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Abstract. We propose an approach to multi-view object detection and pose esti-
mation that considers combinations of single-view estimates. It can be used with
most existing single-view pose estimation systems, and can produce improved
results even if the individual pose estimates are incoherent. The method is intro-
duced in the context of an existing, probabilistic, view-based detection and pose
estimation method (PAPE), which we here extend to incorporate diverse attributes
of the scene. We tested the multiview approach with RGB-D cameras in differ-
ent environments containing several cluttered test scenes and various textured
and textureless objects. The results show that the accuracies of object detection
and pose estimation increase significantly over single-view PAPE and over other
multiple-view integration methods.
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1 Introduction

Detection and pose estimation of textureless objects are well-studied challenges in robot
vision. However, there are still problems that need to be solved. One of the problems
is that the estimated pose can be ambiguous due to the ambiguity in the detected shape
of the object [22] as shown in Fig. 1a. When a probabilistic, appearance-based pose-
estimation method is used, it can be difficult to determine the viewing angle of the
object due to similar appearances from the observed views. Another problem is due
to the presence of outliers [9] (Fig. 1b). One of the solutions to overcome these dif-
ficulties is to observe the scene with multiple cameras. To use multiple attributes of
the scene would also improve the pose estimation performance. In this paper, we intro-
duce an approach that uses RGB-D images from different viewpoints to overcome these
difficulties. Multi-view integration can face difficult problems when the objects are oc-
cluded or totally unseen in one of the views as shown in Fig. 1c. Another difficulty can
arise when the sensor information is incomplete or noisy. Noise or incompleteness may
even result from interference between multiple RGB-D cameras as shown in Fig. 2.
Therefore, we consider the integration of information from multiple RGB-D cameras
and pose estimation in the presence of noisy or incomplete data as a coupled problem.

For each view, possible 6DoF (3DoF in translation and 3 DoF in rotation) poses
of the object are estimated with a probabilistic, appearance-based method which can
combine multiple features for recognition. Pose estimates from all of the views are
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Fig. 1: Some of the problems that can be solved with integration of multi-view pose
estimations. (a) Ambiguities in the pose of an object; (b) Correct pose estimates are
shown with green bounding boxes in two views. Outliers, which are shown with red, are
eliminated after integration; (c) The cup is not visible in the right view. The integration
method is capable of finding the object even if it is not visible in all of the views. The
images are taken from the MPII Multi-Kinect Dataset [20].

integrated while allowing for absence of a correct estimation from some of the views.
Absence of a correct estimation can occur due to various reasons including partial or
entire occlusion of the object, unobservability of the object within the limits of the
sensor, or a false pose estimate. After integration, all of the integrated pose estimates are
associated with a probability value, and the candidate with the highest score is selected
as the final estimate.

We use a probabilistic, appearance-based method to detect and estimate the pose of
the object from a single view. We introduce an approach to combine different attributes
of the scene, e.g., edge orientations, depth values, surface normals, and color. Com-
bining multiple attributes of the scene can increase the performance of recognition in
cluttered environments. In the presence of noisy or incomplete data, a “probability of
absence” parameter is used as explained in Section 2.1.

To summarize, our work makes two main contributions:

– An approach that integrates the pose estimates in 6DoF from multiple views even
in the absence of a correct estimation in some of the views.

– A method to combine the different appearance-based attributes in the presence of
noisy or incomplete data.

In Section 1.1, we review related work. In Section 2, we explain how to com-
bine multiple attributes in the probabilistic, appearance-based pose estimation (PAPE)
method. In Section 3, we explain our approach to object recognition in a multiview cam-
era setup. The proposed algorithm is evaluated in Section 4, and Section 5 concludes
the paper with a brief summary.
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1.1 Related Work

There have been several studies on integrating information from multiple cameras to
increase the accuracy of detection and pose estimation of objects. However, only a few
of them are interested in the specific task of object detection and pose estimation. For
example, “KinectFusion”, which is developed by Izadi et al. [12], mainly deals with the
problem of scene reconstruction.

