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This paper presents a novel approach to tracking ground targets in multiple
cameras. A target is tracked not only in each camera but also in the ground
plane by individual particle filters. These particle filters collaborate in two dif-
ferent ways. First, the particle filters in each camera pass messages to those
in the ground plane where the multi-camera information is integrated by in-
tersecting the targets’ principal axes. This largely relaxes the dependence on
precise foot positions when mapping targets from images to the ground plane
using homographies. Second, the fusion results in the ground plane are then in-
corporated by each camera as boosted proposal functions. A mixture proposal
function is composed for each tracker in a camera by combining an independent
transition kernel and the boosted proposal function. The general framework of
our approach allows us to track individual targets distributively and indepen-
dently, which is of potential use in case that we are only interested in the
trajectories of a few key targets and that we cannot track all the targets in the
scene simultaneously.

1. Introduction

Tracking targets on the ground using multiple cameras is a basic task in many
applications such as video surveillance and sports analysis. A commonly-used
fusion strategy is to detect targets in each camera with bottom-up approaches
such as background subtraction and color segmentation, and then to calculate
the correspondences between cameras using the camera calibrations, or more
often, the ground homographies. In order to reason about occlusions between
targets, this fusion strategy usually requires all targets to be correctly detected
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and tracked 12),14),16),17),20). However, the automatic detection of targets entering
and leaving the scene is itself a difficult problem. Moreover, sometimes, we may
be interested in the trajectories of only a few key targets, for instance, the star
players in a soccer game or a few suspects in a video-surveillance scenario. Top-
down approaches are preferable in such situations.

In this paper, we present a novel top-down approach to ground-target tracking
by multiple cameras. The approach is based on collaborative particle filters,
i.e., we track a target not only in each camera but also in the ground plane by
individual particle filters. These particle filters collaborate in two different ways.
First, the particle filters in each camera pass messages to those in the ground
plane where the multi-camera information is integrated using the homographies
of each camera. Such a fusion framework usually relies on precise foot positions of
the targets, which are often not provided by the particle filters in the cameras. To
overcome the imprecise foot positions as well as the uncertainties of the camera
calibrations, we exploit the principal axes of the targets during integration, which
greatly improves the precision of the fusion results. These fusion results are then
incorporated by the trackers in each camera as boosted proposal functions. A
mixture proposal function is composed for each tracker in a camera by combining
an independent transition kernel and the boosted proposal function, from which
new particles are generated for the next time instant.

Our approach has several distinctive features. First, it doesn’t require all tar-
gets to be tracked simultaneously. Instead of explicitly modeling the interactions
between targets, we compute the consensus between cameras by having trackers
in different cameras communicate. Second, it has a fully distributed architec-
ture. All the computations are performed locally and only the target estimates
are exchanged between the cameras and the fusion module. Third, the fusion of
the multi-camera information is done by intersecting the targets’ principal axes,
which is much more precise than the direct fusion of targets’ feet positions.

The rest of the paper is organized as follows. Section 2 introduces related work
and highlights our contributions. Section 3 formulates the multi-camera tracking
problem. Section 4 introduces the collaborative particle filters, including the
principal axis-based integration and the boosted proposal functions. Experiments
on both surveillance and soccer game scenarios are shown in Section 5.
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2 Ground-Target Tracking in Multiple Cameras

This paper is an extension to a conference version which was published at
ACCV’07 11).

2. Related Work

Due to the plentiful advantages over single-camera tracking, multi-camera
tracking is receiving growing attention in the field of computer vision. A popular
class of approaches considers tracking with multiple cameras as a correspondence
problem between tracks of targets seen from different viewpoints. When cameras
are calibrated and a model of the site is available, it is possible to map targets
in different cameras into a common world coordinate system, and the correspon-
dence problem is to establish equivalence between targets at the same location.
Collins et al. 7) developed a system for surveillance in the context of battlefield
awareness using model-based geolocation. A simpler situation is when the 3D
world degenerates into a known 2D ground plane. In this case, ground homogra-
phies have been widely used to do the image-to-scene mapping 2)–4),27). In case
of simultaneously tracking of multiple targets, the geometric information is also
used to reason about the occlusion situations between targets 12),14),16),17),20).

