
Visual Task Outcome Verification Using Deep Learning

Özgür Erkent1, Dadhichi Shukla1, Justus Piater1

Abstract— Manipulation tasks requiring high precision are
difficult for reasons such as imprecise calibration and percep-
tual inaccuracies. We present a method for visual task outcome
verification that provides an assessment of the task status as
well as information for the robot to improve this status. The
final status of the task is assessed as success, failure or in
progress. We propose a deep learning strategy to learn the
task with a small number of training episodes and without
requiring the robot. A probabilistic, appearance-based pose
estimation method is used to learn the demonstrated task.
For real-data efficiency, synthetic training images are created
around the trajectory of the demonstrated task. We show that
our method can estimate the task status with high accuracy
in several instances of different tasks, and demonstrate the
accuracy of a high-precision task on a real robot.

I. INTRODUCTION

Daily tasks like insertion, placement or cutting a strip are
simple to perform by humans whereas they are challenging
for robots. Paolini et al. [1] found a success probability in
the range of [0.20, 0.55] for an insertion task and a range
of [0.60, 1.00] for the task of dropping an object into a
container in their experiments. The difficulty can usually be
attributed to the precision required of the task rather than the
complexity. Humans can use visual feedback to guide their
movements and to assess the outcome to a large extent. In
this paper, we follow a similar strategy; we gather data from
visual sensors and use it to guide the motions and assess the
outcome within the same process.

We perform three tasks to evaluate the proposed frame-
work. An overview of the system is as shown in Fig. 1. The
components of a simple task include the object manipulated
by the robot, the target location of this object and the
trajectory to be followed by the robot. The status of the task
is one of successful, failure or in progress. To be able to
define the status of the task, both the target and the object
should at least be partially observable. The task outcome is
generally described as the assessment of the final state of
the task as success or failure [2], [3], [4], [5]. When the task
status is in progress, the coarse states of the manipulated
object and the target are provided so that the controller
can plan the next motion of the robot. The controller is
assumed to be able to plan the motion of the robot given
the poses of the objects, and the relation between the image
plane and the object poses is assumed to be known. There
are two important aspects to this problem: First, the trained
system should generalize from the training task to similar
tasks involving distinct objects. Secondly, the approach that

1 Özgür Erkent, Dadhichi Shukla and Justus Piater are with the Intelligent
and Interactive Systems Lab, Institute of Computer Science, University of
Innsbruck, Austria. ozgur.erkent@uibk.ac.at

Fig. 1: A general overview of the proposed method. The
images show a peg-in-hole task.

is used to solve this problem should be used to learn more
than one task.

We propose a method that includes regression using deep
learning to estimate the pose of the manipulated object
and a classifier based on deep learning to classify the task
status. A network that combines a Faster Region-based
Convolutional Neural Network (R-CNN) [6] with a neural
network architecture developed for image classification [7]
is designed. We modify the image classification network to
be used as a regression network. The trajectory is learned
from a few samples representative of the task. A probabilistic
appearance-based pose estimation method [8] is used to
estimate the trajectory during training. After the trajectory is
obtained, synthetic images are created around this trajectory
to be used for regression with deep learning. Since the
tremendous amount of data required by deep learning is
created synthetically, the required amount of time to capture
training data is also reduced significantly. To estimate the
task status, successful tasks are demonstrated and an estima-
tor is trained.

The contributions can be summarized as follows:

• The task status and type can be estimated by regression
with deep learning during execution.

• The task can be executed with novel objects.
• Using the trajectory of the manipulated object reduces

the necessity of using a tremendous amount of data.

In the next section we review previous work related
to verification, task status feedback and deep learning for
regression and robotics. Then we introduce the details of
our approach, and in the subsequent section we evaluate our
method under different conditions. We conclude with a brief
summary.



