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Abstract. This paper presents a novel probabilistic approach to inte-
grating multiple cues in visual tracking. We perform tracking in different
cues by interacting processes. Each process is represented by a Hidden
Markov Model, and these parallel processes are arranged in a chain topol-
ogy. The resulting Linked Hidden Markov Models naturally allow the use
of particle filters and Belief Propagation in a unified framework. In par-
ticular, a target is tracked in each cue by a particle filter, and the particle
filters in different cues interact via a message passing scheme. The general
framework of our approach allows a customized combination of different
cues in different situations, which is desirable from the implementation
point of view. Our examples selectively integrate four visual cues in-
cluding color, edges, motion and contours. We demonstrate empirically
that the ordering of the cues is nearly inconsequential, and that our ap-
proach is superior to other approaches such as Independent Integration
and Hierarchical Integration in terms of flexibility and robustness.

1 Introduction

From a Bayesian perspective, visual tracking is viewed as a problem of inferring
target states over time based on image features or cues. Various types of cues
have been used to characterize different object properties, including color [1],
texture [2], points [3], edges [4], motion [5] and contours [6]. As no single cue
remains reliable in all situations, the integration of multiple cues has proved suc-
cessful at increasing the robustness of tracking algorithms. For instance, color
and appearance are more sensitive to the lighting conditions than gradient fea-
tures such as edges and points. Therefore, when the scene is subject to fast
illumination changes, edges and points may provide complementary information
that helps localize the targets being tracked.

Basically, multi-cue tracking is a fusion problem. Each cue tells a story about
the targets of interest, and this information is processed and fused to estimate
target states. One important issue is how to model the dependence between
different cues, which in turn determines the manner in which the cues are com-
bined. Many methods assume that the cues are conditionally independent [7–10],
while more sophisticated methods model existing dependencies explicitly by e.g.
graphical models [11].
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This paper presents a novel probabilistic approach to integrating multiple
cues in visual tracking. In contrast to previous work, we perform tracking in dif-
ferent cues by individual but interacting processes, each of which is represented
by a Hidden Markov Model (HMM). Chain models are used to link these parallel
HMMs and to represent the dependence between these processes. The resulting
Linked Hidden Markov Models (lHMMs)1 naturally allow the use of two pow-
erful inference algorithms, particle filtering and Belief Propagation (BP). By
combining them in a unified framework, a Sequential Auxiliary Particle Belief
Propagation algorithm is devised to perform inference in multi-cue tracking. In
particular, a target is tracked in each cue by a particle filter, and the particle
filters in different cues interact with each other via a message passing scheme.

Our approach has several advantages. First, it allows different target rep-
resentations to be used in different cues so that each tracking process can be
implemented separately and efficiently. Second, the approach is highly modular,
facilitating the combination, addition and removal of vastly different cues. One
only needs to define the potential function between each pair of neighboring
cues according to their target representations. Third, the chain topology of the
lHMMs reduces the complexity of the integration framework with respect to
more elaborate graphical models. Due to the bidirectional propagation of infor-
mation along the chain, the order of the cues in the chain is largely unimportant.
We confirmed empirically that changing this order hardly affects the tracking
results.

The rest of the paper is organized as follows. Section 2 discusses related work
and highlights our contributions. Section 3 describes the lHMMs that model the
multi-cue tracking problem. Section 4 formulates the problem and introduces
the inference algorithm. Experimental results are presented in Section 5.

2 Related Work

Numerous approaches to multi-cue tracking have been reported in the literature.
They differ in the way the cues are integrated and in the cues adopted. For ex-
ample, Birchfield combined gradient and color cues for head tracking [7]. Triesch
et al. used democratic integration to compute the consensus between the multi-
ple cues [8]. Taylor et al. fused color, edge and texture cues in a Kalman-filter
framework [2].

