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Applying a Learning Framework for Improving Success Rates in
Industrial Bin Picking

L.-P. Ellekilde*, J. A. Jgrgensen® , D. Kraft’, N. Kriiger', J. Piater* and H. G. Petersen’

Abstract—In this paper, we present what appears to be the
first studies of how to apply learning methods for improving
the grasp success probability in industrial bin picking. Our
study comprises experiments with both a pneumatic parallel
gripper and a suction cup. The baseline is a prioritized list
of grasps that have been chosen manually by an experienced
engineer. We discuss generally the probability space for success
probability in bin picking and we provide suggestions for robust
success probability estimates for difference sizes of experimental
sets. By performing grasps equivalent to one or two days
in production, we show that the success probabilities can be
significantly improved by the proposed learning procedure.

I. INTRODUCTION

A significant part of the tasks done in production facilities
involves transportation and putting of objects into feeding
stations [3]. An easy way of moving objects is to use standard
containers (pallets and bins), but unfortunately it is often
difficult or impossible to keep the objects structured. A key
challenge is therefore to empty the containers in a safe,
efficient and economically feasible way. In mass production
a specialized solution might be possible, but for small and
medium sized batches, one often need to rely on human
labour. An alternative is to use a bin picker comprised of:
a sensor system for detecting the objects and a robot for
picking them individually from within the container. An
example of such a system is shown in Figurc

A particular property of the bin-picking scenario (in con-
trast to most other industrial robot applications) is that grasp
errors are allowed to occur: Since bin-pickers usually fill
feeding stations with a buffer of a number of objects in front
of it, occasional errors do not disturb the main production
process. In case such a grasping error occurs, another grasp
will simply be tried. The large number of individual grasping
trials (several thousands a day) are however not yet used
to improve the performance of the grasping process. In
this paper, we will show how this rich amount of grasping
experience can be utilized to further improve the bin picking
process through learning.

The problem of bin picking is rather complex: 1) The
sensor system needs to do full 6D pose estimation and be
robust towards occlusion. 2) The grasping process needs to
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Fig. 1.

Bin picking demo setup developed by Scape Technologies (test
platform 1). The setup is comprised of a Kuka Kr5 equipped with a tool
unit with integrated sensor system and two pneumatic grippers.

handle arbitrary orientations of objects and be robust towards
objects lying on top of each other, and 3) the motion of
the robot needs to be collision free and efficient. Systems
are furthermore faced with challenges such as cost, cycle
time and the ability to detect and pick up all objects in
the container. With these characteristics and requirements
it is not possible to guarantee that all grasp attempts are
successful, hence the system needs to handle when a grasp
fails.

Even though the system can handle failures, it will neg-
atively influence the average cycle time, which often has a
large impact on the value of the bin picker. Or more precisely,
a user will typically decide whether or not to deploy a robotic
bin picker by primarily looking at the cycle time and the
price. The cycle time is influenced by all aspects of the
system. One factor is the sensor systems that determines
which object to pick and what pose the object has. In the
past this has been well researched [1], [7], [12], [19] and
today there exists commercially available systemy’| Another
important factor is the efficiency of the robot motions, which
is the challenge addressed in [6].

Last but not least, cycle time is influenced by the average
grasp success probability. Grasp failures may occur due to
several reasons including conceptually incorrect or imprecise
pose estimates, hindering placements of neighboring objects

'See e.g. Scape Technologies (www.scapetechnologies.com)



and the chosen grasp strategy. These effects can not be mod-
elled directly, hence appear as unmeasurable confounders in
the system. The contribution of this paper is to show that the
overall system performance can be improved by applying a
learning strategy, able to update grasps based on real world
experiments and thereby at least partially compensate for
these unmeasurable confounders.

The paper is organized in the following way: In Section
[E we specify the grasp selection problem in bin picking
of known objects. In Section @ we give an overview of
the related work concerning this problem. In Section
we give a formal definition of the space that determines
the outcome of a grasp in bin picking, discuss how to
adequately sample this space and outline appropriate learning
schemes. In Section we present experiments with two
different industrial bin picking setups. We show that with
rather few experiments we can already achieve a significant
improvement in grasp success probability in both setups.