A. Related Work

Studies on task status verification in robotics mainly focus
on outcome prediction. Outcome prediction can be used for
several practical purposes. For example, Pile et al. [3] use
force sensing to detect the folding in a cochlear implant
surgery and stops the process in the case of a failure. In
another study, Pastor et. al. [2] predict the outcome to learn
a complicated skill using a combination of different sensors,
including a laser sensor and the proprioceptive sensors. We
are focused on works related to visual perception in this
study. Nguyen et al. [9] learn locations where the manip-
ulation will succeed; however, the detections are simple
and hand-crafted, e.g. detection of lights on or off. Paolini
et al. [1] propose a framework where they compute the
probabilities of success after the execution of a task and
select the action that has the highest probability. They obtain
the probabilities from a data-driven statistical framework and
use the sensors on the gripper. Task outcome has also been
studied in industry with the name visual inspection. However,
usually these studies are very specific to the task, for example
Ong et al. [5] detect failed solders using a special camera
and a lightning. Interested readers are referred to the work
of Malamas et al. [4] for a survey on visual inspection in
industry.

To learn the status of a task, regression seems to be a
natural candidate since it can give an accurate estimate of the
task status. Visual servoing methods estimate the position of
the features in the images, which are usually determined by
hand; as a result, they are not usually generalizable over a
range of tasks and they cannot learn from real world visual
data [10]. Studies have been made in deep learning where
the regression have been used to find the state of a new
sample. For example Kendall et al. [11] use regression in
place recognition to find the pose of the camera in the streets
in an area of 50000m2 which shows that regression can
be used to localize accurately in a dynamically changing
environment. Miao et al. [12] use regression to estimate the
location of an object precisely using patches around the
object in an X-ray image. Convolutional neural networks
(CNNs) are also used to estimate the depth estimates from
monocular images with regression, although the problem is
hard, they achieve sufficient results [13], [14] which show
that regression technique can be used in various different
domains. Another usage area of deep learning with regression
is human pose estimation, where the poses of multiple human
body parts are estimated [15]. Hand pose estimation can
also be made with CNN regression [16]. This indicates that
the regression with CNNs can generalize over parts with
different appearances. One of the candidates to estimate the
pose of the objects in 2D images is the spatial transform
networks (STN) [17], which can find the affine transform
of an object in the image. Multiple views of the object are
necessary in different affine transforms to train the network,
which would be costly for a robot to obtain for each task
and object type. We combine faster R-CNN [6] to find the
bounding box of the object and the target in the image

with a modified version of a CNN architecture [7] which
is originally developed for classifying 1.2 million images
in the ImageNet dataset [18] to find the precise location of
the object in the image. Availability of pre-trained network
weights allow to train the networks with a smaller number
of samples.

It should be noted that there are also studies that try to
learn the robot motion from the image pixels and the current
robot state [19]. The main difference from our study is that
we try to learn the task status robustly from visual perception
only. First, we learn the trajectory while the human is
performing the action, and then find the appropriate robot
actions to execute the trajectory after observing the state of
the task. Various studies show that the trajectories for the task
can be learned from human demonstrations. Zadeh et al. [20]
propose a method to learn potential functions from human
demonstrations. In this approach, the demonstration should
be performed on the robot to learn the parameters necessary
for the task. We use probabilistic motor primitives (ProMP)
[21] to learn the trajectories from human demonstration
without the robot. Then the robot mimics this trajectory using
its inverse kinematics to convert ProMPs into robot motion.

II. METHOD

In this section, we describe our approach to estimating the
task status. As shown in Fig. 1, the process involves three
main components: the deep task status estimator (regressor),
a trajectory generator, and a controller to follow the trajec-
tory required of the manipulated object (inverse-kinematics
planner).

A. Task Status Estimator

We phrase the task status estimation as a two-step problem
and propose a combined network that can be trained in an
end-to-end manner (Fig. 2). A Successful outcome of the
task is also considered an object class. Therefore, a classifier
is not only required to detect the objects of the task, but
also the successful outcome of a task (successful outcomes
of three sample tasks can be seen in Fig. 3). At the first
step, a Faster R-CNN [6] is used to detect the successful
outcome of the task, the objects and their bounding boxes
in the scene. If there is more than one object of interest,
all of them are detected. A Faster R-CNN consists of two
modules: a region proposal network (RPN), which outputs a
set of rectangular object proposals, and an object detection
CNN to utilize these. A Zeiler-Fergus network [22] with five
shared convolution layers are used in both of these modules.
The details for the RPN can be found in [6]. A Fast R-
CNN is utilized for the object detection module [23]. A
Faster R-CNN is trained end-to-end with back-propagation
and stochastic gradient descent (SGD) [24]. The weights of
the layers are obtained from a pre-trained Faster R-CNN for
20 objects [6] with a ZF net architecture. The remaining
weight layers are initialized by drawing from a zero-mean
Gaussian distribution with a standard deviation of 0.01. The
learning rate is selected to be 0.001 for the first 10k mini-
batches, and 0.0001 for the next 10k mini-batches on our



Fig. 2: The architecture of the combined networks. The outputs: location of the objects, the class and the estimated accuracy.

task dataset that will be explained. A momentum of 0.9 and
a weight decay of 0.0005 are selected and implemented in
Caffe [25].