Particle filters, also known as Condensation [6] in the computer vision com-
munity, have achieved great success in solving tracking problems. Conventional
particle filters maintain the target distributions over time based on a single ob-
servation model such as color [1] or contours [6]. It has been shown that multiple
cues can easily be fused within a particle-filter framework. By assuming that the
cues are conditionally independent, multi-cue observations were integrated by
the product [9, 13, 14] or the sum [15] of the likelihoods in different cues. Based
1 The term Linked Hidden Markov Models was introduced by Brand as a way of

modeling two interacting processes [12]. Here, we borrow this term and extend it to
multiple interacting processes.
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on the same independence assumption, Leichter et al. combined Condensation-
based or explicit PDF-yielding trackers by fusing only the trackers’ output esti-
mates [10]. Although not explicitly stated, the approach required each tracker to
integrate information from all the other trackers, implying a fully-connected ar-
chitecture. On the other hand, Pérez et al. propagated target distributions from
cue to cue in a fixed order, hoping that downstream cues resolve the ambiguities
introduced by the upstream cues [5]. Similar ideas were introduced under the
names of hierarchical particle filters [4] and cascades of cues [16]. One downside
of this strategy is that the performance depends on the order in which the cues
are incorporated. Generally, heuristics are required to design this order. Wu et
al. used factorial HMMs to model the dependency between color and contour
cues and proposed a so-called co-inference algorithm [11].

Inspired by some of the cited work [10, 5, 11], this paper presents a general
framework for multi-cue integration. Similarly to Leichter et al. [10], we combine
particle filter-based trackers, each of which exploits a different cue. However,
the dependencies between these trackers are explicitly modeled using lHMMs.
The lHMMs link a set of parallel HMMs in a chain topology, which largely
reduces both the architectural and algorithmic complexities. In doing so, we
synchronously infer the target states in different cues. Unlike Pérez et al. [5] who
propagated information from cue to cue in one direction, the undirected links in
the chains in our lHMMs enable bidirectional message passing between the cues,
relaxing the dependency on the ordering of the cues. The suggested approach is
more general than e.g. that of Wu et al. [11] as it allows the integration of an
arbitrary number of cues.

The combination of particle filters and BP was originally motivated for in-
ference under non-linear and non-Gaussian models, resulting in Nonparametric
Belief Propagation (NBP) [17, 18]. Hua et al. first formulated the inference in
temporally evolving graphical models and proposed a Sequential Belief Prop-
agation (SBP) algorithm [19]. Briers et al. addressed the computational issue
in the same sequential-inference context [20]. Auxiliary particle filters and the
unscented approximation were used to sample particles, avoiding the need for
Gibbs sampling. The resulting Sequential Auxiliary Particle Belief Propagation
(SAPBP) reduced the computation from quadratic in the number of particles,
as in NBP, to linear, which is desirable for online inference.

In this paper, we adopt a simplified SAPBP algorithm to solve the multi-
cue tracking problem. The algorithm integrates the temporal evolution of each
cue and the inter-cue correlations into a coherent framework. While indepen-
dent temporal transition kernels are used for each cue, target states in different
cues are related through messages passed along a chain. Contrary to the original
SAPBP algorithm, we do not use the unscented approximation, as the inter-cue
pairwise potentials are linear. Four visual cues are selected to demonstrate the
effectiveness of our approach including color, edges, motion and contours. The
general framework facilitates a customized combination of different cues in dif-
ferent situations, which is particularly desirable from the implementation point
of view. Extensive experiments on tracking various objects in both indoor and
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(a) HMM (b) Chain (c) lHMMs

Fig. 1. (a) HMM representing the tracking process in one cue. (b) Chain model rep-
resenting the dependencies between different cues at a time instant. (c) Linked HMMs
representing the interacting processes in different cues.

outdoor environments show that our approach is more flexible and robust than
other approaches such as independent integration and hierarchical integration.

3 Linked Hidden Markov Models

Suppose M visual cues are used and each cue is associated with a different target
state. Let xt,i be the target state in the ith cue at time t and zt,i the associated
image observation, i = 1, . . . ,M . Given these definitions, tracking in the ith cue
is formulated as

p(xt,i|zti) ∝ p(zt,i|xt,i)
∫
p(xt,i|xt−1,i)p(xt−1,i|zt−1

i )dxt−1,i, (1)

where zti = {z1,i, . . . , zt,i}, p(zt,i|xt,i) is the image likelihood and p(xt,i|xt−1,i)
is the temporal transition kernel in the cue. This Bayesian formulation can be
represented by a HMM, shown in Fig. 1(a).

