
Kernel-Mapping Recommender System Algorithms

Mustansar Ali Ghazanfara, Adam Prügel-Bennetta, Sandor Szedmakb

aSchool of Electronics and Computer Science, University of Southampton, Highfield Campus, SO17 1BJ, United Kingdom. Email: mag208r@ecs.soton.ac.uk;
Phone: +44 (023) 80594473; fax: +44 (023) 80594498

bIntelligent and Interactive Systems, University of Innsbruck, 6020 Innsbruck, Austria, Email: sandor.szedmak@uibk.ac.at

Abstract

Recommender systems apply machine learning techniques for filtering unseen information and can predict whether a user would
like a given item. In this paper, we propose a new algorithm that we call the Kernel-Mapping Recommender (KMR), which uses
a novel structure learning technique. This paper makes the following contributions: we show how (1) user-based and item-based
versions of the KMR algorithm can be built; (2) user-based and item-based versions can be combined; (3) more information—
features, genre, etc.—can be employed using kernels and how this affects the final results; and (4) to make reliable recommendations
under sparse, cold-start, and long tail scenarios. By extensive experimental results on five different datasets, we show that the
proposed algorithms outperform or give comparable results to other state-of-the-art algorithms.

Keywords: Recommender Systems, Structure Learning, Linear Operation, Maximum Margin, Kernel.

1. Introduction

In this paper, we proposed a new class of kernel-based meth-
ods for solving the recommendation problem that gives state-
of-the-art performance. The main idea is to find a multi-linear
mapping between two vector spaces. The first vector space
might, for example, have vectors encoding information about
the items that we wish to rate, while the second vector space
may contain a probability density function describing how a
particular user will rate an item. Learning an appropriate map-
ping can be expressed as a quadratic optimisation problem. As
the problem involves a linear mapping, the solution to the op-
timisation problem involves inner products in the two vector
spaces. This allows us to use the kernel trick. Directly solving
the optimisation problem using quadratic programming would
be too slow for most recommendation datasets. Instead, we find
an approximate solution iteratively, following an idea first de-
veloped by [19]. This allows us to train the recommender in
linear time. The method described here is a specialisation of
a general structure learning framework developed by Szedmak
and used in [53] for handling incomplete data sources.

The approach we have adopted is easily adapted to different
sources of information. We can, for example, use either rating
information from other users or textual information about the
items. Similarly, we are able to build either an item-based or
a user-based version of the algorithm. Because we have cho-
sen to build a mapping to a space of functions approximating
the probability density of the ratings, we have an intuitive inter-
pretation of the recommendations produced by the algorithm.
This gives us flexibility in how we make our final recommen-
dation, which we can exploit to improve the final prediction for
different datasets.

A main requirement of recommender systems is to provide
high quality predictions of the rating that a user would give to

an item, based on their previous rating history. Thus in test-
ing recommender systems, a dataset is used where some sets
of ratings are treated as unseen while the other ratings are used
for learning. To obtain accurate results, datasets are usually se-
lected with users that have made a relatively high number of rat-
ings. In real applications, however, the datasets are often highly
skewed; for example, a large number of users may have made
only a small number of ratings, and a large number of items may
have received very few ratings. These are important scenarios
in practical systems as giving reasonable recommendations to
new users can be crucial in attracting more users. Similarly,
giving a sensible rating to a new item may be necessary for
those items to be taken up by the community sufficiently to col-
lect more ratings. Often, recommender system algorithms that
have been optimised to give good recommendations on dense
datasets perform poorly on these skewed datasets. We have
generated highly skewed datasets to test our algorithm under
these scenarios. In particular we consider the new-item cold-
start problem, the new user cold-start problem [20, 1] and the
long tail problem [36]. We find that the standard algorithm we
developed performs poorly for these skewed datasets; however,
we show that by using the flexibility of our approach we can
easily modify the algorithm so that it performs well under these
scenarios.

