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Abstract. Hand modeling and tracking are essential in video-based sign
language recognition. The high reformability and the large number of de-
grees of freedom of hands render the problem difficult. To tackle these
challenges, a novel approach based on robust principal component analy-
sis (PCA) is proposed. The robust PCA incorporates an L1 norm objec-
tive function to deal with background clutter, and a projection pursuit
strategy to deal with the lack of alignment due to the deformation of
hands. The learning algorithm of the robust PCA is very simple, involv-
ing only a search for the solutions in a finite set constructed from the
training data, which leads to the learning of much more representative
and interpretable bases. The incorporation of the L1 regularization in the
fitting of the learned robust PCA models results in cleaner reconstruc-
tions and more stable fitting. Based on the robust PCA, a hand tracking
system is developed that contains a skin-color region segmentation based
on graph cuts and template matching in the framework of particle fil-
tering. Experiments on a publicly available sign-language video database
demonstrates the strength of the method.
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1 Introduction

Automated sign language recognition from video has been studied for at least
about twenty years [1]. However, the recognition of continuous, natural signing
remains challenging, in terms of video analysis, due to the multimodal nature of
the cues including hands, lips, facial expressions and body poses.

In this paper, we concentrate on one particular challenge, hand modeling
and tracking, in video-based sign language recognition, as hands convey a lot
of information including at least configurations, positions, and instantaneous
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velocities. In principle, hands are difficult to model and to track because of their
high deformability, their large number of degrees of freedom and their high level
of self-occlusion, which give rise to an enormous variation of appearance and a
high level of ambiguity.

Previous approaches have tackled these difficulties by different methodologies
including exploiting the skin color [2, 3], discriminative learning of hand classi-
fiers [4, 5] and incorporating constraints from arms [6] and from TV subtitles [7,
8], etc. For hand modeling and recognition, principal component analysis (PCA)
has also been applied and achieved promising results [9, 10]. However, clean hand
segmentation and clean backgrounds are needed as classical PCA is known to
be sensitive to outliers.

This paper presents an approach to modeling and tracking hands in sign
language videos using PCA. In contrast to previous work, we directly deal with
the outliers introduced by background clutter and by the deformation of hands.
To this end, we propose a novel, robust PCA that incorporates a robust objec-
tive function based on the L1 norm and limits the search space to a finite set
constructed only from training data, which results in the learning of much more
representative and interpretable PCA bases. An efficient algorithm is proposed
based on iterative projection pursuit to solve the robust PCA learning problem.
We also incorporate the L1 regularization in the fitting of the learned, robust
PCA models, leading to cleaner reconstructions and more stable fitting. Based
on the robust PCA, we develop a hand tracking system that contains a skin-color
region segmentation based on graph cuts and template matching in the frame-
work of particle filtering. Experiments on a publicly available sign-language video
database demonstrate the strength of the method.

We introduce our robust PCA algorithm in Section 2. Section 3 presents how
to apply the robust PCA method for hand modeling and tracking. Experimental
results are shown in Section 4. Section 5 gives the conclusions and discusses
possible future work.

2 Robust Principal Component Analysis

Principal component analysis (PCA) is one of the most popular tools for high-
dimensional data analysis where dimensionality reduction is necessary to reduce
the number of input variables in order to simplify the problems. Commonly, in
PCA, one tries to find a set of projections that maximize the variance of given
data, or equivalently, that minimize the residuals of the projections. These pro-
jections constitute a low-dimensional, linear subspace in which the data structure
in the original input space can effectively be captured.

However, although successful in many applications such as face recogni-
tion [11], classical PCA is known to be sensitive to outliers [12–15], since the
computation of both data variances and projection residuals is founded on the
L2 norm which exaggerates the effects of outliers with a large norm. To achieve
robustness, many approaches have been proposed, including replacing the L2

norm by the L1 norm [12, 13] or other robust scalar estimators [14], and adding
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a robustfying term in analogy to regularization in PCA [15]. Although these
different PCA models optimize different objective functions, the optimization is
done over all training data so that the learned bases can be considered as some
kind of combination of the data.