In multi-cue tracking, the dependencies between target states at different
cues must be taken into consideration. We use graphical models to capture these
dependencies. Theoretically, fully-connected graphical models are required since
all states in different cues may depend on each other. However, we choose to
adopt a chain model (Fig. 1(b)) to reduce the model complexity and to simplify
the inference algorithm. Linking the HMMs into chains results in so-called Linked
Hidden Markov Models or lHMMs, shown in Fig. 1(c). The lHMMs represent
the interacting processes in different cues.

LetXt = {xt,1, . . . , xt,M} denote the multi-cue target state and Zt = {zt,1, . . . , zt,M}
the multi-cue image observation. Thus, tracking in the multiple cues amounts to
the recursive inference of Xt, formulated as

p(Xt|Zt) ∝ p(Zt|Xt)
∫
p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1, (2)

where Zt = {Z1, . . . , Zt}.
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Direct inference using Eq. 2 is intractable due to the high dimensionality of
the state space and the non-Gaussian nature of the target distributions. There-
fore, we infer each p(xt,i|Zt), i = 1, . . . ,M , collaboratively by a set of particle-
filter-based processes, as detailed below.

4 Multi-Cue Tracking by Interacting Processes

4.1 Problem Formulation

We first consider the inference in the chain model in Fig. 1(b). BP performs
inference in graphical models by first computing messages and then computing
beliefs. The chain topology admits a two-pass message-passing implementation.
Specifically, the local messages passed from top to bottom are defined by

mi,i+1(xt,i+1) ∝
∫
p(zt,i|xt,i)mi−1,i(xt,i)ψi,i+1(xt,i, xt,i+1)dxt,i, (3)

where ψi,j is the potential function that describes the dependency between node
i and j. The definition of this potential function depends on the target repre-
sentations in the two neighboring cues and will be discussed later. Likewise, the
messages passed from bottom to top have a symmetric form,

mi,i−1(xt,i−1) ∝
∫
p(zt,i|xt,i)mi+1,i(xt,i)ψi−1,i(xt,i−1, xt,i)dxt,i. (4)

Then, the belief of xt,i is obtained by

p(xt,i|Zt) ∝ p(zt,i|xt,i)mi−1,i(xt,i)mi+1,i(xt,i). (5)

Note that Eqs. 3–5 are slightly different for the nodes at the ends of the chain.
In the sequential context, the message and belief equations for the lHMMs

in Fig. 1(c) have similar forms as Eqs. 3, 4 and 5, adding only the terms of the
temporal priors,

mi,i+1(xt,i+1) ∝
∫
p(zt,i|xt,i)p(xt,i|Zt−1)mi−1,i(xt,i)ψi,i+1(xt,i, xt,i+1)dxt,i,(6)

mi,i−1(xt,i−1) ∝
∫
p(zt,i|xt,i)p(xt,i|Zt−1)mi+1,i(xt,i)ψi−1,i(xt,i−1, xt,i)dxt,i,(7)

p(xt,i|Zt) ∝ p(zt,i|xt,i)p(xt,i|Zt−1)mi,i−1(xt,i)mi,i+1(xt,i), (8)

where the temporal prior is

p(xt,i|Zt−1) =
∫
p(xt,i|xt−1,i)p(xt−1,i|Zt−1)dxt−1,i.

Thus, the sequential inference in the lHMMs consists of passing messages
using Eqs. 6 and 7 followed by belief updating using Eq. 8. Due to the lack of
analytic representations of the above formulations, Monte Carlo approximations
are required and can be obtained by using importance sampling techniques. A
technical issue is the design of proper importance functions. We address this by
adapting Sequential Auxiliary Particle Belief Propagation [20].
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4.2 Sequential Auxiliary Particle Belief Propagation

The Monte Carlo approximation to Eqs. 6–8 requires the sampling of particles
from products of individual terms, that is, from p(xt,i|Zt−1)mi−1,i(xt,i) in Eq. 6,
from p(xt,i|Zt−1)mi+1,i(xt,i) in Eq. 7, and from p(xt,i|Zt−1)mi−1,i(xt,i)mi+1,i(xt,i)
in Eq. 8. This sampling task requires an efficient way of combining, at each cue,
the temporal prior and the incoming messages from the neighboring cue or cues.