Besides geometric locations, low-level features also measure the similarity of
targets in different cameras. For instance, Orwell et al. 23) detected targets in each
camera by background subtraction and matched them using color histograms.
Cai et al. 5) established correspondences by matching a set of feature points with
a Bayesian classification scheme. Krumm et al. 19) combined information in mul-
tiple stereo cameras; they performed background subtraction to detect human-
shaped blobs in 3D, and used color histograms to identify targets. Mittal et al. 20)

extended this work to multiple wide-baseline cameras; target segmentation and
tracking were done by clustering points into 3D blobs using region-based stereo
matching and volume intersection.

As no single feature is reliable enough for tracking in all cameras, the fusion
of multiple features in the framework of Bayesian Networks was introduced by
Chang et al. 6) and Dockstader et al. 8). The first publication used Bayesian Net-
works to group features such as color, landmarks, location, and apparent height
into targets, while the second tracked 2D semantic features in each camera and
fused them by computing the confidence level of a camera using a Bayesian Net-

work. Both publications handle occlusions by Bayesian Networks, which largely
improves the robustness of the algorithms. However, when the disparity between
cameras is large, both in location and in orientation, the reliability of feature
matches is limited.

Due to their tremendous success in visual tracking, particle filters have also
been adopted in multi-camera tracking 9),15). Most reported work performed par-
ticle filtering in 3D so that precise camera calibration is required to project par-
ticles into the image plane of each camera 18),21). The multi-camera information
is often integrated by either the product of the likelihoods in all cameras 18) or
a selection of the best cameras that contain the most distinctive information 21).
Both methods demand the collection and processing of the multi-camera obser-
vations at a central location, forming a centralized fusion framework.

Our approach is different from previous work in two main aspects. First, it is
a top-down approach and allows individual targets to be tracked independently.
Second, our approach has a decentralized architecture which is suitable for par-
allel implementation. The key is to let the cameras “talk” to each other so that
each local tracker is able to take advantage of additional information in other
cameras. In particular, a tree-structured graphical model is built to describe the
relationships between target states in 3D and in different cameras. This model
consists of a set of leaf nodes and a central node, and message passing between
them enables the collaboration of the local trackers in all cameras. To get rid
of the dependence on precise foot positions, we exploit the principal axes of the
targets in the fusion of the multi-camera information, the intersections of which
give better ground positions. At the same time, the fusion results in the ground
plane are incorporated as proposal functions into each camera. This not only
improves the tracking precision in each camera but also helps maintain consis-
tencies between the local trackers. Experiments on sequences of video surveillance
and soccer games show that acceptable performances can be achieved without
explicitly modeling the interactions between targets.

3. Problem Formulation

Suppose L cameras are used and each camera collects one observation for a
target at each time instant.
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3 Ground-Target Tracking in Multiple Cameras

Denote the target state on the ground plane by xt,0 and its states in differ-
ent cameras by xt,j , j = 1, . . . , L. Here, we model the target in a camera as a
rectangular region and the corresponding target in 3D as a cylinder. Therefore,
xt,0 = [ut,0, vt,0, ht,0, wt,0], where [ut,0, vt,0] is the position of the target on the
ground plane and [ht,0, wt,0] is its 3D size. For simplicity, [ht,0, wt,0] is often as-
sumed fixed. Likewise, xt,j = [ut,j , vt,j , ht,j , wt,j ], where [ut,j , vt,j ] is the position
of the target in the image plane and [ht,j , wt,j ] its 2D size. Let zt,j denote the
observation in camera j at time t, Zt = {zt,1, . . . , zt,L} the multi-camera obser-
vation at time t, and Zt = {Z1, . . . , Zt} the multi-camera observations up to time
t.

According to the Bayes’ rule, the recursive inference of the marginal posterior
p(xt,0|Zt) is formulated as

p(xt,0|Zt) ∝ p(Zt|xt,0)
∫
p(xt,0|xt−1,0)p(xt−1,0|Zt−1)dxt−1,0, (1)

where p(Zt|xt,0) is the multi-camera image likelihood function and p(xt,0|xt−1,0)
is the prior state transition model.