Recommender systems have been a very active topic of re-
search for around twenty years. This, in part, has been spurred
on by the Netflix competition to improve the performance (in
terms of the root mean square error) of a baseline algorithm by
10%. One lesson to emerge from this was that a highly effec-
tive way to achieve a very high recommendation performance
on a static dataset is to combine a large number of different al-
gorithms. Although such systems are interesting, they are not
very flexible and may not be ideal algorithms for most real ap-

Preprint submitted to Information Sciences March 2, 2012



plications with rapidly changing users and items. Our algorithm
relies on a single coherent method (albeit with several vari-
ants) that has not been designed for a specific dataset. We have
thus compared our approach with other general purpose recom-
menders. The best general purpose collaborative filtering algo-
rithms that we are aware of are by [26] and [27]. These achieve
a considerable gap in performance advantage over other algo-
rithms. The proposed algorithm achieves similar performance
in terms of mean absolute error to these approaches, although
it is out-performed by [26] on a dataset with 1 000 000 ratings
and by [27] on a dataset of 10 000 000 ratings. The proposed
approach is however very different. The other two approaches
are based on matrix factorisation, although [26] also uses ker-
nel functions. There has been considerable work on developing
matrix factorisation techniques which are at the heart of many
of the most competitive algorithms for this problem. Part of the
interest of the proposed algorithm is that it takes a very differ-
ent viewpoint from the matrix factorisation approaches, yet still
has very competitive performance.

The rest of the paper has been organised as follows. In the
next section we briefly outline related work. Section 3 outlines
the proposed algorithm using an item-based approach. In Sec-
tion 4 we describe extensions to the basic algorithm. Section 5
presents details of the datasets we use for evaluation, the met-
rics we use and the procedure for tuning parameters of the algo-
rithm. This is followed in Section 6 by a presentation of results
from our experimental evaluation. We conclude in Section 7.
Some of the details and more extensive results are given in ap-
pendices.

2. Related work

There are two main types of recommender systems: col-
laborative filtering and content-based filtering recommender
systems. Collaborative filtering (CF) recommender systems
[17, 50, 56, 42, 21, 39, 14] recommend items by taking into
account the taste (in terms of preferences of items) of users,
under the assumption that users will be interested in items that
users similar to them have rated highly. Examples of these sys-
tems include GroupLens system [21], Ringo (www.ringo.com),
etc. Collaborative filtering systems are classified into two sub-
categories: memory-based CF and model-based CF. Memory-
based approaches [50] make a prediction by taking into ac-
count the entire collection of previous items rated by a user, for
example, the GroupLens recommender systems [21]. Model-
based approaches use rating patterns of users in the training
set, group users into different classes, and use ratings of prede-
fined classes to generate recommendations for an active user
(i.e. the user for whom the recommendations are computed)
on a target item (i.e. the item a system wants to recommend).
Examples include item-based CF [44], Singular Value Decom-
position (SVD) based models [46, 59, 24], matrix factorisa-
tion [51, 62, 4, 60, 54, 22, 43, 55, 23], nuclear norm regu-
larisation [30], Bayesian networks [7], and clustering meth-
ods [36, 47, 61]. Content-based filtering recommender sys-
tems [25, 34, 57, 38] recommend items based on the content
information of an item, under the assumption that users will

like similar items to the ones they liked before. In these sys-
tems, an item of interest is defined by its associated features;
for instance, NewsWeeder [25], a newsgroup filtering system
uses the words of text as features. Other well-known types of
recommender systems include knowledge-based systems [8, 6],
Ontology-based systems [33], and hybrid systems [9, 40].

Hybrid recommender systems have been proposed elsewhere
[31, 9, 37, 10, 8, 12, 15, 13, 40], which combine individual
recommender systems to avoid certain limitations of individ-
ual recommender systems. In the proposed approach we can
add more information (about items) in the forms of additional
kernels, which can be thought of as combining collaborative fil-
tering with content-based filtering. A related approach has been
proposed in [3], where the authors employed a unified approach
for integrating the user-item ratings information with user/item
attributes using kernels. They learned a prediction function us-
ing an on-line perceptron learning algorithm. They claimed
that adding more kernels increases the performance, which is
in contrast with our findings1.

In [53], the authors proposed a structured learning algorithm
for learning from incomplete dataset. The idea of the structure
learning has been used in [2], where the authors employed it
for enzyme prediction. We show how the structure learning
approach can also be used to solve the recommender system
problem effectively.