Assume there are K terms in the product and each term consists of N parti-
cles. In order to compute the product of these terms, each term is represented as a
mixture of Gaussians, and the computation amounts to multiplying K Gaussian
mixtures of N components, which has a complexity of O(NK). Gibbs sampling
is generally used for approximation and reduces the complexity to O(κKN2),
where κ is the number of iterations [17, 18]. However, the chain topology of our
lHMMs makes the Gibbs sampler ineffective since the number of terms K is
only 2 for the messages and 3 for the beliefs. In the following, we will refer to
the full multiplication of the terms as the full-product NBP in contrast to the
traditional Gibbs-sampling NBP.

For real-time applications such as tracking, a more efficient method is re-
quired. By assuming that the terms in the product are independent, the com-
plexity of this computation can be further reduced to O(KN) by using SAPBP.

SAPBP adopts a two-step sampling procedure that first samples a compo-
nent label from each term to construct an importance function and then sam-
ples particles from the constructed importance functions. An auxiliary variable
θk ∈ {1, . . . , N}, k = 1, . . . ,K, is introduced to denote the component label in
the kth term. As the component labels in different terms are independent, i.e.,
p(θ1, . . . , θK) =

∏K
k=1 p(θk), the importance function for sampling θk is chosen

as

q(θk = lk) ∝
∫
φ(x)f lkk (x)dx,

where φ(x) is the likelihood term and f lkk (x) is the lkth component in the kth
term. Sampling θk from this importance function is analogous to an auxiliary
particle filter and is thus computationally efficient.

In our lHHMs, this label-sampling procedure is much simpler than in a gen-
eral graphical model since the products contain few terms. For instance, to com-
pute the messages in Eq. 6, we need to sample from p(xt,i|Zt−1)mi−1,i(xt,i). The
importance functions for sampling component labels from the above two terms
are given by

q(θ1 = l1) ∝
∫
p(zt,i|xt,i)p(xt,i|xl1t−1,i)dxt,i,

q(θ2 = l2) ∝
∫
p(zt,i|xt,i)ψi,i−1(xt,i, xl2t,i−1)dxt,i,

where xli denotes the lth particle for the state xi. Similarly, to compute the
beliefs in Eq. 8, the three importance functions for sampling component labels
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from p(xt,i|Zt−1)mi−1,i(xt,i)mi+1,i(xt,i) are given by

q(θ1 = l1) ∝
∫
p(zt,i|xt,i)p(xt,i|xl1t−1,i)dxt,i,

q(θ2 = l2) ∝
∫
p(zt,i|xt,i)ψi,i−1(xt,i, xl2t,i−1)dxt,i,

q(θ3 = l3) ∝
∫
p(zt,i|xt,i)ψi,i+1(xt,i, xl3t,i+1)dxt,i.

After a label is sampled for each of the K terms, a Gaussian distribution is
formed by the product of these individual (Gaussian) components and is used
as an importance function q(xi|θ1, . . . , θK), from which a particle is generated.
In this way, N particles are sampled for each product. These sampled particles
are used to approximate the messages and beliefs in Eqs. 6–8. The normalized
weights for the messages (for Eq. 6 only) and beliefs (for Eq. 8) are given by

wt,ni,i+1 =
p(znt,i|xnt,i)p(xnt,i|x

θ1
t−1,i)w

t,θ2
i−1,iψi,i−1(xnt,i, x

θ2
t,i−1)

q(θ1)q(θ2)q(xnt,i|θ1, θ2)
,

wnt,i =
p(znt,i|xnt,i)p(xnt,i|x

θ1
t−1,i)w

t,θ2
i−1,iψi,i−1(xnt,i, x

θ2
t,i−1)wt,θ3i+1,iψi,i+1(xnt,i, x

θ3
t,i+1)

q(θ1)q(θ2)q(θ3)q(xnt,i|θ1, θ2, θ3)
.