II. THE GRASP SELECTION PROBLEM FOR BIN PICKING

Consider a set of known (e.g. through 3D CAD models)
objects randomly piled in a bin. We shall for simplicity
assume that all objects are of the same type. The basic task
in bin picking consists of the following steps:

S1 Use a sensor system (typically a camera or range
scanner or a combination of these) to detect one object
in the bin and its pose

S2 Select an appropriate way to grasp the object

S3 Execute the grasp

S4 1If the grasp was successful move the object to a desired
location

In this paper, we address S2. We assume therefore that the
object to be picked has been selected and its pose p € SE(3)
(position and orientation relative to some fixed coordinate
frame) has been estimated. The grasp selection problem is
quite generally to choose a strategy for grasping the object.
We only consider two types of grasping devices, namely
parallel grippers and suction cups. For both devices, we may
define the grasping strategy as a point g € SE(3) defining
the gripper pose relative to a frame fixed in the object.
For the parallel gripper, this is defined as the gripper pose
immediately before the jaws are closed whereas for a suction
cup, it is the pose where suction is applied.

In a bin-picking situation the object can only be grasped
from above. Thus, for a given object pose p, we should
restrict the set of feasible grasp poses g to a set (p) defined
by the “from above” constraint. We must therefore have a
set of good grasp gq with ot =1,...,n so that for each
object pose p there is preferably at least one go € Q(p).

More specifically, we may divide the grasp selection
problem into two issues:

I1 Choose a set of “good grasps” G = {g1,..., gn} that

covers the object in SE(3) as well as possible.

>The definition of what constitutes a good grasp is up to the specific
application. The method presented here is applicable independent of the
concrete choice as long as a the success evaluation method in the real
system is based on similar criteria.

I2 For each grasp g. a priority , should be defined based
on an estimate of the success probability of that grasp.

The priorities are needed to have some way of selecting a
grasp, when several options are available. With a solution for
these two issues, the grasp selection problem for an object
with pose p can be reduced to selecting the grasp g € Q(p)
with the highest priority 7.

In this paper, we will present a framework for choosing
and refining priorities based on learning and present results
which show a significant improvement of the overall success
probability of executed grasps on two industrial bin picking
platforms.

As the two issues I1 and I2 depend somewhat on each
other and as both issues have been subject to several studies,
we shall briefly review these studies in the next section.

III. RELATED WORK

The problem I1 of choosing a set of good grasps for
an object is well known within data-driven grasp planning
[2]. [8]-[10], [14] i.e. planners that select a feasible grasp
from a previously generated set of grasps (a grasp database).
These methods use grasp quality measures [17], [18] to label
“good” grasps and are typically based on some approxi-
mation of the form- or force-closure of a grasp. Another
approach complements the force closure quality of a grasp
with a measure based on the expected tactile feedback and
the local density of successful grasps [11].

None of the above data-driven grasp planning approaches
modify the database once it has been created. This is poten-
tially a flaw since the virtual or heuristic environment within
which the database is created, does not necessarily model the
complexities and uncertainties of a real system. In this paper
we refine the grasp database by re-adjusting quality labels
and success probability estimates on the individual grasps
and shows that it increases the overall robustness of grasps
in the database.

The focus of data-driven approaches is often on the online
grasp selection or synthesis part. Naturally this is where the
context dependent search and refinement of grasps take place.
[2] introduces a grasping score that prioritizes grasps that
have a higher clearance to the environment, to minimize
collisions. The authors also sort their data with a wrench
based quality measure and prioritize selecting grasps that
are “closer” to the gripper.

Another data-driven planning approach presented in [4]
introduced the concept of a Grasp Knowledge Base (GKB).
The GKB is essentially a grasp database which can be
modified when new objects are sensed. However, the grasps
in the GKB are generated in offline simulation and failed
grasp attempts are not used to refine the GKB. Hence, their
work essentially targets only I1.