In the problem of sign language recognition, a fundamental difficulty in ex-
tending these concepts to modeling and tracking hands is that, unlike faces,
hands are highly deformable and thus are difficult to align. A consequence is
that the hand training examples cropped from sign language videos contain not
only hands in various configurations but also some background clutter. In the
presence of missing alignments in the training data, the PCA bases learned by
most methods will be blurred and carry no representative information to model
the objects of interest.

Here, we propose a novel PCA method that combines a few strategies to deal
with the alignment difficulties. Similar to previous work, we also search the PCA
bases that maximize the spread of the training data. However, we consider the
background clutter as outliers and incorporate a robust objective function based
on the L1 norm. Then, instead of searching the entire space of possible directions
for the bases, we only check for vectors belonging to a finite set constructed from
training data. The intuition behind this is that if the training set is large enough,
there is good hope that quite some of the data will be close to the directions of
maximal spread. After the PCA modeling, we incorporate the L1 regularization
into the fitting of the PCA models, which greatly improves the fitting quality.

2.1 Problem Formulation

Let Xd×n = {x1, . . . , xn} be the training data matrix with d the dimension
of the data and n the number of training samples. Assume that the data has
been centered by removing the mean. In PCA, the bases to be learned are those
orthogonal directions in which the training data are the most widely spread.
Classical PCA defines the spread by the variance of the projected data, which is
sensitive to outliers. We incorporate a more robust definition of spread [13] that
is based on the L1 norm, given by

S(X,w) = ||wTX||1 =

n∑
i=1

|wTxi|, (1)

where w is a unit vector representing the projection direction.

Thus, our robust PCA amounts to optimizing

W = argmaxW ||WTX||1 = argmaxW

k∑
j=1

n∑
i=1

|wTj xi|, s.t. WTW = I, (2)

where Wd×k = {w1, . . . , xk} is the PCA basis matrix, with k being the total
number of bases.
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Input: X, k
X: training data set
k: number of bases
Output: W = {w1, . . . , wk}
Compute the mean of the data û(X)

Set x1
i = xi − û(X), i = 1, . . . , n, and A1 =

{
x1
i

||x1
i ||

, i = 1, . . . , n
}

.

Compute the first PCA basis

w1 = argmaxw1∈A1

n∑
i=1

|wT
1 xi|

and compute the projections on the first basis as y1
i = wT

1 x
1
i , i = 1, . . . , n.

for l = 2 : k do

Set xl
i = xl−1

i − yl−1
i wl−1, i = 1, . . . , n and Al =

{
xl
i

||xl
i||
, i = 1, . . . , n

}
.

Compute the lth PCA basis

wl = argmaxwl∈Al

n∑
i=1

|wT
l xi|

and compute the projections as yl
i = wT

l x
l
i, i = 1, . . . , n.

end
Algorithm 1: Iterative Projection Pursuit for Robust PCA.

2.2 Optimization Algorithm

In practice, eq. 2 is difficult to optimize due to the non-differentiability of the
L1 norm and the orthogonal constraint in the bases. In [13], a simple iterative
algorithm is proposed to solve the L1-norm maximization in eq. 2. However, as
mentioned earlier, the optimization over all training data leads to a solution in
the form of some combination of the data which is unsuitable when the data are
not aligned.

To deal with the lack of alignment, we adopt a projection pursuit strat-
egy [14]1 that, instead of searching in the whole space of possible directions for
the bases, iteratively selects the bases from a candidate set constructed from the
training data. See algorithm 1 for details.

The data mean û(X) in the algorithm is estimated by the spatial median or
L1-median, defined as

û(X) = argminu

n∑
i=1

||xi − u||. (3)

1 Note that this work [14] was originally motivated only by outliers instead of the
alignment problem. The lack of alignment makes some inliers look like outliers.
Another difference is that in this work [14], the objective function to optimize is
the median absolute deviation (MAD) instead of the L1 norm here. MAD has a
higher number of breakdown points and is thus more robust, but is more difficult to
optimize than the L1 norm.
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Put in words, the algorithm iteratively projects the data into the subspace
of the orthogonal complement to the existing bases and then finds the most rep-
resentative among the normalized projected data that maximizes the L1 norm.
In order for this algorithm to work, the candidate set Al in which the bases are
searched for should be quite dense in the region where the L1 norm reaches its
maximum, which holds true if there are enough training samples such that some
of them are close to the direction where data is widely spread.