The intuition behind this algorithm is that, to combine the temporal priors
and the incoming messages, we ignore the dependencies between them and sam-
ple independently from them by taking into account the anticipated “merit”,
i.e., the likelihoods evaluated after applying the temporal-transition kernel (for
particles sampled from the temporal priors) or the inter-cue potentials (for par-
ticles sampled from the incoming messages). Ignoring the dependencies between
the terms in a product may cause some loss of accuracy. However, in our case,
this loss is unlikely to be dramatic since there are only two or three terms in
each product. Moreover, the above sampling procedure takes into account the
common dependence on the underlying targets as it is guided by the likelihood
term. A comparison of our SAPBP algorithm with the full-product NBP will be
shown in Section 5.

Our algorithm treats each cue equally with no explicit preference. However, as
pointed out by Sun et al. [21], the asymmetric message passing in BP guarantees
that the information is propagated mainly from high-confidence cues to low-
confidence cues due to the smaller entropy of the messages in this direction. An
extreme example is when the appearance of the target changes completely. Then,
the color cue still “contributes” by propagating mostly uniformly distributed
beliefs. Although this cue is not informative, it will not affect the tracking results
at other cues.

4.3 Cues and Inter-Cue Potentials

For this paper, we chose four simple and complementary cues including color,
edges, motion and contours. The general framework of our approach allows an
easy customization for various scenarios by combining different cues.
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Color Two different color histogramming methods are implemented. The first
one is the traditional color histogramming proposed by Pérez et al. [1]. To
model the spatial layout of the color distribution, a multi-part color model
is obtained by splitting the tracked region into subregions, each with an
individual color model. The second method is spatiogramming proposed by
Birchfield et al. [22], which models the spatial layout of each color bin by a
Gaussian distribution.

Edge Edge orientation histogramming is used to disambiguate confusing colors
in the background. Edges are detected using the horizontal and vertical Sobel
operators, and the gradient magnitudes and orientations are computed. The
detected edges are then histogrammed into orientation bins weighted by their
strengths [4].

Motion In the case of a static camera, the absolute image difference between
each pair of successive frames provides motion information about the targets
being tracked. A motion histogram is constructed by treating this absolute
image difference as a grayscale image and histogramming the pixels in the
regions of interest into intensity bins. To compute detection likelihoods, each
candidate histogram is then compared to a uniform reference histogram [5].

Contour The gradient information along the contour of a target is collected. A
set of points are sampled along the contour and the distances to the closest
edge points are computed and converted to a likelihood density.

In the color, edge and motion cues, we extract the histogram associated with
each particle and compare it to a pre-learned reference histogram. This proce-
dure was implemented using integral histograms [23]. In the contour cue, the
Condensation algorithm [6] was implemented using a distance transformation.
As the construction of the integral histograms and the distance maps is cheap
with cost proportional to the size of the region of interest, we are able to evaluate
a large number of particles in real time. In general, edge and motion cues alone
are not discriminative, as edge orientation histograms do not capture the spatial
distribution of the edges, and motion histograms favor equally all regions with
moving objects. Nevertheless, integrating them does help disambiguate clutter
in color and contour cues.

We model the targets of interest in the first three cues by rectangular re-
gions, and in the contour cue by parametrized shape models. Ellipses and circles
are adopted to model the simple targets in our experiments. Thus, a target is
separately represented by

xcolor
t = xedge

t = xmotion
t = [ut, vt, sut , s

v
t ], x

contour
t = [ut, vt, sut , s

v
t , θt],

where [ut, vt] is the translation of the target, [sut , s
v
t ] is the scale change, and

θt is the relative rotation when elliptic models are used in the contour cue.
Representing the same target in different cues differently allows a separate and
efficient implementation of each tracking process.

Given the target representations in different cues, we can define the potential
functions ψ between each pair of neighboring cues. When the two neighboring
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cues share the same target representations, i.e., when color, edge and motion
cues are neighboring to each other, then the potential between them is given by

ψi,j(xt,i, xt,j) = G(xt,i − xt,j ; 0, Σi,j),

where G(·) is the Gaussian kernel function and Σi,j is the covariance matrix.
When different target representations are used in the two neighboring cues, i.e.,
when the contour cue is neighboring to the color, edge or motion cues, a similar
potential function is defined by ignoring θt in xcontour

t . This inter-cue potential
function models the mutual influence between the target states at different cues,
and can be similarly defined for other target representations.