In [16] a different approach was taken. To target 12
the control strategy to reach the final grasp was modified
for each failed grasp using Dynamic Movement Primitives
(DMPs). Learning a better grasp control strategy seems
feasible however, if grasps are simply not reachable, picking
another grasp would present a better solution.



Work on so called grasp densities has been introduced in
[5]. These express grasp affordances associated to objects
probabilistically and each experimental batch on a specific
object updates the grasp affordances. Grasp densities can
express a complete set of grasping options associated to an
object with associated success probabilities. They are learned
from successful grasping attempts, and therefore target both
I1 and I2. Based on these grasp densities, efficient and
flexible grasp strategies can be developed.

In contrast this paper presents a simple learning method
which successfully incorporate the knowledge of failed
grasp attempts into the offline generated grasp-database. The
method is specifically designed to be applicable in industrial
contexts, which does not allow for online learning strategies.
We document its performance in two industrial setups and
demonstrate its applicability in industrial bin-picking.

The probability space on which grasp densities are defined
is the relation between object and gripper pose and thus
essentially SE(3) or a subregion hereof. As will be discussed
in the next section, this probability space is only a very small
subset of the space of all parameters determining the outcome
of a given bin picking operation.

IV. SAMPLING GRASPS IN THE BIN PICKING
PROBABILITY SPACE

In section[IV-A] we give a mathematical formalization of
the problem of leaming the probabilities Py of a grasp g4 be-
ing successful and sampling approximations of these. These
probabilities are then used in the experiments in seclionlo
prioritize grasps with estimated high success likelihood. This
learning is done by drawing samples from a space which is
much too complex to be modeled explicitly since effects like
pose uncertainty, distribution of other objects in the bin and
even illumination conditions play an important role.

It is important to define a sampling strategy that is
applicable in industrial bin-picking. Such a strategy should
not lower the overall success of the system too much and at
the same time should allow for a reasonable fast convergence
of the estimates of the success probabilities Py. This is dealt
with in seclion where an appropriate sampling strategy
is defined.

A. The bin picking probability space

As mentioned above, the parameter space in bin picking
determining the outcome of a given pick comprises much
more than object pose errors and the gripper pose g relative to
the object. To illustrate this, consider a hypothetical example
where the same object residing at exactly the same pose in
the bin is picked twice by the robot with exactly the same
picking method. Clearly, the outcome of the two picks may
be different due to variations in the neighborhood of the
object. Differences in the neighborhood may or may not
make the access to the object feasible with the given pick
strategy and may or may not lead to a drag of the object so
that the gripper loses it.

The probability space, which we shall formally refer to as
X, determining the outcome of a given grasp, is defined as

the exact location of the bin and all the objects in the bin
including the object that we wish to pick. Notice, that this
definition also indirectly includes uncertainties in the pose
estimate and in the gripper pose relative to the bin and other
factors such as, e.g. illumination conditions. Although this
space is huge and intractable, we will provide a couple of
formal definitions of probabilities using this space.

As described in Seclion@ we may assume that we have
chosen a finite set of possible grasps G ={g1,...,q.} to be
applied for picking a given type of object. The exact success
probability for a given grasp go with a given object pose
estimate p is then given by the formula

Pa(p) = [ o(gapy()dx

where o(gq,x) is the given outcome (success=1, failure=0).
The function pp(x) is the probability density of x given that
a pose p was eslimaled It should however be noticed that
the outcome o(gq,x) may be significantly more influenced
by the placements of other objects, than small pose errors.
Moreover, the grasps g may have been selected to be robust
towards these small pose errors.

For an arbitrary object pose p, only a subset of the
elements in G will be applicable because of the “from above”
criteria mentioned in Seclion@ Vice versa, any grasp g will
only be applicable from a continuous set of poses p. We
define the region of object poses in which g is applicable
as Qg and the set of grasps g which are applicable in a
certain object pose p is still referred to as Q(p).