Some studies try to find corresponding features in between images. For example,
Yang et al. [26] use complex descriptors (SIFT [14]) in sensor networks to detect objects
with texture; such methods are not suitable for textureless objects. In another study,
Aldoma et al. [1] capture multiple RGB-D images of the same scene from different
viewpoints. They reconstruct the scene and transform the hypothesis obtained in each
single view into the reconstructed scene. There is no interference noise of multiple
Kinects since only a single camera is used. Mustafa et. al. [15], compute 3D descriptors
in the reconstructed 3D scene, which requires distinctive features and reconstructed 3D
data of the scene.

Another group of studies approaches the problem by integrating the detected objects
from different viewpoints. Franzel et al. [7] use X-Ray images of the same scene from
different viewpoints and integrate them with a voting-based approach to find the object
pose. Roig et al. [17] detect cars, buses and people by combining different detections
from six cameras by using conditional random fields. Another approach was introduced
by Viksten et al. [24], to detect objects from different views and integrate the informa-
tion using a mean-shift clustering algorithm. Even if there are false detections in single
views, detection is improved by integration. However, it is not mentioned how to over-
come the cases where there is not a correct pose estimate in some of the views, which
can occur due to the absence of the object in one of the views.

There have also been studies that used appearance-based models in multiple-camera
setups. For example, Helmer et al. [9] combine different viewpoints by using the projec-
tions of the objects into 3D. They argue that any appearance-based method can be used.
Their method maximizes the conditional likelihood of object detections. They do not
use RGB-D cameras. In another study, Coates et al. [4] use corresponding appearance
features to compute the posterior pose probability. They use a pant-tilt-zoom camera
and only one object category for experiments. Finally, Susanto et al. [20] combine the
final pose estimate from each individual viewpoint into a single 3D location. VFH de-
scriptors [18] are computed in the reconstructed 3D scene and are integrated with the
results from a DPM object detector, where DPM uses a discriminatively learned part
model with a latent SVM model. They perform intensive experiments with 4 Kinects,
which result in interference. Therefore, there is significant noise in the depth data. We
compare our results with this method in Section 4.

As mentioned previously, pose estimates of the objects are necessary from multi-
ple views, and any pose estimation method can be used. There are some alternatives
that can be used to detect textureless objects. For example, Papazov et al. [16] use
an efficient RANSAC-like sampling strategy to establish correspondence between the
scene and the model. However, this work requires a robust local descriptor like SHOT
[23]. It can be difficult to find correspondences for object features without distinctive
depth features. Furthermore, when multiple Kinects are used, 3D data may be noisy
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Fig. 2: The interference of multiple RGB-D cameras results in noisy depth data as seen
on right. Gray areas have a valid depth, while the black regions do not provide any
information about depth.

due to interference problems. Brachman et. al. [2] use a single decision forest and use
the minimization of an energy function which uses depth as one of the components.
Background RGB-D images are necessary to train the objects. Although they use a
uniform noise or a simulated plane, when the background has similar texture with the
object, it may be difficult to find the object in such a setting. Also the simulated plane
will be affected by interference problems during testing. It should be mentioned that
although some studies obtain features by using learning algorithms like Convolutional
Neural Networks ([25]), we prefer to use manually designed features. In another study,
Tejani et. al. [21] use LineMOD features [10] and adopt Latent-Class Hough Forests
[8]. LineMOD matches viewpoint samplings of the object by using selected features. In
LineMOD, if the surfaces of the objects don’t have distinctive features, it can be diffi-
cult to detect objects. Another alternative is a probabilistic appearance model which is
reported to estimate the poses of objects without texture [22]; however, it is not possible
to combine multiple features if one of the attributes has noise, or unavailable. We intro-
duce depth, color and surface normal attributes together with edge orientations into this
method, details of which are explained in Section 2.2.

2 Probabilistic Appearance Based Estimation

In this section, we will first briefly explain the probabilistic model of appearance and
present how we combine different features. Next, we will show the feature types that
we used in this study for pose estimation from single views.