Recommendations can be presented to an active user in the
following two different ways [18]: by predicting ratings of
items a user has not seen before and by constructing a list of
items ordered by their preferences. In this paper, we focus on
both of them.

3. Kernel-Mapping Recommender

A recommender system consists of two basic entities: users
and items, where users provide their opinions (ratings) about
items. We denote these users by U = {u1, u2, · · · , uM}, where
the number of people using the system is |U| = M, and denote
the set of items being recommended by I = { i1, i2, · · · , iN },
with |I| = N. The users will have rated some, but not all, of
the items. We denote these ratings by (riu|(i, u) ∈ D), where
D ⊂ I × U is the set of user-item pairs that have been rated.
We denote the total number of ratings made by |D| = T . Typi-
cally each user rates only a small number of the possible items,
so that |D| = T � |I × U| = N × M. It is not unusual in prac-
tical systems to have T/(N × M) u 0.01. The set of possible
ratings made by the users can be thought of as elements of an
M×N rating matrix R. We denote the items for which there are
ratings by user u as Du, and the users who have rated an item
i by Di. The task is to create a recommendation algorithm that
predicts an unseen rating riu, i.e. for (i, u) < D.

In this section we describe an item-based recommender. In
the next section we show how we can adapt the approach to a
user-based recommender. To perform the recommendation task
we consider building the additive and multiplicative models for
the residual ratings. The residue in the additive model is given
by

r̂iu = riu − r̄i − r̄u + r̄, (1)

2



where r̄i, r̄u and r̄ are respectively the mean rating for the item,
of the user, and the overall mean

r̄i =
1
|Di|

∑
u∈Di

riu, r̄u =
1
|Du|

∑
i∈Du

riu, r̄ =
1
|D|

∑
u∈D

riu.

The multiplicative model can be expressed as follows:

r̂iu =
riur̃
r̃ir̃u

, (2)

where r̃, r̃i and r̃u are the geometric means for all the ratings,
the ratings for item i, and the rating of user u, respectively. We
found the additive model to be (marginally) better than the mul-
tiplicative one, and hence this work is based on the additive
model.

3.1. Item-based KMR

We use a technique developed by Szedmak and co-workers
for learning structured data [53]. In the following we outline
how this approach is adapted for solving the collaborative filter-
ing problem. We assume that we have some information about
the items which we denote by qi. This may, for example, be
the set of ratings riu for u ∈ Di, or it could be text describing
the item i. We map the information to some vector φ(qi) in
some extended feature (Hilbert) space. Similarly, we map the
rating residues, r̂iu, to ‘vectors’ in some other Hilbert space. In
this paper, we consider these objects to lie in the function space
L2(R). In particular we represent each residual r̂iu, by a normal
distribution with mean r̂iu and variance σ2. That is,

ψ(r̂iu) = N(x|r̂iu, σ). (3)

The motivation of this choice is to model possible errors in the
rating either due to the discretisation of the rating scale or the
variability in assigning a rating (e.g. due to the mood of the user
on the day they made the rating).

The method developed by Szedmak is to seek a linear map-
ping between these two spaces which can be used for making
predictions. More specifically, in our application, we look for
a linear mapping Wu from the space of φ vectors to the space
of ψ vectors. We will use the mapping Wuφ(q j) to make a pre-
diction for the rating of a new item j by the user u. To learn
the mappings Wu we will minimise the Frobenius norm of Wu

subject to the constraints

〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1 − ζi,

where ζi ≥ 0 is a slack variable and where we have a constraint
for each pair (i, u) ∈ D. This ensures that Wuφ(q j) is aligned
with ψ(r̂iu) for the ratings in the training set. We can write the
training problem for the mappings Wu as a quadratic program-
ming problem

minimise 1
2
∑

u∈U ‖Wu‖
2 + C

∑
i∈I ζi

with respect to Wu, u ∈ U, ζi, i ∈ I
subject to 〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1 − ζi

ζi ≥ 0, i ∈ I, u ∈ Di.