The formula for the overall success probability of the grasp
is then given as

Pa(@a) = [ Pulp)E(P)dp

where &(p) is the object pose probability density which in
bin picking is often far from uniform.

1) Sampling in the Bin Picking Probability Space:
Clearly, it is very difficult to define any good approximation
for p,(x) because this would require in-depth knowledge
of the probability distribution of how the objects align,
but we can approximate the Pys in a very simple way by
performing grasp trials. Assume that we obtain N, pose
estimates pq,..., Png € Q¢ and for each of these perform

the grasp gq. We may then estimate Py (Qq) as

N 1 Na
Pa(Qa) = 5=} 0(8a:%) (1)
o =1

where x; € X is the (unknown) element in the probability
space when associated to the pose estimate py. By definition,
the xs are sampled from the density p,, (x). Thus we have
asymptotic convergence, 1.e.

Py(Qq) — Py (Qq) for Ny — o )
For large Ng, we should therefore expect a rather precise
approximation using sampling.

Notice that this is a formal generalization of the situation in the grasp
density concept [5], in which x is just the true pose of the single object to
be picked (deviating from p with a small error).



B. Learning methods

After defining the learning space in section we
now deal with the problem of drawing samples efficiently
in the bin picking context. The starting point of the learning
methods is again a set of n grasps g, but now also a set
of initial priorities 7. We shall now study two methods
performing experiments for learning. The two methods only
differ in the way a grasp is selected for a given estimated
object pose p.

1) Method based on weighted random selection: An
obvious method is to consider all the grasps gq in Q(p)
and select one randomly based on weights chosen from the
current priorities so that even the grasp with the lowest
priority has a nonzero probability of being chosen. Since
all grasps thus have a nonzero probability of being chosen
in each experiment, Eq.lhen yields the result that

Py(Qq) — Py(Qy) for N — oo

holds for all o.

Thus, as long as each grasp gy has a nonzero probability of
being chosen during the learning phase, we will for large N
obtain good approximations of the correct Py (Q¢ ). However,
the rate of convergence for a given grasp depends on how
often the grasp is chosen. On the other hand, if we too
often choose grasps predicted to be inferior, we may obtain
unnecessary slow convergence of the grasps that a priori
seemed most promising.

2) Method based on selecting the highest priority: 1f, for
some reason, we can only use a rather short experimental
sequence (N /n ratio not being sufficiently large), the property
described in Theorem | becomes rather useless as we will
not have sampled dense enough in the huge space X. If we
furthermore have a set of initial priorities that have been
chosen carefully (e.g. by an experienced engineer) and thus
may not be far from optimal, we will have a significant risk
of decreasing the overall success probability of the system
due to large deviations between the estimates Py (£2¢) and
the true values Py (Qq).

Therefore, for short experimental runs, we propose to
only use the grasps with the highest priorities during the
experiments. It should be mentioned that even in this case,
low priority grasps are occasionally executed in cases where
they turn out to be the only executable ones. We leave the
priorities unchanged during the experiments. After execution
of all N experiments, we adjust the priorities according to
the new success probabilities. We may then possibly repeat
the procedure with the new priorities.

In this method, many of the grasps g will never or rarely
be choserEl In order to also assign success probabilities for
such grasps, we use the following more robust estimate of

#In this method only the grasp with the highest priority is chosen. So if
a grasp always co-occurs with other grasps with a higher priority it will
never be selected.

the success probability.

ﬁé(ga) =

min (A’f"‘ ;1) Po(Qq)

+ {1—min(£‘:‘“;1)]ﬁ (3)

where P is the unweighted average over all the N grasps. We
thus rely on the estimate ﬁa when Ng > N,i;. Alternatively, if
the initial priorities would be stated as success probabilities,
we might replace P with 7y in Eq.

Clearly, we no longer have asymptotic convergence as
many of the gys will never be tried. Despite its drawbacks,
the method will ensure that unforeseen unsuccessful ggs will
have their priority lowered and thus it is very likely that the
overall success probability will increase.