2.1 Probabilistic Model of Appearance

We assume that we want to find the pose of a previously-learned object in a given
test scene. Let the features of the test scene t be denoted by xft = {afxt, pxt} where
f is the feature type, afxt is the appearance attribute, and pxt ∈ R+ is the position
of the feature in the image plane. A similar notation can be used for the features of
the learned object l, xflv = {afxlv, pxlv}, where v denotes the viewpoint of the learned
object. Viewpoint is important because we are using the appearance of the object for
detection. The viewpoint v includes the azimuth (θ), elevation (γ) and image-plane
rotation (α) angles, and the distance d of the object to the camera (Fig. 3-left). The
object is learned from multiple viewpoints at a known distance to the camera during
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training. The pose of the object can be found in 6DoF if the viewpoint v and the camera
parameters are known and the object is at a known position pxt in the test image.

We turn the set of image features into a distribution of features using the approach
explained by Teney et al. [22]:

φft (x
f
t ) =

∫
It
N (pfxt

, pfy , σ
f )Kf (afxt

, ay) dy (1)

Here, It denotes the test image, and K is a kernel associated with the feature type
f . Then, the distribution of training features φflv(x

f
l ) can be obtained similarly. The

similarity between the test scene and the learned object at viewpoint v is given as the
cross-correlation between two distributions:(

φft ? φ
f
lv

)
(xt) =

∫
I
φft (xt + y)φflv(y) dy (2)

As suggested by Teney et al. [22], we use Monte Carlo integration for efficiency, which
involves drawing samples yi from I. We obtain the cross-correlation of distributions
for viewpoint v at image position xt for feature type f as

Φfxt,v ≈
1

NL

yL∑
yi

φft (xt + yi)φ
f
lv(yi), (3)

where NL is the total number of samples drawn from the image features. We combine
different features using

Φxt,v =

F∏
f

Φfxt,v(1− λ
f ) + λf , (4)

where each type of feature is denoted by f = 1, . . . , F , and λf is the parameter related
to the probability of the absence of a feature. This parameter increases the possibility
that the corresponding location will be considered as a candidate pose estimate even if
there is no attribute ax that supports the existence of a candidate pose at position xt. The
local maxima of Φxt,v , which can be isolated by non-maximum suppression, constitute
the pose estimates for the object. Each pose estimate is denoted by an ordered pair
(xt, v), and can be converted into a 6DoF pose via the camera parameters. The 6DoF
pose estimates are denoted by xe with a corresponding confidence score se. The score
is the value of Φxt,v at the local maxima points, which is the similarity between the
estimated pose and the corresponding learned object. We make an assumption such that
the similarity score is related to the confidence of the spatial pose of the object. When
the score is high for a pose xe, the confidence is also high.

2.2 Feature Types

In this Section, we show the feature types that we used to recognize the objects. Note
that the feature types can be extended for other studies in a straightforward fashion. We
select the features which can be detected in textureless objects. For each feature type,
a dedicated kernel Kf (afx1

, afx2
) is used. All features are associated with a position

px ∈ R2 in the image plane. An overview of the process can be seen in Fig. 3.
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Fig. 3: Left: The object is at the center of the sphere. The dots on the sphere illustrate
the viewpoints. Right: The feature types related to the learning of the object.

Edge Orientation We use an intensity-based Canny edge detector [3]. Each edge point
feature has an appearance attribute a◦x ∈ S+

1 giving the local orientation of the edge at
a given position. The kernel uses a von Mises distribution on the half circle, which is
defined as K◦(a◦x1, a

◦
x2) = Coe

κo cos(a◦x1−a
◦
x2). Our distance measure can be said to be

a general form of the directed chamfer distance [13]. Co is a normalization constant.

Depth Depth values are obtained from depth images. Each depth feature has only
one depth value as an appearance attribute ad ∈ R+. The kernel can be defined as
Kd(adx1, a

d
x2) = Cde

−(adx1−a
d
x2)

2

. Cd is a normalization constant.

Color The color feature ah ∈ [0, 1] is given by the hue component of the HSV color
space. The kernel can be defined as Kh(ahx1, a

h
x2) = Che

κh cos(ahx1−a
h
x2). Ch is a nor-

malization constant.

Surface Normal The surface normals an ∈ S+
2 are normal vectors at a point p. The

kernel can be defined as Kn(anx1, a
n
x2) = Cne

κn cos(‖anx1−a
n
x2‖). Cn is a normalization

constant.