Although the above optimization algorithm is extremely simple, its com-
plexity is quadratic in the size of the candidate set Al, or equivalently, in the
number of the training samples. As mentioned above, the algorithm requires a
relatively large number of training samples to work, and is thus not suitable
for online learning where fast and incremental training is necessary, or in cases
where training data are sparse.

2.3 Fitting with the Robust PCA Models

After the learning of the robust PCA bases, the fitting of a new given sample
x∗ is simply the projection of the data onto the learned bases. However, we
found that incorporating the L1 regularization into the fitting leads to sparse
reconstructions that include only a small number of the linear bases, which
is helpful in dealing with the alignment problem. In particular, we solve the
following L1-regularized L2 fitting loss function

y∗ = argminy||yTW − x∗||2 + λ2||y||2 + λ1||y||1, (4)

where λ2 and λ1 are the L2 and L1 regularization coefficients. Eq. 4 is also called
an elastic net [16] that balances the smoothness and the sparsity of the solutions,
which can be efficiently solved by using e.g. interior-point methods [17]. Note
that y∗TW gives the reconstruction of x∗.

3 Hand Modeling and Tracking by Robust PCA

The application of the above robust PCA for hand modeling in sign language
recognition is straightforward, provided that a large number of training hand
samples are available. Below, we will explain how the learned PCA models can
be used for hand tracking. In short, our hand tracking system contains two
steps including skin-color region segmentation followed by PCA-based template
matching in a particle-filtering framework.

3.1 Skin-Color Region Segmentation

For the segmentation of the skin regions, the popular graph-cut algorithm is
adopted [18]. Graph cuts seek to minimize an energy function of the form

E =
∑
p∈P

Dp(xp) +
∑

{p,q}∈N

Vp,q(xp, xq),
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Color likelihood Motion likelihood Segmentation

Fig. 1. Color- and motion-based face and hand segmentation.

where Dp is called the data or unary term that measures how well label xp fits
pixel p given the observed data, and Vp,q is called the smoothness or pairwise
term that enforces smooth labeling among neighboring pixels.

For our skin segmentation problem, we incorporate two types of information
in Dp. The first is a color likelihood based on histogram matching, and the
second is a motion likelihood based on image differencing. The intuition behind
this is that hands of signers have distinct skin colors that are different from
the background, and that the hands produce the most dramatic movement in
sign language videos (Fig. 1). For the smoothness term, we adopt the contrast-
sensitive Potts model [19],

Vp,q(xp, xq) =

{
0 if xp = xq

α+ βexp(− ||Ip−Iq||
2

θ ) otherwise
,

where Ip and Iq are the color vectors of pixels p and q respectively, and α, β, θ
are model parameters whose values are learned using training data. One example
of skin segmentation is illustrated in Fig. 1.

3.2 PCA-Based Template Matching and Particle Filtering

After segmentation, we search hands in only the segmented skin regions using
PCA-based template matching in a framework of particle filtering [20]. We first
sample a number of hand candidates from skin regions, and match them with
the PCA bases of the left and right hands. Thus, two matching scores are com-
puted for each hand candidate reflecting the probability that the candidate is the
left and the right hand. The hand model with the highest match score is most
likely to be the hand being tracked in the current frame. However, we smooth
hand trajectories over time by penalizing large motions between frames. This is
currently done offline using dynamic-programming techniques [21].
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man 1 woman 1 woman 2

Fig. 2. RWTH-Boston-104 database. This database is publicly available at http://

www-i6.informatik.rwth-aachen.de/aslr/database-rwth-boston-104.php.

4 Experimental Results

We demonstrate the effectiveness of our robust PCA based hand modeling and
tracking on the RWTH-Boston-104 database [22]. The database contains 201
short sign language video sequences of about 100 frames taken from three signers
under a controlled situation. The manually-labeled hand positions of the entire
database are available and are used to collect training hand samples. Figure 2
shows three example images from some sequences of the three signers. Note that
the male signer sits closer to the camera and some parts of the hands are cropped
and occluded by the annotation bars at the bottoms of the images.