At the second step, the pose of the objects in the 2D image
plane, denoted by (x, y, θ), is estimated if the output class of
the first step is not a “success”. This signals that estimation
continues when the task is in progress. The bounding boxes
from the first step are used to crop the image and resize them
to 227×227 RGB pixels. The weights from the convolution
layers of the first step are not used since the task is to find
a regression for the detected object. We use an architecture
similar to the CNN trained on the ImageNet dataset [18]
by Krizhevsky et al. [7] that consists of five convolutional
and three fully-connected layers, totaling around 60 million
parameters. We modify the network by concatenating the
class output from the first step network with the output from
the last pooling layer of the second step network to obtain
the first fully connected layer of the second step network.
The class corresponds to one of the object classes in one of
the tasks. We apply regression to estimate the pose of the
manipulated object. We train the CNN with an Euclidean
loss with stochastic gradient descent using the loss function

loss(I) = ‖x̂− x‖2 + λ
∥∥∥θ̂ − θ∥∥∥

2
(1)

where x is the location in the image plane, θ is the in-
plane orientation, and λ is a normalization factor to equalize
the errors. The model is trained with a batch size of 64,
momentum of 0.9, and weight decay of 0.0005. The learning
rate is selected to be 0.00001 and decreases at every 10k
mini-batches. We modified the parameters depending on the
process power of computers, number of available training
images and number of classes.

We obtain the training images with a few instances of
the same task with different object types. First, we show
the successful result of the task with different instances and
move the completed task to different locations as shown in
Fig. 3. The completed task is considered as an object and the
location of the completed task is found by a probabilistic,
appearance-based pose estimation (PAPE) [8]. The reason
will be explained shortly.

Next, the tasks are executed once with each task instance.
The main purpose of this execution is to obtain the trajectory
of the task. These images are not directly used in training. We
learn the object using (PAPE) [8] with RGB images only, but

Fig. 3: Training images for different instances of different
tasks. Top: Task 1 (Insertion), Middle: Task 2 (Tool Box),
Bottom: Task 3 (Plier-Strip). Left two columns: bounding
boxes, center and in-plane rotation for object and target,
Right two columns: bounding box for successful outcomes.

any suitable pose estimation method that can work with RGB
images can be used. We used PAPE due to its ease of learning
the object models from appearance only and providing the
pose of the object in the image plane accurately. We use one
viewpoint of the object. After the trajectory of the object
with respect to the target is found, to reduce the effect of
different scales and positions of the object and the target, we
produce images with different backgrounds at varying scales
and positions around the trajectory. Since the trajectory
extends over a limited region of the image, the training
images are restricted to this area, therefore the number of
training images is significantly reduced. The procedure for
training the regression network is shown in Fig. 4. Here, the
insertion task is shown as an example. It should be noted
that the robot is not necessary at this stage. Each image is
labeled with the image location, orientation, object type and
bounding box. For each task there are at most three object
types: manipulated object, target and the successful outcome.
However, this can be less, as shown for the toolbox. In this
case, both the target and the manipulated object are the same.

B. Trajectory Generator and Controller

In the previous section, we explained how to obtain the
trajectory to train the networks for task status estimation.
Now, we will describe how to obtain a trajectory from
multiple instances of the task to be used by the robot to



Fig. 4: Training regression network with CNNs

update its motion if necessary.
We use ProMPs to generate trajectories in Cartesian co-

ordinates [21]. Instead of observing the human user’s action
[21], we observe the task status by multiple cameras and
update the current state of the robot accordingly. We assume
that there exists a controller with inverse dynamics feedback
to convert the output of the ProMPs into robot motion.