3 Multiple-View Integration

In this Section, we explain how to integrate pose estimates from multiple views to ob-
tain the actual pose of the object in 6D. We are going to use the pose estimates and the
associated scores obtained with the approach explained in the previous Section; how-
ever, it should be noted that any pose estimation method can be used. If there are no
scores associated with the pose estimations, then we can assume a uniform probability
distribution among all pose estimates.

An overview of the integration process can be seen in Fig. 4. First, pose estimations
are made for each view by using information obtained from sensors 1 and 2, only two
of which are correct for each view. Each pose estimate from each view is integrated
to obtain the integrated pose estimate surfaces. The highest values are the scores of fi-
nal pose estimates, which are the first two diagonal elements in Fig. 4. If the correct
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Fig. 4: Pose estimations are made for the object shown on the upper left. For example,
there are three estimates for each view. The integration is made in the world frame. The
process is shown in 2D for illustration purposes.

estimation was made by only one of the views, it would still be possible for our pro-
posed method to make a correct estimate, because a high score would dominate in the
integrated surface. Now, we will explain this process in detail.

We have a set of pose estimates xevi from view vi, each associated with a score sevi.
During integration, we consider all the pose estimations from all the views, i.e. the target
object can be seen and recognized correctly by any combination of the views. Therefore,
first, we obtain all the subsets of the views, V p = {(vp1 , vp2 , . . . , vpNp ) : vpj ⊆
V,∀j = 1, . . . , 2Nv}, where V is the set of all the views, ‖V ‖ = Nv is the number
of views, vpi is one of the subsets, and Np = 2Nv is the number of subsets. Next,
we consider the set of all possible pose estimation combinations from view subsets V p

which can be defined as C = {(xev1, . . . , xevn) : xevi ∈ vi,∀vi ∈ vpj , vpj ∈ V p,∀j =
1, . . . , 2Nv}. Each element ck ∈ C contains a set of pose estimates, which includes at
most one estimate from each view. The total number of pose estimate combinations will

be ‖C‖ =
Np∑
j

∏
vi∈vpj

‖xevi‖, where ‖xevi‖ is the number of estimates for view vi.

Now, we have a combination set of pose estimates. Next, we obtain a distribution in
6D for each pose estimate in vi,

Φ(xevi) = N (xevi, Σ), (5)

which is simply a Gaussian centered at the estimate in the ith view with a covariance of
Σ. The covariance matrix is a 6×6 diagonal matrix and its diagonal values are selected
to be equal to sevi

−1.
After we obtain the distributions of each pose estimate, we use them to construct

the distribution of the combined pose estimates cj ∈ C,

ϕ(cj) =
∏

xe
vi∈cj

Φ(xevi). (6)
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The ϕ(cj) are what is visualized as surfaces in Fig. 4. We need to find the value which
maximizes ϕ(cj) to obtain possible pose estimates for each cj . This can be achieved by
taking the derivative of ϕ(cj) with respect to x:

∇ϕ(cj) =
[
∂ϕ(cj)

∂x1
· · · ∂ϕ(cj)

∂x6

]
= 0 (7)

and solving it for each dimension:

∂ϕ(cj)

∂xk
=

Nv∑
i=1

xk − xek,vi
sevi
−1 = 0 (8)

For each pose estimate combination cj we can find the x∗cj that maximizes ϕ(cj) by
solving this equation. The final pose estimate can be obtained by finding the maximum
score among combinations C:

x∗ =argmax
x∗cj

‖vpj ‖
√
ϕ(cj)λv (9)

Equation. 9 ensures that pose estimations in a combination subset of views are not
selected only because of the small number of views in the subset. ‖vpj‖ is the number of
views in the pose estimation combination subset and ϕ(cj) < 1. When an estimation is
made by a combination subset cm with large number of views, ϕ(cm) will be lower than
an estimation made by a combination subset cn with less number of views if the ‖vpj‖th
root of ϕ(cm) is not taken. λv ∈ [0, 1] is a parameter used to induce the estimations
made with a smaller number of views. As λv gets closer to 0, combination subsets cm
with higher number of views are selected.

4 Experiments

In this Section, the approach is evaluated in three different environments with different
objects. In all the experiments, the necessary parameters σ, λf , Co, κo, Cd, Ch, κh, Cn, κn
are obtained by cross-validation. The “probability of absence” parameter is set to λf =
0.3 for all features except edge orientations, where λ◦ = 0.0. In Section 4.1, the prob-
abilistic appearance pose estimation method is compared with other widely used pose
estimation approaches. In Section 4.2, we mainly compare our method with another
detection method. In Section 4.3, we give the results of the accuracy of pose estimation.