For medium experimental batch sizes, such as using bin
pickers, running production may be treated by occasionally
trying grasps with lower priorities. Then all grasps will
occasionally be tried without negatively affecting the average
cycle time too much by introducing grasps with relatively
low expected success rate.

V. EXPERIMENTAL VALIDATION

The feasibility of the proposed learning approach has been
verified using two test platforms. Test platform 1 (see Figure
is equipped with two Gimatic GS-20 pneumatic parallel
grippers. These grippers have a stroke of 10.4 mm, which
significantly reduces the number of ways the object can be
grasped. The two grippers are thus equipped with different
jaws, enabling the robot to grasp objects both in the narrow
and wide directions. Test platform 2 (see Figure uses a
standard 2.5 bellow 32mm suction cup. Both setups use
tool mounted sensors based on structured light and pose
estimation software developed by Scape Technologies. The
test objects are shown in Figureand consist of a T shaped
forged steel object (test platform 1) and a bent aluminum
sheet object (test platform 2).

Each of the two tests contained 4 distinct steps which were

1) Selecting a set G = {gy,...,gn} of grasps and an
associated set of baseline priorities. The selection is
done by an experienced engineer using a graphical
interface, in which the user can select poses and set
priorities of the grasps. Figures[3(a)|and illustrate
the grasp poses selected for the two objects. The sets
for object 1 and 2 contained n =163 and n =263
grasps, respectively.

2) Performing bin picking with grasps selected from G
using the baseline priorities. In the online process, we
use the approach in Section [IV-B.2|to select the grasp.

3) Updating the priorities of the individual grasps based
on the method proposed in Eq.[3]in Section [[V-B.2]

4) Performing bin picking while randomly switching back
and forth between using the baseline and the updated
priorities.

We shift back and forth in 4) to suppress slowly changing
systematic artifacts such as how objects have packed in the



Fig. 2. Bin picking system used as test platform 2. The setup is comprised
of a Kuka KR30-HA equipped with a tool unit containing the sensor system
and the 32 mm suction cup.

bin, the number of objects, slow changes in illumination
(may effect the sensor system) and the overall calibration.

A. Benchmarking methodology

The effect of the learning can be measured by the com-
paring the overall success probabilities Pbase and prpdated for
the baseline and updated priorities respectively. We compute
all success probabilities using Eq. .

The experiments which are to be benchmarked have the
following characteristics

o They contain sets of experiments corresponding to
Bernoulli trials, meaning that each has two outcomes,
success and failure, which are mutually exclusive.

« Using an autocorrelation test, we have shown that there
are no correlations between the outcome of each trial.

With these characteristics, the sampled mean value P of
the overall success probability (total number of successes
divided by total number of trials) is approximately normally
distribution around the true mean with a variance P(1— P) /N
where N is the total number of trials [15]. This property
can be used to calculate confidence intervals of the sampled
means, thereby providing statistical evidence that the results
are significant.

B. Results for platform 1

A total of n = 163 grasps was selected for the first tests.
These grasps are illustrated in Figure, where the markers
show the poses of the gripper relative to the object and the
colors shows the selected priority. Green, yellow and red
refer to priority 1 (high), 2 and 3 (low) grasps, respectively.

Initially N = 1029 grasp attempts were performed based on
which, new priorities were learned. The change in priorities
can be seen by comparing the original and updated grasps

illustrated in Figures and [3(b)| respectively.

(a) Grasps with baseline priorities. (b) Grasps with updated priorities.

1

(c) Grasps with baseline priorities. (d) Grasps with updated priorities.

Fig. 3. Grasps selected for test platform 1 (top row) and test platform 2
(bottom row). The markers indicate the poses of the gripper and the color
the priorities, where green, yellow and red are for priority 1, 2 and 3 grasps,
respectively (where 1 is the best priority).

