butions suggested to assess the tracking performance of each
sensor. In particular, Wang et al. [19] evaluated each particle
with the data in the most reliable sensor, which is adopted to
do the comparison in this paper.

We argue that this tracking-performance-assessment strategy
is sufficient only to deal with missing observations but not
with distractors, as the distractors in one sensor may produce
larger likelihoods than the true observations in other sensors.
A comparison of our algorithm, the SBP algorithm and the
tracking-performance assessment method by Wang et al. is
shown in Fig. [5] It can be seen that the outliers pose serious
problems to Wang et al.’s method, as it almost instantly fails
when the outliers appear in one sensor but not in other sensors.

V. CONCLUSION AND FUTURE WORK

We present a novel sequential variational inference algo-
rithm for distributed multi-sensor tracking and fusion. Al-
ternative to BP, which has been widely used for distributed
inference on graphical models, our algorithm approximate the
target distributions by fully factorized variational (mean field)
distributions. Note that the fully factorized approximation does
not ignore the dependencies among the random variables [20].
The use of variational methods for graphical models is ben-
eficial in that with a similar message passing scheme as in
BP, each local process integrates information from all sensors,
resulting in collaborative inference of the multi-sensor target
states.

Further study is expected on the comparison of BP and
variational methods for graphical models. One potential ad-
vantage of variational methods is perhaps the proper design of
a variational importance function. However, it has been shown
by David Mackay [|13]] that the variational approximation is in
general more compact than the true distribution. As heavy-
tailed distributions are desirable for importance functions,
the variational distributions obtained by variational methods
is not a suitable choice for generating samples. Vermaak et
al. [[18] proposed an interesting approach to incorporating
temporal priors in the variational approximation to the target
distribution, which may be used in our future work.
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