4.1 Single View Pose Estimation

In the first set of experiments, the poses of multiple objects are estimated in a cluttered
scene [21]. There are 6 objects with multiple instances in each scene. The number of
scenes are over 700 images for each object. The objects are learned by using the 3D
object models as shown in Fig. 5. The training images are captured for azimuths in
the range of θ ∈ [0, 2π] and elevations in the range of γ ∈ [0, π/2] in 5-degree steps
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Fig. 5: Object models used in Section 4.1.

(δθ = 5◦, δγ = 5◦). There are foreground occlusions, 2D and 3D clutters in the test
scenes.

The comparison is made against two methods, LineMOD [10] and LCHF [21]. The
measure defined in [11] is used to determine a successful pose estimation. For each
object instance in each scene, there exists a ground truth rotation R and translation T.
If the estimated rotation and translation for the object with the model M are annotated
as R̂ and T̂ respectively, then the measure for pose estimation of symmetric objects can
be given as

m = avg
x∈M

∥∥∥(Rx+T)−
(
R̂x+ T̂

)∥∥∥ , (10)

and for non-symmetric objects as

m = avg
x1∈M

min
x2∈M

∥∥∥(Rx1 +T)−
(
R̂x2 + T̂

)∥∥∥ . (11)

Estimation is a success ifm < kmdwhere d is the diameter of the object and km = 0.15
in our comparison. The F1-scores for three methods can be seen in Table. 1. As can be
observed, three objects are recognized better with probabilistic appearance-based pose
estimation method, while three objects are recognized better with LCHF. On average,
accuracies are roughly equal. For PAPE, the best estimate performances are for the
camera and coffecup with respect to LCHF. The superiority of PAPE for these objects
can be related to the discriminative visual features. They have unique colors and their
edges are visible under different viewing angles, which is important for edge orienta-
tions. On the other hand, the accuracy is lower especially for the milk bottle and juice
carton. For the milk, the background has features similar the the milk, which inreases
the rate of wrong estimates. For the juice carton, as can be seen in its model in Fig. 5, the
visual features are not clear, which makes it difficult to discriminate its visual appere-
ance features that are important for PAPE. It should also be noted that since multiple
attributes are combined, the pose estimation accuracy in cluttered scenes increases with
respect to the single-attribute method. As the PAPE results are comparable with other
state-of-art methods for pose estimation, we can conclude that it can be used with the
multi-view pose estimation method. Some of the results for the pose estimation in this
set of experiments can be seen in Fig. 6.

4.2 Multi-view Detection

In the second set of experiments, we detect the location of the objects in different scenes
using the MPII Multi-Kinect Dataset [20]. It is one of the few available datasets con-
taining real RGB and depth images from different viewpoints for object recognition.
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Table 1: F1-scores for Section 4.1

PAPE LCHF [21] LineMOD [10]
Joystick 51.5 53.4 45.4
Camera 80.7 37.2 42.2
Coffee Cup 99.5 87.7 81.9
Shampoo 82.5 75.9 62.5
Milk Carton 27.2 38.5 17.6
Juice Carton 41.2 87.0 49.4
Avg 63.8 63.3 49.8

Fig. 6: Visualization of some of the results for Section 4.1. The estimates of the 3D
object models are rendered on the image for visualization.

The dataset contains 9 different object classes and a total of 33 scenes. Four Kinects
are used to capture the scene, but only three of them are used to recognize the objects,
as one of them is used to obtain the ground-truth poses of the objects. The sensors in-
terfere with each other; therefore, the quality of the depth data is poor. Another point
to mention is that the provided calibration, which is obtained from the depth data, con-
tains large errors reported as up to 13 cm in 3D space. The dataset includes two parts,
for classification and detection respectively. In the classification part, there is only one
object instance in the scene. We have used this part to learn the objects. We have used
RGB-D images from three viewpoints ( Nv = 3).