We assume that the observations in different cameras, zt,j , j = 1, . . . , L, are
conditionally independent given xt,0, i.e.

p(Zt|xt,0) =
L∏

j=1

p(zt,j |xt,0), (2)

where p(zt,j |xt,0) is the image likelihood function in camera j. Substituting
Eq. (2) into Eq. (1), we get the update equation for p(xt,0|Zt),

p(xt,0|Zt) ∝
L∏

j=1

p(zt,j |xt,0)
∫
p(xt,0|xt−1,0)p(xt−1,0|Zt−1)dxt−1,0. (3)

There are two reasons why direct inference using the above equations is in-
tractable. First, a closed-form expression for Eq. (3) is only available in situa-
tions of linear state evolution models and Gaussian likelihood. Second, the multi-
camera image observations are not produced by the target alone, but jointly by
the target and scene clutter. Thus, p(Zt|xt,0) is easily affected by an inaccurate
observation in one particular camera. For instance, if the target is occluded in
one camera, the observation in this camera is either incomplete if the occlusion

(a) Graphical model (b) Dynamic Markov model

Fig. 1 Graphical models for modeling the dependencies at time t and for modeling the
evolution of the system in time.

is introduced by clutter in the background or spurious if produced by similar
objects. Consequently, p(Zt|xt,0) is biased by this inaccurate observation, even if
accurate observations are available in other cameras. Therefore, we reformulate
the problem of multi-camera tracking by explicitly modeling the dependencies
between different cameras using graphical models.

3.1 Model Description
Figure 1 (a) shows the graphical model that models the dependencies between

target states in the ground plane and at different cameras at time t. We assume
that the xt,j , j = 1, . . . , L, are independent given xt,0 so that a tree-structured
model is formed. Note that xt,0 is not associated with any observation. One
advantage of this model is that it is acyclic so that most inference algorithms
such as belief propagation (BP) can produce the exact inference 31). Connecting
the graphical models at different times results in a dynamic Markov model, shown
in Fig. 1 (b), that describes the evolution of the system over time. As all the xt,j

depend on xt,0, we add temporal links from xt−1,0 to xt,j . The addition of these
temporal links is beneficial to the design of the proposal functions, shown in the
next section.

In both models in Fig. 1, each directed link from xt,0 to xt,j , j = 1, . . . , L,
represents a message passing process and is associated with a potential function
ψt

0,j(xt,0, xt,j). The directed link from xt,j to zt,j , j = 1, . . . , L, represents the
observation process and is associated with a likelihood function pj(zt,j |xt,j). In
Fig. 1 (b), the directed links from xt−1,i to xt,i, i = 0, . . . , L, and from xt−1,0 to
xt,j , j = 1, . . . , L represent the state transition processes and are associated with
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4 Ground-Target Tracking in Multiple Cameras

motion models p(xt,i|xt−1,i) and p(xt,j |xt−1,0) respectively.
3.2 Collaborative Multi-Camera Tracking
Based on the dynamic Markov model in Fig. 1 (b), multi-camera tracking

amounts to inferring each target state xt,i, i = 0, . . . , L, based on all obser-
vations Zt collaboratively. A message passing scheme, the same as is used in BP,
is adopted to pass messages from each camera to the ground plane. The local
message from camera j is defined as

m0j(xt,0)

←
∫
pj(zt,j |xt,j)ψt

0,j(xt,0, xt,j)
∫
p(xt,j |xt−1,j)p(xt−1,j |Zt−1)dxt−1,jdxt,j ,

(4)
where ψt

0,j(xt,0, xt,j) is the potential function that models the stochastic relation
between xt,0 and xt,j . The belief in the ground plane p(xt,0|Zt) is computed
recursively by the message product and the propagation of the previous posterior,

p(xt,0|Zt) ∝
∏

j=1,..., L

m0j(xt,0)
∫
p(xt,0|xt−1,0)p(xt−1,0|Zt−1)dxt−1,0. (5)

The inference of xt,j , j = 1, . . . , L, is done by nearly standard particle filters,
except that the fusion results at t− 1 are taken into consideration. The belief in
camera j p(xt,j |Zt) is computed as

p(xt,j |Zt) ∝ pj(zt,j |xt,j)
∫ ∫

p(xt,j |xt−1,j)p(xt−1,j |Zt−1) (6)

p(xt,j |xt−1,0)p(xt−1,0|Zt−1)dxt−1,0dxt−1,j .

