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Abstract
In line with Image Schemas being natural groundings of symbolic representation, we investigate how autonomous
agents can learn generalizable symbolic predicates of properties of objects and their relations that can be used
for long-horizon sequential decision making. As the basis for our approach serves the Relational DeepSym
framework, that learns a symbolic planning domain solely based on random exploration with time-extended
skills in a multi-object robotic workspace. Here, we demonstrate that directly regularising for increased sparsity
of the learned binary symbols improves sample efficiency and therefore leads to better planning performance in
a set of object-manipulation tasks. Additionally, we compare symbolic planning with continuous baselines for
forward prediction and discuss the interpretability of the derived symbols and operators.
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1. Introduction

In her theory on “How to build a baby” [1], Jean Mandler defines Image Schemas as spatially structured
representations of the relations between entities and their movement through space that constitute
earliest meanings and a natural grounding of symbolic representation in human cognition. To date, it
is still an open question whether the bridge between human perception and higher level cognitive
abilities, like conceptual thinking and language acquisition, is formed by image schematic conceptual
primitives. Regarding artificial agents, recent work has presented strategies how Image Schemas can be
leveraged for hierarchical decision making, especially based on their symbolic nature [2, 3, 4].

For instance, by using a translation of Image Schema Logic to the Web Ontology Language, Pomarlan
et al. [2] synthesized an “Image Schematic Reasoning Layer” that infers queries about the state of the
environment to be answered by a separate perception module. This way perception can be performed
in a focused manner, by only attending to entities that are part of the emitted queries and therefore
considered relevant in the current state. Such approaches predominantly rely on predefined and
handcrafted predicates such as contained or inFrontOf for their symbolic rules.

To that end, the “DeepSym” line of research [5, 6, 7] by Ahmetoglu et al. established an approach
for bottom-up symbol learning based on sensorimotor exploration of a robot in a workspace with
multiple objects. These symbols can then subsequently be used for generating a set of operators that
capture the effect of actions in the symbolic space in the Planning Domain Definition Language (PDDL),
which in turn enables long-horizon sequential decision making with of-the-shelf planners [8]. In its
most recent version, the proposed encoding architecture for symbol learning also includes relational
symbols between pairs of objects. On one hand, the explicit learning of relational symbols showcases
the potential of “Relational DeepSym” [6] (RDS) to serve as an architecture for Image-Schema-like
symbol emergence in artificial agents. On the other hand, the RDS framework does not contain any
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inductive bias towards learning explicitly generalizable predicates that capture large parts of the state
space and would enable successful long-horizon planning from observing a small amount of transitions
for the PDDL domain generation.

2. Method

In this presentation, to meet this desideratum in autonomous embodied symbol acquisition, we investi-
gate how sparsity regularisation influences the learned predicates and their quality for learning a PDDL
planning domain from randomly collected transitions.

Vectors, e.g. of parameters, encodings or atttention masks, are sparser the more of their elements
are close to or at zero [9]. Lei et al. [10] recently demonstrated how to learn a causal world model
by applying sparsity regularisation to a transformer with hard attention. Given that the unary and
relational predicates that are learned in the RDS architecture are binary by design, sparsity in this case
can be enforced by simple 𝐿0 regularisation on the learned symbolic encoding.

To evaluate the benefits of learning sparse symbolic representations for action planning we present
a simulated robot workspace environment, that contains multiple objects of different types and a set
of time-extended skills like Pick or MoveOver to manipulate them. Based on this environment, we
probe the effect of sparsity on the generalizability of the symbols with a set of test tasks consisting of
planning problems with 2 to 4 objects in the workspace. We find that due to the increased sparsity,
larger regions of the state space are captured by each symbol, leading to a decrease in the amount of
observed transitions necessary for a certain performance on the planning tasks.

The sparsest relation between two objects that can be learned is that they do not influence each
other at all and the symbolic relation vector is only zeros. For that reason, as found in prior work
[10], applying sparsity regularisation to the RDS architecture also leads to learning when objects are
explicitly not related i.e. have no effect on each other. We lay out how this can be used for further
improvements in data efficiency in the PDDL domain generation. Since planning in symbolic space is
not an end in itself, we additionally compare our approaches’ performance with several continuous
baselines.

Lastly, we discuss the interpretability of the learned symbols and operators. For that, we present
where, and where not, learned predicates align with conventional Image Schemas and compare the
inferred PDDL Domain to one that a human expert would create to solve the given set of tasks.

In summary, we present the results of our investigation of how to artificially mimic image schematic
natural grounding of symbolic representation by applying sparsity regularisation to the RDS architecture
for planning symbol learning. We find that sparsity does improve sample efficiency in the PDDL domain
generation and forces the explicit encoding of the absence of any relation between two objects, yet,
general alignment with human symbols and planning domains is still limited and offers anchor points
for future work.
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