Since our method mainly finds the pose estimate of the target object, we have found
the bounding box after finding the pose estimation for comparison reasons. We com-
pared our results with those obtained by Susanto et al. [20]. We used RGB and depth
images and calibration files provided with the dataset. The ground truth of the objects
was also available with the dataset.

Susanto et al. [20] use a Deformable Parts Model (DPM) [6] together with VFH
descriptors using reconstructed 3D scenes and estimate the poses by using the combi-
nations of these features from multiple views (mDPM + mVFH). The comparison of the
results can be seen in Table 2. The first column reproduce the average precision (AP)
results from [20], and the remaining columns indicate the AP results obtained using our
PAPE approach with different numbers of cameras. The AP is computed as described
in [19] with a bounding-box overlap of 50% of the detected object [5].
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Table 2: Detection Results and Comparison (AP in %)

mDPM + mPAPE mPAPE mPAPE
mVFH [20] 3 Cams 2 Cams 1 Cam

avocado 100.0 100.0 99.2 79.7
bowl 87.0 99.7 99.7 90.3
coffee box 80.0 92.4 87.3 80.0
coffee can 89.6 89.9 91.1 98.1
cup 100.0 97.6 96.2 82.8
nutella can 89.2 93.6 87.0 58.4
plate 90.2 98.1 97.2 82.3
spice can 98.5 96.8 97.4 78.0
sponge 97.0 97.4 95.4 48.3
mean 92.4 96.2 94.5 77.5

The APs are generally higher than the results obtained by Susanto et. al. [20]. Avo-
cado, bowl, plate, cup and sponge are detected with a high AP. An advantage of using
multiple cameras is occlusion handling. For example, the bowl is detected successfully
as shown in Fig. 7. It can also be observed that when the number of cameras increases,
the accuracy of detections also increases. Therefore, we can suggest that the detec-
tion rate of the probabilistic, appearance-based pose estimate will increase if it is used
with multiple cameras; however, it should be mentioned that the effect of adding new
cameras on pose estimation performance reduces with the number of views. It can be
reasoned that new views do not provide new information regarding the scene. Quantita-
tively, we can state that with our approach the accuracy increases by almost 24 percent
when multiple cameras are used instead of a single camera. One of the possible rea-
sons is that the proposed method uses simple appearance-based attributes of the scene,
so that objects without texture can be recognized with a higher performance, while
the method proposed by Susanto et. al. [20] uses VFH, which would need need more
complex shape features. This may be one reason why mDPM + mVFH has better per-
formance when estimating objects like the spice can and the coffee can, while mPAPE
has a better recognition rate for textureless objects like plate and bowl. Surprisingly, for
coffee cup, the single-view method performs better with the proposed approach. This
may be due to false detections with high scores in the other views which resemble the
appearance of the coffee can in the scene. Overall, it can be summarized that mPAPE
can estimate the poses of the objects even if the information is partly absent/noisy for
some of the features in the scene, e.g. depth features in the mentioned dataset.

A common cause of failure is the resemblance of objects in terms of the visual
features used in our approach. For example the cup and bowl can be mistaken for each
other as shown in Fig. 8. Both of them have a convex inner surface and their inner
surfaces are white which results in similar visual appearance. Other errors are due to
object viewpoints that were not learned during training. There is only a limited number
of viewpoints present in the dataset.
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Fig. 7: Partially occluded object bowl can be detected successfully. The images are
cropped for illustration purposes.

Fig. 8: A wrong detection. Bowl is detected as a cup.

4.3 Multi-view Pose Estimation

In the third set of experiments, we estimate the poses of textureless objects. IKEA chair
parts are used as shown in Fig. 9a. The training images are captured for azimuths in
the range of θ ∈ [0, 2π] and elevations in the range of γ ∈ [0, π/2] in 5-degree steps
(δθ = 5◦, δγ = 5◦).

There are three different object types and six different object instances in the test
scenes. Their poses are estimated in 13 different scenes. Since we used the KUKA
Light-Weight-Robot arm for recording the poses of the objects, only those views that
lie in the workspace of the robot were used for pose estimation. The poses of the objects
are determined in the reference frame of the robot; therefore, the errors in the calibration
of the camera position will also contribute to the error of the final evaluation. It should
be noted that, in other studies, the reference frame is generally the camera itself. The
scenes are captured using two Kinects as seen in Fig. 9b. To avoid interference issues,
we used the freenect library, which has the capability of shutting down the IR light of
the Kinects. However, due to delayed onset times of the IR light in the camera, some of
the depth images do not contain sufficient information, as seen in Fig. 10.