5 Results

We tested the performance of our approach on sequences of various objects taken
in both indoor and outdoor environments. Here, the constant-velocity motion
model was used for all cues in all experiments. We manually initialized the targets
of interest in the first frame of each sequence and learned the reference models.
The reference models were updated gradually with exponentially forgetting the
past models, or were kept unchanged when dramatic changes to the models
indicated occlusions [24].

The first experiment was tracking a dish under poor illumination, shown
in Fig. 2. Four cues were integrated in the order of color (color histogram),
edge, motion and contour. This sequence is difficult in that it contains both
occlusions and fast appearance changes due to the mirror surface of the dish
and the shadows. Thus, the color cue is only discriminative when the observed
appearance is similar to the reference model. The motion cue helps the tracker
concentrate on the areas with moving objects. As the edge and contour cues are
based on gradient features, they are more reliable and play an important role
during tracking. No single cue alone was able to track the dish for the entire
sequence.

The second experiment was tracking a pedestrian in one of the PETS se-
quences and tracking a vehicle in a traffic sequence, shown in Fig. 3. The edge,
color (color histogram) and motion cues were integrated in the given order for
both sequences. The PETS sequence contains fast illumination changes and there
is a camera rotation in the middle of the traffic sequence in order to keep the
vehicle inside the view. Both problems violated the fundamental assumption of
the motion cue that absolute image differences are introduced by moving objects
only. However, thanks to the bidirectional information propagation between the
cues, the poor information in the motion cue did not break the whole tracking
system. In this experiment, the color cue alone is sufficient to track the targets
most of the time. The motion cue helps overcome the partial occlusions and the
edge cue helps localize the targets more precisely.

In the third experiment, we tested how dependent our approach was on the
ordering of the cues. Two face sequences were selected to perform this test. We
integrated all four cues for the first sequence and left out the motion cue for the
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Fig. 2. Results of tracking a dish under poor illumination. The circles and the rect-
angles are the estimates of the contour (green), color (white), motion (blue) and edge
(red) cues. The estimates by the four cues are slightly different from each other due to
the Monte Carlo simulation. The same colors are used in the following experiments.

Fig. 3. Results of tracking a pedestrian in one of the PETS sequences (top) and a
vehicle in a traffic sequence (bottom).

Fig. 4. Results of face tracking. The person’s face rotates and undergoes dramatic
appearance changes due to the lighting of a projector. Four cues are integrated in the
order of color, edge, motion and contour.

second due to the motion of the camera. Spatiograms were used to implement
the color cue. Figures 4 and 5 show the tracking results in the two sequences
for one particular cue ordering. Similar results were obtained by varying the
orders. Figure 6 shows the differences between the estimated target centers in
the color cue under different orderings for the first sequence. Figure 7 shows the
instantaneous particle approximations to the target distributions in different cues
under different orderings for the second sequence. It can be seen that empirically,
reordering the cues causes little difference in the tracking results. Nevertheless,
setting the contour cue at one end of the chain makes the implementation of the
algorithm clearer as xcontour

t contains the extra parameter θt and this information
cannot be provided by other cues.

In the fourth experiment, we compared our approach to two typical particle-
filter based multi-cue integration methods. The first selected method assumes
that the cues are conditionally independent and fuses them by computing the
product of the likelihoods in different cues [9, 13, 14]. We refer to it as indepen-
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Fig. 5. Results of face tracking. The lady’s face rotates, tilts and scales. Due to the
motion of the camera, only three cues are integrated in the order of color, edge and
contour.

Fig. 6. The differences between the esti-
mated target centers in the color cue un-
der different orderings for the sequence
shown in Fig. 4. Four different orderings
were tested: (1) color, edge, motion and
contour; (2) motion, color, contour and
edge; (3) edge, contour, color and motion;
(4) color, edge, contour and motion. The
pixel distances between the target centers
under the last three orderings and under
the first ordering are computed respec-
tively and are plotted in different colors.