The underlined terms incorporate the fusion results as a boosted proposal func-
tion. In other words, the fusion module is used by each camera as a coupled
process.

The above formulation shows that our algorithm involves both particle filters
for propagating marginal posteriors over time, and a message passing scheme for
having the particle filters collaborate. The inference based on this formulation is
very efficient due to the simplicity of the graphical models used in Fig. 1.

4. Collaborative Particle Filters

All the inference processes formulated above, in the ground plane and for each

Fig. 2 The particle distributions in four cameras at a time instant. It can be seen that the
foot positions are not precise although all the particles are placed at the right locations.

camera, are performed by individual but collaborative particle filters. Here, we
consider xt,0 to be a 2D position in the ground plane, whereas xt,j is a vector
corresponding to the bounding box of the tracked target in camera j.

4.1 Principal Axis-based Integration
The ground-plane particle filter integrates the multi-camera information ac-

cording to Eqs. (4) and (5). For tracking ground targets, homographies are often
used to map the foot positions from each camera to the ground plane. However,
a large number of particles are required to estimate precise foot positions, which
significantly slows down the tracking system. With a small number of particles,
the sizes of the targets cannot usually be estimated precisely. We overcome this
problem by exploiting the principal axes of the targets.

The principal axis of a target is defined as the vertical line from the head of the
target to the feet. Here, it is simply the vertical line in the middle of a rectangle
associated to a particle. It has been shown that the principal axes of a target in
different cameras intersect in the ground plane, and computing the intersection
point yields very robust fusion results 14),17), illustrated in Figs. 2 and 3. We
exploit this effect in our multi-camera integration.

The idea is to sample particles in the ground plane by importance sampling,
and to evaluate these particles by passing messages from each camera. Here, a
prior motion model p(xt,0|xt−1,0) is used as the proposal function from which
new particles for xt,0 are sampled. Each of these ground-plane particles receives
messages from each camera, and a message weight is computed using Eq. (4).
The principal axes are incorporated in the potential function ψt

0,j(xt,0, xt,j) in
Eq. (4). In general, the principal axes of the particles in a camera are projected to
the ground plane using the homographies. The potential function measures the
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5 Ground-Target Tracking in Multiple Cameras

(a) Mapping particles to the ground (b) Mapping principal axes to the ground

Fig. 3 Comparison between homography-based integration and principal axis-based integra-
tion. In (a), the projections of the particles (the red stars) from the images in Fig. 2
to the ground have a large variance, making the integration imprecise. In contrast, in
(b), the intersection of the principal axes (the red lines) of four selected particles yields
a more precise foot position (the white square).

distances of the ground particles to these projected principal axes and converts
them to probability densities, given by

ψt
0,j(x

n
t,0, x

m
t,j) ∝ exp(−dist2(xn

t,0,project(Hj , x
m
t,j))), (7)

where xn
t,0 and xm

t,j are the nth ground-plane particle and mth particle in camera
j, Hj is the homography from camera j to the ground plane, dist() computes the
distance between a point and a line segment, and project(, ) maps the principal
axis to the ground. The message and belief weights are then computed by

wj,n
t,0 ∝

N∑
m=0

πm
t,jψ

t
0,j(x

n
t,0, x

m
t,j), πn

t,0 ∝
L∏

j=1

wj,n
t,0 , (8)

where wj,n
t,0 is the message weight of xn

t,0 from camera j, and πn
t,0 and πm

t,j are the
belief weights of xn

t,0 and xm
t,j . Intuitively, the closer a ground-plane particle is to

all the principal axes, the larger its weight is, as illustrated in Fig. 4.
Note that a target is tracked in the ground plane in the same way as in each

camera, although there are no image observations. The ground-plane particles are
evaluated by the incoming messages from the cameras. There are two reasons
why we don’t directly use the intersections of the principal axes as the fusion
results. First, computing these intersections is computationally intensive, with a

(a) Camera 1 passes messages (b) Camera 2 passes messages

Fig. 4 An illustration of evaluating ground-plane particles using two cameras. The ground-
plane particles are evaluated according to the distances to the projected principal axes.
(a) After the first camera passes messages to the ground plane, all the particles along
the principal axes (red dots) have larger weights than those further away (blue dots).
The weights of the camera particles are shown at one end of the corresponding principal
axes. (b) After the second camera passes messages, only those ground-plane particles
that are close to the intersections have large weights.

complexity of O(NL), where N is the number of particles in each camera and L
is the number of cameras. Our approach is much more efficient with a complexity
of only O(LN2). Second, by using an individual tracker in the ground plane, we
can incorporate a prior motion model to enforce smooth motion.