In the first part of the evaluation, we compare the results obtained from single
and multiple cameras. We used training data with coarse (δθ, δγ = 20◦) and dense
(δθ, δγ = 5◦) angular spacing to see the capacity of our approach under both condi-
tions. LineMOD [10] is also used to estimate the poses of the objects; however, since the
bottom and back parts of the chair have no discriminative surface normal values or any
discriminative visual feature from the surrounding, the detection rate performance was
low with LineMOD; therefore, only the pose estimation for the chair leg is compared
with the proposed method by using two cameras. The results are given in Table 3. As
can be seen, the average error gets smaller with angular sampling step size. The error
is smallest when the multi-view method is used. There is a decrease of around 10% in
orientation estimation error between dense single-camera and dense multi-camera set-
tings. The pose estimation with LineMOD has a performance worse than mPAPE. This
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(a) Objects (b) Test scenes by two cam-
eras.

Fig. 9: Experimental setup for the pose estimation experiments.

Fig. 10: Left: The pose estimates for two objects. Right: Corresponding depth image.
Black regions contain no depth information.

is probably due to the lack of discriminative surface features of the chair leg, which
makes it harder for LineMOD to make precise pose estimates. The multi-view method
increases the coarse pose estimation by approximately 15% in position. An increase of
this magnitude is not observed in dense estimation.

Table 3: Average Pose Estimation Errors

Single Cam Multi-Cam LineMOD SingleView LineMOD MultiView
Coarse 0.0226 m, 11.8◦ 0.0190 m, 11.1◦ – –
Dense 0.0186 m, 10.0◦ 0.0179 m, 9.3◦ 0.0400 m, 13.8◦ 0.0347 m, 12.6◦

Using multiple-camera pose estimation with dense training data, we obtained the
errors in translation and orientation shown in Fig. 11. For mPAPE, the errors are con-
centrated at 0.015 m, while for lineMOD, the errors are concentrated around 0.03 m.
As it can be seen, mPAPE has a higher estimation accuracy; however, there are still
errors higher than 0.01 m which can cause problems if a high precision estimation is
necessary. Multiple reasons exists for these errors. The first is the difficulty of obtaining
stable features for recognizing textureless, flat objects. Features can be different under
changing illumination conditions and the noise in the depth data due to multiple RGB-
D cameras. We have used a probabilistic, appearance-based pose estimation method to
overcome this. The second source is related to occlusion of the objects in some of the
scenes. Unsurprisingly, it has been observed that the error increases when the object
is occluded in one of the views. The third reason is the calibration error of the cam-
eras. The poses of the objects are recorded with respect to the robot frame. When the
estimated pose is transformed into the robot frame, this affects the result.
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Fig. 11: Histogram of translational and orientation errors of mPAPE and lineMOD for
chairleg parts respectively. Errors of up to 0.04 m in translation and 20 degrees in orien-
tation can be observed for mPAPE, while errors upto 0.05 m in translation and and 25
degrees in orientation can be observed for lineMOD method.

In all sets of experiments, pose estimation integration from multiple cameras with
our approach provided higher accuracy and precision with respect to single-camera
pose estimation. The improvement in detection rate, around 24%, is even higher than
the improvement in the pose estimation, which is around 10%.

5 Conclusion

We proposed a method for integrating pose estimations from multiple sensors. A prob-
abilistic appearance-based pose estimation method has been improved to combine mul-
tiple attributes of the scene, even if one of the features (e.g. depth information) is noisy
or incomplete in the scene.

We have developed a method to integrate poses from multiple views and used it
with PAPE; however, it should be noted it was also possible to use with other pose es-
timation methods (e.g. lineMOD [10] which had lower performance as shown in the
experiments). The results show that mPAPE can achieve high accuracies when pose es-
timations are integrated with the approach proposed in this paper; and they are compa-
rable to or exceed state-of-the-art results. Furthermore, errors in object pose estimation
are reduced with multiple cameras.