The results of the benchmarking are summarized in Ta-
ble [ The differences in the numbers of successful and
failed grasps result in success probabilities of Phse — 0521
and P“Pdated — (0 635, which indicates an improved success
probability of 11.4%. Computing the 95% confidence in-
tervals shows that the two sets are disjoint as this level of
significance, which provides evidence that the improvements
are not due to chance. This can also be illustrated graphically
by plotting the distributions, as shown in Figure, A more
in depth statistical evaluation of the results can be obtained
using a hypothesis test for testing two proportions [13].
Initially we pose the null-hypothesis that pupdared < pbase,
Our test statistics then becomes

ﬁbase o lﬁupdmed

z= “)
P(-F) , R(1_F)
\/ N]Mu‘e + Nu ;E‘ ated

with P. being the combined success probability over all
experiments, and N?®¢ and N“P4eed being the number of
samples in the baseline and the updated sample sets, respec-
tively. Inserting the associated values gives z = —3.50498.
Trying to reject the null-hypothesis we can compute the area
under the standard normal distribution and to the left of z=
—3.50498 which gives 0.00023. This gives the probability
of having rejected a true null-hypothesis, hence the reject
seems fair, thus we can conclude that ptpdated ~ phase

C. Results for platform 2

The n= 263 selected grasps for platform 2 are illustrated
in Figure A batch of N = 3063 grasp attempts were



Confidence

‘ Total ‘ Success | Failure ‘ P ‘ Interval (95%)
Baseline
priorities 449 234 215 0.521 [0.478:0.567|
Updated .
priorities 469 298 171 0.635 [0.592:0.679]
TABLE 1

RESULTS OF EXPERIMENTS WITH TEST PLATFORM 1.
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Fig. 4. Normal distributions representing the expected values for phase

(blue) and PUrdated (redy for test platform 1

initially performed from which new priorities were learned
(see Figure[3(d)).

The benchmarking results are summarized in Table [E
Even though the success probability of the baseline set is
significantly higher (starting at 78.8%), the learning was
still able to improve it, but in this case only with 4.9%.
The associated 95% confidence intervals are again separated
sets providing evidence that the difference is significant.
This is graphically illustrated in Figure Repeating the
hypothesis test from Section[V-B]we get z = —3.00056. We
will again reject the null-hypothesis, this time with a 0.00135
probability of it being true.

VI. CONCLUSION

In this paper, we studied the probability space determining
the outcome of grasp attempts in bin picking. We presented
a theoretical formalism describing the success probability
for each grasp type and associated approximations based on

. - Confidence
‘ Total ‘ Success | Failure ‘ P ‘ Interval (95%)
Baseline 1137 | 896 241 | 0788 [0.764:0.812]
pl‘l(‘)l‘l[le&
Updated 1119 | 937 182 | 0837 [0.816:0.859]
pl‘l(‘)l‘l[le&
TABLE I

RESULTS OF EXPERIMENTS WITH TEST PLATFORM 2.

Probability
Density

Function
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Fig. 5.  Normal distributions representing the expected values for phase
(blue) and Prdated (red) for test platform 2

sampling. We then discussed different learning techniques
for improving the success probability. Finally, we have—
on two different industrial bin picking platforms—shown
that by using one of the proposed learning procedures, and
performing a number of grasps equivalent to a very short
production time, we were able to increase success ratios and
the cycle time significantly. By that we gave an example of
utilizing the large amount of grasp experience in industrial
bin picking for learning.

There are several promising options for further increasing
the success probabilities. First, the information obtained
about the individual Pys could be used in selecting which
object to pick next. This is currently chosen solely based
on the sensorial information. The experiments for setting the
priorities were carried out with two industrial grade setups.
Logging grasps in real production would result in much
larger data sets. However, the options of choosing also lower
priority grasps occasionally should then be incorporated into
the system to fully exploit the learning capabilities.

We are currently finalizing the preparations to be able
to simulate bin picking within our dynamic simulator Rob-
WorkSim [11]. This will open for huge experimental sets
with millions of grasp attempts, which could lead to some
understanding in how the grasp outcome o(g,x) could be
modeled. Such an understanding could lead to new and even
better options for both choosing the grasp list G and for
setting the priorities.
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