(4)

Note that minimisation will be achieved when the vectors
Wuφ(qi) are as uniformly aligned as possible with the vector
ψ(r̂iu). Having learned the mappings Wu we can then make
predictions for a new item j using Wuφ(q j). This outputs a
function which informally we can think of as an estimate for
the probability density of the residue r̂ ju. However, Wuφ(q j)
does not need to be, and typically is not, positive everywhere
or normalised. Thus, it is not itself a probability density. We
discuss later different methods for interpreting Wuφ(q j).

To solve this constrained optimisation problem, we define the
Lagrangian

L =
1
2

∑
u∈U

‖Wu‖
2 + C

∑
i∈I

ζi

−
∑

(i,u)∈D

αiu

(
〈ψ(r̂iu),Wuφ(qi)〉 − 1 + ζi

)
−

∑
i∈I

λiζi,

where αiu ≥ 0 are Lagrange multipliers introduced to ensure
that 〈ψ(r̂iu),Wuφ(qi)〉 ≥ 1 − ζi and λi ≥ 0 are Lagrange multi-
pliers introduced to ensure that ζi ≥ 0. The optimum mapping
is found by solving

min
{Wu},{ζi}

max
{αiu},{λi}

L,

subject to the constraints that αiu ≥ 0 for all (i, u) ∈ D and
λi ≥ 0 for all i ∈ I. For a general linear mapping, Wu, we have
that

∂

∂Wu
〈ψ(r̂iu),Wuφ(qi)〉 = ψ(r̂iu) ⊗ φ(qi),

where ⊗ is the tensor-product of the two vectors. This is clearly
the case when the Hilbert spaces are finite dimensions so that
the mapping Wu can be represented by a matrix, but this can
be extended for linear mappings between more general Hilbert
spaces. Using this result we find

∂L

∂Wu
= Wu −

∑
i∈Du

αiuψ(r̂iu) ⊗ φ(qi).

That is, the Lagrangian is minimised with respect to Wu when
Wu =

∑
i∈Di

αiuψ(r̂iu) ⊗ φ(qi). Taking derivatives with respect
to ζi we find

∂L

∂ζi
= C −

∑
u∈Di

αiu − λi.

Setting these derivatives to 0 we find that the Lagrangian is
maximised with respect to ζi when∑

u∈Di

αiu = C − λi ≤ C

where the inequality arises because λi ≥ 0.
After substituting back the expressions containing only the

Lagrange multipliers into the Lagrangian we obtain the dual
problem of (4) which is a maximisation problem with respect

3



to the variables αiu

f (α) = −
1
2

∑
u∈U

∑
i,i′∈Du

αiuαi′u〈ψ(r̂iu),ψ(r̂i′u)〉〈φ(qi),φ(qi′ )〉

+
∑

(i,u)∈D

αiu

subject to the constraint that α ∈ Z(α) where

Z(α) =

α
∣∣∣∣∣∀i ∈ I,

∑
u∈Di

αiu ≤ C ∧ ∀(i, u) ∈ D, αiu ≥ 0

 .
We are now in the position where we can apply the usual kernel
trick. Defining the kernel functions

Kr̂(r̂iu, r̂i′u) = 〈ψ(r̂iu),ψ(r̂i′u)〉
Kq(qi, qi′ ) = 〈φ(qi),φ(qi′ )〉,

then we can write f (α) as

f (α) = −
1
2

∑
u∈U

∑
i,i′∈Du

αiu αi′u Kr̂(r̂iu, r̂i′u) Kq(qi, qi′ ) +
∑

(i,u)∈D

αiu

where we are free to choose any pair of positive definite kernel
functions. With our choice of mapping the rating residual, r̂, to
ψ(r̂) = N(x|r̂, σ), we note that

Kr̂(r̂, r̂′) = 〈ψ(r̂),ψ(r̂′)〉 = N(r̂ − r̂′|
√

2σ),

which is inexpensive to compute. We could build more complex
kernels for Kr̂(r̂, r̂′), by mapping ψ(r̂) into another extended fea-
ture space, although we would then lose the interpretation of
Wuφ(qi) as an approximation to the density function for r̂iu.