A sample trajectory for an insertion task is shown in
Fig. 5. It should be noted that these are the trajectories
obtained from pose estimation of objects in 6D using the
PAPE method. The object that does not move in the training
(e.g. the hole in the insertion task) is selected as the target.
First, the task instances are collected as shown in Fig. 5a
for each task. Then, after the observation is made, the task
type is detected, and the object and the target poses are
found by the task status estimation process. Since this is
the first observation, these are considered to be the start and
end points. The initial trajectory is shown in Fig. 5b, which
is obtained by conditioning ProMPs on the initial trajectory
points. There can always be errors in the observation; there-
fore, we assume that the true trajectory is corrupted with a
Gaussian noise with variance σ2 = 0.0001. We consider the
total trajectory length as K = 1, and the current location
on this trajectory is k ∈ [0, 1] which is obtained from the
task status estimation. After the initial trajectory, the robot
moves along the trajectory with a step length of δk. After m
steps, the location of the observed object k = 0.5 is shown in
Fig. 5c. As can be seen, the trajectory is updated depending
on the current location of the object. The current location
of the object can be different from the planned location for
various reasons, including errors in sensor calibration, errors
in estimation algorithms, or any perturbation to the robot. For
a step size of δk = 0.1, the object is observed at k = 0.6
as shown in Fig. 5d in the next step. When the output is
estimated as success, if the accuracy of the task is higher than
the threshold, then the task is completed. If the probability of
the verified task is low, then the robot does small motions (i.e.

(a) k=0.0 (b) k=0.0

(c) k=0.5 (d) k=0.6

Fig. 5: Trajectories for the insertion skill created with
ProMPs. The current pose of the manipulated object is
shown with a “+” sign. The trajectory direction is from
top to bottom. a) All trajectories from all the insertion task
instances are shown; b) The trajectories that can be chosen
after the object and the target pose are observed at the start
of the motion (k=0.0); c) Updated trajectory after the robot
moves and the object is observed at k = 0.5; d) Updated
trajectory after the robot moves and the object is observed
at k = 0.6.

in range [−0.01, 0.01] cm) randomly until the accuracy of the
task is high as observed with the task estimation module. If
the task does not succeed after N steps, the task is classified
as a failure.

III. EXPERIMENTS

In this section, we evaluate our proposed method in three
different ways. First, we evaluate the accuracy in outcome
classification, then the regression evaluation is made, and
finally the approach is tested on the robot. The experimental
setup for taking training images is shown in Fig. 6. Although
the camera is placed on the robot, the robot is not necessary
during the training phase. We use three different tasks, inser-
tion, mating of toolbox parts and bringing a plier close to a
strip. We will denote them as Insertion, Tool Box and Plier-
Strip respectively in the rest of the paper. A single object is
manipulated in all of the tasks. We collect approximately 600
images from five instances of Insertion Task, three instances
of Plier-Strip Task, and two instances of Tool Box Task. First,
we collect images of the successful outcome for each task
instance. The distances of the objects to the camera may vary,
but their scales in the images do not change drastically. Then,
we obtain the trajectories of the object during the execution
of the task instance. Approximately 11000 synthetic images
are created using these trajectories. We train the combined
deep neural network as explained in Sec. II-A with defined



Fig. 6: Training setup for the experiments.

TABLE I: F1-Scores for Success Outcome Estimation

F1 scores Insertion Tool Box Plier-Strip
Learned 0.722 0.708 0.871
Novel 0.707 0.643 0.671
All 0.712 0.700 0.772

parameters. We use this network throughout all experiments.

A. Task Outcome

In the first set of experiments, we evaluate the performance
of our method on the estimation of the task outcome. The
tasks are executed by a human for this experiment. Each
task instance contains 1700 images of a task. In addition to
the images of the learned objects, we collect images from
two instances with novel objects for Insertion, one instance
with novel objects for Plier-Strip and one instance with novel
objects for Tool Box. For groundtruth, the images are labeled
as successful or not successful by a human.

We show the F1-scores for the estimation of the success
outcome in Table.I. We use F1-scores so that we consider
both false negative and false positive results. It can be
seen that for novel objects, which were not observed during
training, the accuracy decreases as expected. The accuracy is
highest for plier-strip, probably due to its distinct properties
in its appearance. However, the accuracy decreases more than
other objects when a novel plier is used. This is probably
due to the change in the appearance of the strip. One of the
reasons of failure in estimation is that we do not restrict the
scene; therefore, in some of the scenes, the objects are very
close to the camera, and the estimation is false. Some of the
samples for correct estimations of successful task outcome
and failures can be seen in Fig.7.