4.1 Results of Hand Modeling by Robust PCA

We first tested our robust PCA for hand modeling. Twenty videos from each
signer were selected and used to learn the signer-specific PCA models. The train-
ing hand samples were collected by cropping a subwindow of size 51 by 51 around
the hand positions in each frame of a training sequence. Overall, 100 bases are
extracted for the left and the right hands of each signer. Figure 3 shows some
examples of the training data for the male signer. Note that the two hands are
occluded by the annotation bar in the beginning and in the end of the sequence
and that these occluded samples are used as well in training the PCA models,
making the problem of outliers worse.

Figures 4 and 5 show the learned robust PCA models and the corresponding
models learned by classical PCA for the left and the right hands of the male
signer. The differences between them are quite clear. As classical PCA and many
other robust variations learn the bases as a function of all training data, the lack
of alignment in the data causes the bases to be blurred and less representative.
In contrast, our robust PCA searches the bases by selecting among the data the
most representative direction in each iteration. Thus, the learned bases are much
more meaningful and interpretable. The robust PCA models learned for the two
female signers are shown in Figure 6 and 7. Figure 8 shows the reconstructions
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Fig. 3. Some training hand examples extracted from a sequence of the male signer.
Note that the occlusions from the annotation bars are stronger for the left hand than
for the right hand, since the left hand moves less often and less dramatically. This also
holds true for most other sequences in the database. Hand regions cropped from the
entire sequence are used for training the PCA models.

of a test sequence by using the learned PCA models for the male signer. Recall
that the reconstruction is done by solving eq. 4.

4.2 Results of Hand Tracking

As the segmentation of the hands by using graph cuts is quite good, tracking is
not a very difficult task for this database. In the framework of particle filtering,
200 samples are generated from segmented hand regions and another 100 sam-
ples are generated from motion predictions. The evaluation of the particles are
done by computing a fitting score for each particle with the learned PCA hand
models by solving eq. 4 with λ2 = 0.01 and λ1 = 0.01 using an L1 regularized
L2 least-squares solver [17]. As quite a large number of particles need to be eval-
uated, tracking is not real time and takes a few minutes to process one video of
100 frames on an ordinary laptop with a dual-core CPU of 2.66G and 4G mem-
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Fig. 4. PCA bases learned by our robust PCA. The first 20 bases of the left and the
right hands of the male signer are shown in the top and bottom two rows.

Fig. 5. PCA bases learned by classical PCA. The first 20 bases of the left and the right
hands of the male signer are shown in the top and bottom two rows.

Fig. 6. PCA bases learned by our robust PCA. The first 20 bases of the left and the
right hands of one female signer are shown in the top and bottom two rows.
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Fig. 7. PCA bases learned by our robust PCA. The first 20 bases of the left and the
right hands of the other female signer are shown in the top and bottom two rows.

ory. Some tracked hand regions and the corresponding PCA reconstructions are
shown in Fig. 9. Hand trajectories of one video sequence are shown in Fig. 10.

5 Conclusions and Future Work

This paper presents a novel robust PCA for hand modeling and tracking in
video-based sign language recognition. The motivation was to handle the high
deformability of the hands which renders the alignment of the hand data difficult,
if not impossible. The strength of the method, demonstrated on a publicly-
available database, roots in the incorporation of the robust L1 norm and the
projection pursuit strategy involving only the searching of the solutions in a
finite set constructed from the training data.

Empirically, our robust PCA achieved much more representative and inter-
pretable bases than classical PCA in the presence of outliers and missing align-
ments. A hand tracking system was developed based on the robust PCA and
obtained promising results. However, the tracking system needs to be enhanced.
For instance, currently, the left and right hands are tracked separately with no
explicit modeling of the interactions between them, which is not a big problem
as the sequences in the database are short and the segmentation by graph cuts
is generally good. Some switches of the trackers of the two hands were corrected
by the incorporation of some heuristics and by the offline processing of dynamic
programming. For long-term tracking, the knowledge on the configuration of the
upper body would help disambiguate the hands during heavy interactions [6].
The learned robust PCA bases seem to be useful for classifying hand configura-
tions, which is also worth further investigation.
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Fig. 8. Some test examples from a sequence and their reconstructions by using the
learned robust PCA bases and the L1 regularized least-squares solver.
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Fig. 9. The tracked hand regions, odd rows, and the PCA reconstructions, even rows.
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Fig. 10. Hand trajectories in a video sequence of 60 frames. Blue and yellow are the
ground truth of the left and right hands, and red and green are the tracking results.
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