4.2 Boosted Proposal Functions
A target is tracked in each camera by a particle filter. Due to the occlusions

or other image noise, feedback from the fusion module is expected to improve
the tracking performance in a camera. A similar message passing procedure was
adopted in our previous work to pass messages from the ground plane to each
camera, which proved computationally expensive 10). We propose here a different
method to incorporate this feedback.

Note that in the dynamic Markov model in Fig. 1 (b), for each xt,j , j = 1, . . . , L,
there is an extra temporal link from xt−1,0 besides that from xt−1,j . This enables
us to design a mixture proposal function for importance sampling,

p(xt,j |xt−1,j , xt−1,0) ∝ αp(xt,j |xt−1,j) + (1− α)p(xt,j |xt−1,0). (9)
Thus, we sample particles from both p(xt,j |xt−1,j) and p(xt,j |xt−1,0), i.e., αN par-
ticles are sampled from p(xt,j |xt−1,j) and the other (1−α)N from p(xt,j |xt−1,0).
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6 Ground-Target Tracking in Multiple Cameras

Parameter α specifies a trade-off between two proposal functions and is set to 0.5
in our experiments. To sample from p(xt,j |xt−1,0), we fit a Gaussian distribution
to xt−1,0 and propagate it to each camera using the homographies. The sizes of
the targets can be estimated when the full camera calibrations are available or
assumed to be a Gaussian distribution with a mean of the sizes at the previous
time instant. For the latter case, the particles from p(xt,j |xt−1,0) are moved up
by a distance d to avoid the problem of the imprecise foot positions, where d is
learned from the previous time instant.

In a sense, the fusion results at t− 1 are used as boosted proposal functions by
each camera 22). This is beneficial not only in maintaining consistency between
the particle filters at different nodes but also in speeding up the tracking algo-
rithm. The sampled particles are evaluated using the image likelihood as is done
in standard particle filters.

4.3 Observation Model
The tracking algorithm requires an observation model in each camera for com-

puting the likelihood pj(zt,j |xt,j), j = 1, . . . , L. Following Pérez et al. 25), a classi-
cal observation model based on Hue-Saturation-Value (HSV) color histograms is
adopted due to the ease of implementation and the advantage of being insensitive
to illumination effects.

Thus, in camera j at time t, the color model of the target of interest
qt,j(s

(n)
t,j ) = {qt,j(b; s(n)

t,j )}Bb=1 associated with a sampled particle s(n)
t,j is obtained

by a histogramming technique, which assigns a probability to each of the B

color bins. This model is compared to a previously-learned reference color model
q∗

j = {q∗j (b)}Bb=1, and the Bhattacharyya distance is computed to measure the
similarity,

D[q∗
j ,qt,j(s

(n)
t,j )] =

[
1−

B∑
b=1

√
q∗j (b), qt,j(b; st,j)

] 1
2

. (10)

Once the distance between the color histograms is computed, we use the image
likelihood function

pj(zt,j |xt,j = s
(n)
t,j ) ∝ exp

(
−λD2[q∗

j ,qt,j(s
(n)
t,j )]

)
, (11)

where λ is fixed to 20 in all our experiments. As for the bin numbers, the default

setting is 10 for all the Hue, Saturation, and Value channels.
To model the spatial layout of the color distribution, a multi-part color model is

obtained by splitting the tracked region into subregions, each with an individual
color model. In our work, a two-part, upper body and lower body, color model is
adopted for modeling pedestrians in video-surveillance scenarios and players in
soccer-broadcasting scenarios. The effectiveness of this method has repeatedly
been demonstrated 22),25) and is confirmed by this work.