3.1.1. Learning the Lagrange multipliers
For large-scale recommender systems, solving this quadratic

programming problem using a general quadratic programming
solver would be impractical due to the large number of data
points. However, we can find an approximate solution itera-
tively using the conditional gradient method. To understand
this method it is helpful to write f (α) in matrix form

f (α) = −
1
2
αTMα + bTα

with α ∈ Z(α). We obtain a series of approximations α(t) for the
optimal parameters starting from some initial guess α(0) ∈ Z(α).
At each step we use a linear approximation for f (α) about the
current position α(t)

f (α) ≈ f̂α(t) (α) = f (α(t)) + (α − α(t))∇ f (α(t)).

We compute the next approximation using two stages. We first
solve the linear programming problem

α∗ = argmax
α∈Z(α)

f̂α(t) (α)

= argmax
α∈Z(α)

−αT(Mα(t) − b) + const.

We then find the new approximation α(t+1) to be

α(t+1) = α(t) + τ(α − α(t))

where we choose τ to be

τ = argmax
τ∈[0,1]

f
(
α(t) + τ(α − α(t)

)
Note that we can compute the unconstrained maximum for τ

τmax =
(b −Mα(t))T(α∗ − α(t))
(α∗ − α(t))TM(α∗ − α(t))

.

By truncating τmax if necessary to ensure that it lies in the in-
terval [0, 1] we can ensure that α(t+1) is the maximum value of
α along the line segment from α(t) to α∗. Since this segment
includes the current point, α(t), we are guaranteed that no step
decreases the objective function.

We note that in the linear programming problem we have an
objective function of the form

f̂ (α) =
∑
i∈I

∑
u∈Di

αiugiu + const,

giu =
∂ f (α(t))
∂αiu

= −
∑

i′∈Du

α(t)
iu Kr̂(r̂iu, r̂i′u) Kq(qi, qi′ ) + 1

which decouples for every set of Lagrange multipliers Ai =

{αui|u ∈ Di}. The linear constraints Z(α) also decouple into a
set of constraints for each set of Lagrange multipliersAi. Thus,
the linear programming problem becomes a series of linear pro-
gramming problems for each i ∈ I

maximise
∑
u∈Di

αiugiu

subject to
∑
u∈Di

αiu ≤ C and ∀u ∈ Di αiu ≥ 0.

This linear programming problem is trivial to solve (see fig-
ure 1). If giu has positive components then a maximum will
occur when we set αiu∗ = C where giu∗ ≥ giu for all u ∈ Di and
αiu = 0 otherwise.

αi,u1

αi,u2

gi =

(
∂f(α(t))

∂αiu

∣∣∣∣u ∈ Di

)

α∗

∑

u∈Di

αiu = C

Figure 1: Schematic showing the linear programming problem. The feasible
region is shown as a shaded triangle. The vector gi shows the direction of the
objective function. The maximum occurs as the vertex corresponding to the
largest component of gi.

Since finding the largest component of giu can be computed
in linear time we are able to perform one step of the optimisa-
tion procedure in Θ(|D|) time. Note that at each step we have

4



to compute a vector matrix products involving the matrix M.
These products involve the sum over all u ∈ U and the sum
over all i ∈ Du. However |Du| does not grow with the number
of users, thus these products can also be computed efficiently.
Note, that solving the optimisation problem this way makes it
feasible to obtain recommendation for databases with up to 10
million ratings.

3.1.2. Predicting unseen ratings
To make a prediction for the rating riu where (i, u) < D, we

estimate the residue r̂iu = riu − r̄i − r̄u + r̄ using the function

piu(r̂) = 〈ψ(r̂),Wuφ(qi)〉

=
∑

i′∈Du

αi′uKr̂(r̂, r̂i′u)Kq(qi, qi′ ),

where ψ(r̂) = N(r̂, σ). We have a choice in how to obtain a
single prediction from this function. Our standard predictor
will be to find the maximum argument of piu(r̂)

r̂iu = argmax
r̂

piu(r̂).