Fig. 7. The instantaneous particle ap-
proximations to the target distributions
in different cues for the sequence shown
in Fig. 5. Results of different orderings are
shown in different rows. From left to right,
the ordering for the top row is edge, color
and contour, for the middle row, color,
contour and edge, and for the bottom row,
color, edge and contour.

dent integration. This independence assumption is often violated, making the
trackers unstable. The second selected method propagates target distributions
from cue to cue in a fixed order [5]. We refer to it as hierarchical integration.
Here, the problem is that background clutter occurs in different cues at different
times, rendering the design of a fixed integration order difficult. An inappropri-
ate order often causes the propagation of wrong information from cue to cue. In
the sequence shown in Fig. 8, both of these classical methods failed. Independent
integration was thrown off by conflicts between color and contour cues. For hier-
archical integration, all shown cue orderings failed because misleading evidence
was propagated downstream at some point. Moreover, no single cue was able
to track the target by itself, except for the contour cue, which was inaccurate
and brittle. In contrast, our approach exploited the dependencies between the
cues and enabled bidirectional information propagation between the cues, lead-
ing to increased reliability. During system design, all cues were treated equally;
no hierarchy needed to be imposed.

In the last experiment, we compared the precision and the efficiency of the
SAPBP algorithm with the full-product NBP, shown in Fig. 9 and Fig. 10.
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Fig. 8. Comparison of our approach with alternative methods. First row: Results
by our approach using cues in the order of color (spatiogram), edge, motion and
contour. Second row: hierarchical integration under three different orderings: (1)
color→edge→motion→contour (green); (2) contour→edge→motion→color (white); (3)
color→contour→edge→motion (blue). Only the estimates of the last cues in the hier-
archies under the different orderings are shown. Third row: independent integration;
Fourth row: four single-cue trackers. Note that the contour tracker by itself was able
to follow the target but with much less accuracy compared to our approach.

It can be seen that both methods produced almost identical results, but our
approach runs on average about 15 times faster than the full-product NBP. As
the number of particles increases, more efficiency will be gained as the complexity
of our approach increases linearly while that of the full-product NBP increases
cubically. A comparison of different topologies of cue connections including the
chain, the ring and the fully-connected models was also performed, shown in
Figure 10. As the latter two models contain loops, a loopy version of our SAPBP
algorithm was implemented that iterates 5 times in each step. On the ring and
fully-connected models, we obtained results essentially identical to on our chain
model but on average 5.2 and 7.4 times slower, respectively.

6 Conclusions

This paper presents a systematic approach to integrating multiple cues in visual
tracking. The strength and beauty of the approach lies in its unprejudiced treat-
ment of each individual cue, which permits efficient inference based on linked
HMMs and a Sequential Auxiliary Particle Belief Propagation algorithm. The
simultaneous cues are arranged in a simple chain topology. Empirically, the or-
dering of the cues along the chain is inconsequential. In a sense, each cue is a
black box and only exchanges messages with its neighbors. It doesn’t have to
know what other cues are being used and how they are implemented. Therefore,
the general architecture allows the easy combination of an arbitrary number of
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Fig. 9. Results on apple tracking. In the first row, the tracker was disturbed by a
severe occlusion but recovered afterwards thanks to the color cue. In the second row,
the tracker successfully handled a short occlusion by a distractor apple. When the
occlusion lasted long and the scale of the distractor matched that of the target, the
tracker accidentally jumped to the distractor apple, shown in the last row.

Fig. 10. The comparison of our approach, SAPBP on the chain, with the full-product
NBP on the chain, SAPBP on the ring and on the fully-connected model. The left-hand
figure plots the distances between the estimated target centers in the color cue by our
approach and by the three other methods. As the maximum distance is no larger than
2 pixels, we conclude that they produced identical results. The right-hand figure plots
the time consumptions of all the methods in each frame of the sequence.

cues in an arbitrary ordering. Our experiments confirmed a robustness superior
to two competing approaches.

In this work, we deliberately chose simple cues and selectively combined
them to highlight the flexibility of our approach. Other cues such as keypoints
or even audio can easily be incorporated without any changes to the integration
framework. The only issue is to define the inter-cue pairwise potentials, which
depend solely on the target representations in the cue and its neighbors.
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