To speed up tracking, the above procedure was implemented using integral
histograms 26). The construction of the integral histograms in an arbitrary rect-
angular region demands the construction of an integral image for each bin, at a
cost proportional to the size of the region times the number of bins. After the
construction of the integral histograms, the evaluation of a particle is nearly as
cheap as the comparison of two histograms, which is very efficient 26).

4.4 Discussion
In multi-camera tracking, a big problem is how to deal with inconsistent obser-

vations due to e.g. occlusions in some of the cameras. To overcome this problem,
many approaches assess the tracking performance to obtain a confidence weight
for each camera 1),2),4),13),27). As the confidence weights are computed according
to the quality of the estimates, the risk of failure is high if the targets being
tracked are approached by other, similar objects. Our approach is different from
this strategy in that each camera is treated equally with no explicit preference.
However, as pointed out by Sun, et al. 29), the asymmetric message passing mech-
anism guarantees that the information is propagated mainly from high-confidence
cameras to low-confidence cameras due to the smaller entropy of the messages in
this direction. An extreme example is when a target is completely occluded in a
camera. Then, this camera still “contributes” by propagating mostly uniformly
distributed beliefs. Although this camera is not informative, it will not affect the
tracking results at other cameras. Consequently, the propagation of incorrect
information is avoided.

One advantage of our approach is that it has a fully distributed architec-
ture. Image observations in different cameras are processed locally and only
messages are exchanged between the ground plane and each camera. Moreover,
as a byproduct, it also allows different observation models to be used in different
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7 Ground-Target Tracking in Multiple Cameras

cameras to better characterize varying properties of the targets across views. In
a sense, each camera is used as a black box and only exchanges messages with
the ground plane. It doesn’t have to know what kinds of observation models are
being used in other cameras and how they are implemented. This is beneficial
from an implementation point.

5. Results

We tested our method on both video-surveillance and soccer-broadcasting se-
quences. In all experiments, we manually initialized the targets of interest in
the first frame of each sequence and learned the reference color models. The
reference models were updated gradually with exponentially forgetting the past
models, or were kept unchanged when dramatic changes to the models indicated
occlusions 30). 100 particles were sampled for each particle filter.

In the first experiment, we tested our approach on challenging video-
surveillance sequences of multiple people walking indoors. The sequences were
taken by four cameras separated by wide baselines and contain heavy occlusions.
The cameras are only partially calibrated with ground and head homographies
available. The ground homography refers to the common homography from the
image plane to the ground plane, while the head homography refers to the ho-
mography from the image plane to the head plane, i.e., the plane parallel to the
ground plane but 1.75 m higher �1. For the first two cameras, both ground and
head homographies are available. For the other two, the head planes happen
to be orthogonal to the image plane and there are thus no head homographies
given. However, the height where the head plane is located in the image view is
provided for them. All the calibration information was exploited to determine
not only the foot positions but also the head positions of the targets.

Figure 5 shows the results of selectively tracking three people in the crowd.
Figure 6 shows the tracking results of one person on the ground plane. In
this experiment, static cameras with narrow viewing angles are used, making the
targets quite large in the images. Thus, a more complicated multi-cue observation

�1 It is assumed that all people have a fixed height of 1.75 m. This fixed-height assumption
significantly improved the robustness of the tracking algorithm.

model is adopted. We first construct a hierarchical color model that further
splits the upper body and lower body into subregions and continues to split until
the subregions become small enough. A cascade comparison with a reference
hierarchical model is then performed which halts when the similarity score is
smaller than a threshold at a level of the hierarchy. After a particle is evaluated
by the color likelihood function, background subtraction is then used to attract
the particle to the regions with moving objects. In a way, the color and motion
information is used in turn to evaluate the particles 24), shown in Fig. 7.

Experimental comparisons are difficult to perform because our method tracks
targets independently, whereas most other approaches have to track all targets
simultaneously even if we are only interested in one particular target. Two pos-
sible alternatives are a traditional particle filter that computes the products of
the likelihoods in all cameras 18) and a fusion module that integrates results by
individual particle filters in the cameras. Since only partial camera calibrations
are available, the former method requires very precise foot positions to be de-
tected. For the latter, the lack of the feedback from the fusion module may
cause inconsistency between the local trackers in the cameras. Thus, we only
compared with these two methods which are referred to as likelihood product and
centralized fusion respectively, shown in Fig. 8. Likelihood product needs camera
calibrations to project particles from 3D to each camera. Here, we used both the
ground and head homographies to reason about the height of the target in each
image. As expected, the method is sensitive to the precisions of the foot and
head positions of the targets and fails quickly during the first big occlusion. For
centralized fusion, we ran standard particle filters in each camera and computed
the intersections of the principal axes of their estimates using both the ground
and head homographies. Due to the lack of the collaboration between cameras,
the local trackers work separately and fail one by one when occlusions occur.