Acknowledgement

The research leading to this work has received funding from the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 (Specific Programme Coopera-
tion, Theme 3, Information and Communication Technologies) under grant agreement
no. 610878, 3rd HAND.



Integration of Probabilistic Pose Estimates From Multiple Views 15

References

1. Aldoma, A., Thomas, F., Vincze, M.: Automation of Ground Truth Annotation for Multi-
View RGB-D Object Instance Recognition Datasets. In: IEEE International Conference on
Intelligent Robots and Systems. pp. 5016–5023 (2014)

2. Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6d
object pose estimation using 3d object coordinates. In: Computer Vision–ECCV 2014, pp.
536–551. Springer (2014)

3. Canny, J.: A computational approach to edge detection. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on (6), 679–698 (1986)

4. Coates, A., Ng, A.Y.: Multi-camera object detection for robotics. In: IEEE International Con-
ference on Robotics and Automation (ICRA). pp. 412–419 (2010)

5. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
pascal visual object classes challenge–a retrospective. Int J Computer Vision (2014)

6. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with dis-
criminatively trained part-based models. IEEE Trans on Pattern Analysis and Machine Intel-
ligence 32(9), 1627–1645 (2010)

7. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view X-ray images. In: Pinz, A.,
Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM LNCS. vol. 7476 LNCS, pp. 144–154
(2012)

8. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection,
tracking, and action recognition. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 33(11), 2188–2202 (2011)

9. Helmer, S., Meger, D., Muja, M., Little, J.J., Lowe, D.G.: Multiple viewpoint recognition
and localization. In: Computer Vision–ACCV 2010. pp. 464–477. Springer (2011)

10. Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., Lepetit, V.: Mul-
timodal templates for real-time detection of texture-less objects in heavily cluttered scenes.
In: Computer Vision (ICCV), 2011 IEEE International Conference on. pp. 858–865. IEEE
(2011)

11. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model
based training, detection and pose estimation of texture-less 3d objects in heavily cluttered
scenes. In: Computer Vision–ACCV 2012, pp. 548–562. Springer (2012)

12. Izadi, S., Davison, A., Fitzgibbon, A., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R.,
Kohli, P., Shotton, J., Hodges, S., Freeman, D.: Kinect Fusion: Real-time 3D Reconstruction
and Interaction Using a Moving Depth Camera. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology - UIST ’11. p. 559 (2011)

13. Liu, M.Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching.
In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference on. pp. 1696–1703.
IEEE (2010)

14. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. of Computer
Vis. 60(2), 91–110 (2004)

15. Mustafa, W., Pugeault, N., Kruger, N.: Multi-view object recognition using view-point in-
variant shape relations and appearance information. In: Proceedings - IEEE International
Conference on Robotics and Automation. pp. 4230–4237 (2013)

16. Papazov, C., Burschka, D.: An efficient ransac for 3d object recognition in noisy and oc-
cluded scenes. In: Computer Vision–ACCV 2010, pp. 135–148. Springer (2011)

17. Roig, G., Boix, X., Shitrit, H.B., Fua, P.: Conditional Random Fields for multi-camera object
detection. In: 2011 International Conference on Computer Vision. pp. 563–570. No. Septem-
ber (2011)



16 Erkent, Shukla, Piater

18. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the view-
point feature histogram. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. pp. 2155–2162 (2010)

19. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, Inc.,
New York, NY, USA (1983)

20. Susanto, W., Rohrbach, M., Schiele, B.: 3D Object Detection with Multiple Kinects. In:
European Conference on Computer Vision - ECCV. Workshops and Demonstrations. pp.
93–102 (2012)

21. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.k.: Latent-Class Hough Forests for 3D Object
Detection and Pose Estimation. In: European Conf. on Comp. Vis. pp. 462–477 (2014)

22. Teney, D., Piater, J.: Multiview feature distributions for object detection and continu-
ous pose estimation. Computer Vision and Image Understanding 125, 265–282 (8 2014),
https://iis.uibk.ac.at/public/papers/Teney-2014-CVIU.pdf

23. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface de-
scription. In: 11th European Conference on Computer Vision (ECCV). vol. 6313 LNCS, pp.
356–369. Hersonissos, Greece (2010)
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