This works well when we have a sufficient number of rat-
ings for the user and the item. However as we will see it gives
poor predictions in scenarios where we have a small amount of
training data. Recall that we argued earlier Wuφ(qi) can be re-
garded as an approximation for the probability density of r̂iu. It
will not generally be positive everywhere, but by removing the
negative part of the function we can treat the remaining func-
tion as a probability density. In this case, we can consider the
mean, mode, or median as approximations for the most likely
value of r̂iu. Under conditions where we lack sufficient data we
find that using a combination of the mean, mode and median to-
gether with the standard (max) prediction gives a considerable
improvement in accuracy. In particular, we consider a predictor

r̂M4 = wmaxr̂max + wmeanr̂mean + wmoder̂mode + wmedianr̂median

where r̂m with m ∈ {max, mean, mode, median} are the standard
predictors and the predictors using the mean, mode and median,
while wm are a set of weights that are learnt from a validation
set. We consider the weights to be constrained so that wm ≥ 0
and they sum to 1. In the results shown later we denote those
results obtained using this predictor by the superscript M4.

3.2. A small scale example

Suppose a recommender system has four users (i.e.U = {u1,
u2, u3, u4}) and three items (i.e. I = {i1, i2, i3}). The information
about each item is a column vector of the user-item rating ma-
trix, shown in Table 1. The users’, items’, and overall averages
are:

r̄u1 = 3.000, r̄u2 = 3.666, r̄u3 = 3.666, r̄u4 = 2.000,
r̄i1 = 4.000, r̄i2 = 4.000, r̄i3 = 1.333, r̄ = 3.200,

After applying the additive model (Equation 1), the user-
item rating matrix can be represented in the residual form as

Table 1: Example: a subset of the user-item rating matrix in a movie recom-
mender system. We have four users (rows) and three movies (columns). The
case, where a user has not rated a particular movie is shown by � symbol. The
rating scale, consisting of integer values between 1 and 5, captures the extreme
like (5) and extreme dislike (1) behavior of a user. The rating we want to predict
is shown by “?” symbol.

i1 i2 i3
u1 5 � 1
u2 5 5 1
u3 5 4 2
u4 1 3 ?

Table 2: Example: the matrices of rating residues r̂iu.
i1 i2 i3

u1 1.200 � −0.1333
u2 0.533 0.533 −0.800
u3 0.533 −0.466 0.200
u4 −1.800 0.200 ?

shown in Table 2. The input feature kernel, Kq, using the poly-
Gaussian kernel (refer to Section 5.5.2) is shown in Equation 5.

Kq =

 1.000 0.067 0.003
0.067 1.000 0.300
0.003 0.300 1.000

 (5)

We can compute the residual kernel, Kr̂, based on the inner
products between Gaussian densities functions with expected
values r̂ and r̂′, and sharing the common standard deviation σ.

Kr̂(r̂, r̂′) = 〈ψ(r̂),ψ(r̂′)〉 =
1

2σ
√
π

e−(r̂−r̂′)2/4σ2

Assume that σ = 0.5 then we have

Kresidual =


Kr̂,u1

Kr̂,u2

Kr̂,u3

Kr̂,u4

 ,
where

Kr̂,u2 =

 0.564 0.564 0.149
0.564 0.564 0.149
2.140 2.140 0.564

 Kr̂,u1 =

[
0.564 0.149
2.140 0.564

]

Kr̂,u3 =

 0.564 0.208 0.404
1.534 0.564 1.099
0.788 0.290 0.564

 Kr̂,u4 =

[
0.564 0.149
2.140 0.564

]
.

The optimal values for the design variables, α, are learnt us-
ing the conditional gradient method, and are shown in Table 3.
After learning the α parameters, the mapping Wu, can be de-
fined for each user (recall Wu =

∑
i∈Di

αiuψ(r̂iu) ⊗ φ(qi)). To

5



q1 = (5, 5, 5, 1) −→ φ(q1)
W4−→

-3 -2 -1 0 1 2

residual, r̂

r̂14 = −1.8

q2 = (∅, 5, 4, 3) −→ φ(q2)
W4−→

-3 -2 -1 0 1 2

residual, r̂

r̂24 = 0.2

Figure 2: Schematic showing the aim of the algorithm. Information, qi (in this
case a rating vector) about an item i, is first mapped to a vector in an extended
feature space φ(qi). We then try to find the best linear mapping, W4, for user
u4, to the ‘vector’, ψ(r̂iu4 ), describing the residual.