B. Task Status Estimator

In the second set of experiments, we evaluated the accu-
racy of regression for estimating the pose of the manipulated
object in the image. We used two tasks for evaluation: Inser-
tion and Plier-Strip. We skipped the Toolbox, since it was not
possible to create a setup where the toolbox is manipulated
by the robot and observed by a camera at the same time

Fig. 7: Training images for different instances of different
tasks. Top: Insertion, Middle: Tool Box, Bottom: Plier-Strip.
Left three columns: Correctly estimated as verified, Third
column: Novel task instances with novel objects, Right
column: Some of the failure cases in detection.

TABLE II: Average Error for Object Position

Insertion Plier-Strip
Avg Err (px) fRCNN fRCNN + R fRCNN fRCNN + R
Learned 17.6 14.6 16.3 14.6
Novel 20.9 18.7 15.3 14.7
All 18.5 15.8 16.1 14.7

due to configuration of the robot. The experimental setup is
again similar to the previous experiment and the objects are
shown by a human. The correct position and orientation of
the object in the images are labeled by a human. To be able
to evaluate the improvement introduced by the regression
network proposed by our method, we compare two results.
First, we take the center of the bounding box as the center of
the object that is provided by the faster R-CNN network that
exists in the first step of our approach denoted as fRCNN in
Table.II. Then, we use the values computed by our regression
network as the center position of the objects denoted as
fRCNN+R.

The results are shown in Table. II. Learned task instances
are the ones with which the network is trained, novel task
instances are the ones that were not observed previously and
all task instances are the combination of both learned and
novel task instances. None of the test images were used to
train the network. “Learned task” is used to indicate that
the task was learned with the same object. 1700 images
were used to compare the accuracy of two methods. Average
error is the mean of the Euclidean distance in image plane
between the center of the object found by the method and the
groundtruth over all the test samples. The location error is
reduced by 15% for the Insertion task, and 9% for the Plier-
Strip task. As can be seen in Table.II, the error decreases
in the Plier-Strip task for novel objects with fRCNN, which
is probably due to an appearance property of the plier/strip
combination that affects the network. The width and height
of the images are 400x320 pixels accordingly. Adding the
regression network increases the accuracy for all objects and



Fig. 8: Sample results for detection the center of the ob-
jects. Top: Insertion, Bottom: Plier-Strip, Left: Learned task
instance, Right: Novel task instance.

TABLE III: Average Error for Object Orientation

Avg Err (rad) Insertion Plier-Strip
Learned 0.19 0.15
Novel 0.23 0.16
All 0.22 0.15

tasks. It should be noted that when the novel object is used,
even if its appearance is different from other objects, the
error does not increase drastically. Some of the results are
shown in Fig. 8.

The results regarding the orientation error are shown in
Table. III. As it can be observed, the error increases slightly
when a novel task instance is estimated. This precision
is sufficient for the tasks implemented in this paper. A
meaningful comparison with fRCNN is not possible since
it does not provide the orientation of the objects.

C. Robot Guidance

In this Section, we use our approach to test whether this
will help the robot to achieve a high precision task by training
on a different instance of the same task. We perform two
tasks: Insertion and Plier-Strip. The tests are made with the
learned task instance objects and novel task instance objects.
The background is changed and clutter is added to test the
performance of the approach to test if the method is capable
of generalizing to new instances even with clutter in the
scene. KUKA Light-Weight-Robot arm is used to manipulate
the object. The robot setups are shown in Fig. 9.

The performance of the robot is affected by the changes
in the background. When the learned instance of Insertion
is used with the background similar to the one in training,
the task is guided and completed successfully in 100 % of
the 3 trials. When the background is changed by adding a
different colored table cloth or clutter, the task is guided
and completed successfully in 50 % of the 4 trials. When a

Fig. 9: Top Left: Setup is similar to the scenes where the
tasks were learned. Top Right: The background color is
different. Bottom Left: There is clutter and the background
color is different. Bottom Right: The plier is shown to the
cameras at a different angle.

new instance of the task is tested (green chair leg as shown
in Fig. 9-Top Right) with different colored table cloth and
clutter, the task is guided and completed successfully in 80
% of the 5 trials. For the Plier-Strip, when the angle of
the manipulator alter slightly and a different task instance is
used, the task is guided and completed successfully in 66 %
of the 6 trials. The results show that if the task is trained with
the same task instance as in the test case, even high precision
tasks can be achieved with a high rate. When the environment
conditions change, the performance starts to degrade. It
should be noted that although the novel task instance chair
leg insertion is visually different from the learned Insertion
task instances, its performance is comparable to that of the
learned task instance.