In the second experiment, we tracked several soccer players in three Pan-Tilt-
Zoom cameras, shown in Fig. 9. The ground homography for each camera was
obtained online either by using known features such as border lines on the field
where enough of them are visible, e.g., near the penalty area, or by accumulating
small estimates of motion between consecutive frames where no or few features
are visible 13). Although we don’t explicitly model the interactions between play-
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8 Ground-Target Tracking in Multiple Cameras

Fig. 5 Results of tracking three people in an indoor environment with four cameras. Each column shows four simultaneous views.

ers, the feedback from the ground tracker to each camera compensates for the
occlusions in some of the cameras. However, at a point, due to a heavy occlusion
that occurs in all cameras, a tracker jumps from one target to another. Such fail-
ures are expected especially when the total occlusions come from similar objects
such as teammate players. Nevertheless, the feedback from the ground tracker
enforces the consistency between the local trackers, even if they collectively fol-
low the wrong target. Figure 10 shows the particle distributions at the time

instant when the jump begins. This problem can be partially solved by tracking
multiple targets simultaneously.

6. Conclusions and Future Work

This paper presents a novel approach to ground-plane tracking of targets in
multiple cameras. Different from previous work, our approach is not based on
bottom-up detection or segmentation methods. Instead, we infer target states in
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Fig. 6 Results of tracking one person on the ground plane. The colored lines are the principal axes of the estimates in the
cameras. The black dots are the ground particles.

Fig. 7 The left figure shows the hierarchical color model and the right figure shows the
result of background subtraction based on a Gaussian-mixture model 28).

each camera and in the ground plane by collaborative particle filters. Message
passing and boosted proposal functions are incorporated in the collaboration
between the trackers in each camera and the fusion module. Principal axes
are exploited in the multi-camera integration, which enables us to handle the
imprecise foot positions and some calibration uncertainties. In doing so, we
achieve robust results using relatively little computational resources.

We are currently adapting this approach to multi-target, multi-camera tracking,

IPSJ Transactions on Computer Vision and Applications Vol. 1 1–14 (Jan. 2009) c© 2009 Information Processing Society of Japan



10 Ground-Target Tracking in Multiple Cameras

Fig. 8 Comparisons of our approach with likelihood product and centralized fusion. The red rectangles are results by our approach,
the blue ones by likelihood product, and the green ones by centralized fusion. All methods are able to handle short occlusions
in one camera, shown in the third column. However, as centralized fusion consists of individual particle filters that work
separately, it cannot handle dramatic occlusions such as the one at the end of the second row. As a result, individual trackers
in different cameras produce inconsistent results. On the other hand, likelihood product depends too much on the precision
of the foot and head positions, and therefore is also sensitive to dramatic occlusions. In the fifth column, the target is
occluded in two cameras, introducing large uncertainties to the particle filter in the ground plane. Our approach integrates
the advantages of both likelihood product and centralized fusion in that individual trackers are deployed in different cameras
as well as in the ground plane while likelihoods are combined everywhere.
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Fig. 9 Results of tracking several soccer players in the last frames of the three sequences. The switch between the blue and cyan
trackers occurs at the fourth column.

Fig. 10 The particle distributions at the time when the tracker is about to jump to a different player, which happens here because
the players involved are very close both in space and in appearance in all three views. The green rectangles are the sampled
particles, the blue ones are the estimates, and the red ones are the predictions of the fusion results at the previous time.

IPSJ Transactions on Computer Vision and Applications Vol. 1 1–14 (Jan. 2009) c© 2009 Information Processing Society of Japan



12 Ground-Target Tracking in Multiple Cameras

which involves the modeling of the target interactions and data association across
cameras.

Acknowledgments The authors wish to thank Jérôme Berclaz and François
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