IV. CONCLUSION

We proposed a method to detect the outcome of the task
and to guide the task with feedback spontaneously. The
interaction required with the robot is not necessary during
training. After a few task instances are shown to the system,
the method is capable of generating a general model of the
task and provide a feedback about the current status of the
task. The improvement introduced by the regression network
proposed by our method is analyzed in the experimental
results. Furthermore, the experiments show that the accuracy
of the method with novel objects is sufficient to guide the
robot for a task that needs precision similar to the ones
presented in our results.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies)
under grant agreement no. 610878, 3rd HAND.



REFERENCES

[1] R. Paolini, A. Rodriguez, S. S. Srinivasa, and M. T. Mason, “A
data-driven statistical framework for post-grasp manipulation,” The
International Journal of Robotics Research, vol. 33, no. 4, pp. 600–
615, 2014.

[2] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in
IEEE International Conference on Robotics and Automation, 2011,
pp. 3828–3834.

[3] J. Pile, G. B. Wanna, and N. Simaan, “Robot-assisted perception
augmentation for online detection of insertion failure during cochlear
implant surgery,” Robotica, pp. 1–18, 2016.

[4] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D.
Legat, “A survey on industrial vision systems, applications and tools,”
Image and Vision Computing, vol. 21, no. 2, pp. 171–188, 2003.

[5] T. Y. Ong, Z. Samad, and M. M. Ratnam, “Solder joint inspection with
multi-angle imaging and an artificial neural network,” International
Journal of Advanced Manufacturing Technology, vol. 38, no. 5-6, pp.
455–462, 2008.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS), 2015.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifi-
cation with Deep Convolutional Neural Networks,” in Advances In
Neural Information Processing Systems, 2012, pp. 1–9.

[8] O. Erkent, D. Shukla, and J. Piater, “Integration of Probabilistic
Pose Estimates From Multiple Views,” in European Conference on
Computer Vision, 10 2016, amsterdam, Netherlands.

[9] H. Nguyen and C. C. Kemp, “Autonomously learning to visually detect
where manipulation will succeed,” Autonomous Robots, vol. 36, no.
1-2, pp. 137–152, 2014.

[10] M. Hussein, “A review on vision-based control of flexible manipula-
tors,” Advanced Robotics, vol. 29, no. 24, pp. 1575–1585, 2015.

[11] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A Convolutional
Network for Real-Time 6-DOF Camera Relocalization,” in Computer
Vision, IEEE Int. Conf. on International Conference on, 2015, p. 9.

[12] S. Miao, Z. J. Wang, and R. Liao, “A CNN Regression Approach
for Real-time 2D/3D Registration,” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1–1, 2016.

[13] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He, “Depth and
surface normal estimation from monocular images using regression
on deep features and hierarchical CRFs,” in Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1119–1127.

[14] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Advances in neural
information processing systems, 2014, pp. 1–9.

[15] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via
deep neural networks,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2014, pp. 1653—-1660.

[16] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, “Cascaded hand pose
regression,” Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 824–832, 2015.

[17] M. Jaderberg, K. Simonyan, A. Zisserman, and Others, “Spatial
transformer networks,” in Advances in Neural Information Processing
Systems, 2015, pp. 2017–2025.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[19] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[20] S. M. Khansari-Zadeh and O. Khatib, “Learning potential functions
from human demonstrations with encapsulated dynamic and compliant
behaviors,” Autonomous Robots, vol. 41, no. 1, pp. 1–25, 2017.

[21] G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters, and
G. Neumann, “Learning interaction for collaborative tasks with proba-
bilistic movement primitives,” in Humanoid Robots (Humanoids), 14th
IEEE-RAS International Conference on. IEEE, 2014, pp. 527–534.

[22] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European conference on computer vision.
Springer, 2014, pp. 818–833.

[23] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1440–1448.

[24] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp.
541–551, 1989.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.