Table 3: The optimal values of design variable, α, for each user and item.
i1 i2 i3

u1 1.000 � 1.000
u2 0.993 0.993 0.999
u3 0.993 0.768 0.769
u4 1.000 1.000 ?

make a prediction for the rating riu, where (i, u) < D

Wuφ(qi) =
∑

i′∈Du

αi′uψ(r̂i′u) < φ(qi′ ),φ(qi) >,

=
∑

i′∈Du

αi′uψ(r̂i′u)Kq(qi′ , qi).

In this case, we have u = u4 and i = i3, so

Wu4φ(qi3 ) = αi1u4ψ(r̂i1u4 )Kq(qi1 , qi3 ) + αi2u4ψ(r̂i2u4 )Kq(qi2 , qi3 )
= 1.000ψ(r̂i1u4 )0.003 + 1.000ψ(r̂i2u4 )0.300,
= 0.003ψ(r̂i1u4 ) + 0.300ψ(r̂i2u4 ),
= 0.003N(r̂i1u4 , σ) + 0.300N(r̂i2u4 , σ),

which is an unnormalised probability density function of mix-
ture of two Gaussians. The optimal rating then can be derived
by

pi3u4 (r̂) = 〈ψ(r̂),Wu4φ(qi3 )〉
= arg max

r̂
〈ψ(r̂), 0.003ψ(r̂i1u4 ) + 0.300ψ(r̂i2u4 )〉,

= arg max
r̂
〈0.003Kr̂(r̂, r̂i1u4 ) + 0.300Kr̂(r̂, r̂i2u4 )〉,

= arg max
r̂
〈0.003N(r̂|r̂i1u4 ,

√
2σ) + 0.300N(r̂|r̂i2u4 ,

√
2σ)〉

Taking the optimum solution (refer to Figure 3), ri3u4 , the pre-
diction for the residual is 0.2. Hence, user u4 would rate item i3
with rating of r̂i3u4 + r̂i + r̂u − r̂ = 0.2 + 2.0 + 1.333− 3.2 = 0.33.

4. Extensions to the basic algorithm

In this section we describe extensions to the basic algorithm
which are relevant to practical recommender systems.

r̂

pi3u4(r̂)

-3 -2 -1 0 1 2 3

0.1

0.2

Figure 3: Plotting the probability density function of mixture of two Gaussians
with r̂={−5:0.2:5}. The optimal solution is found to be 0.2.

4.1. User-based KMR
Depending on the dataset characteristics (e.g. number of

items rated by the active user, number of users which have
rated the target item, etc.) different models can be trained along
the rows or columns of the data matrix. A related algorithm
is proposed, which solves the problem from the user point of
view, hence it is named as the user-based KMR (KMRub). To
perform a user-based recommendation, we use information qu

about users u and try to find a linear mappingWi to align some
extended feature vectors φ(qu) to the residue vector ψ(r̂iu). The
derivation is identical to that for the item-based recommender
when we interchange the subscripts i and u.

4.2. Combining user- and item-based KMR
User- and item-based versions provide complementary roles

in generating predictions as they focus on different types of re-
lationships in a dataset. Let pub

iu (r̂) and pib
iu(r̂) be the predictions

made by the user- and item-based versions respectively. We
have considered three different ways of combining user- and
item-based predictions.

• Using the simple linear combination: In this approach,
the user- and item-based versions are linearly combined,
where the parameter ρ is learned from a validation set.

piu(r̂) = ρpub
iu (r̂) + (1 − ρ)pib

iu(r̂) (6)

We denote the resulting hybrid recommender system by
KMRLinear

Hybrid.

• Switching on number of ratings: Here, we take into ac-
count the information about user and item profiles. The
rationale behind this approach is the intuition that if we
have a large number of ratings for an item compared to the
number of ratings made by the active user, then the user-
based version is likely to give better results than the item-
based version and vice-versa. Rather than using the raw
number of ratings, we normalise by the number of ratings
given by the power user, up (i.e. the user that has rated the
most number of items) and by the power item iP (i.e. the
item with the most number of ratings). That is, we used

piu(r̂) =

 pub
iu (r̂) : if |Ui |

|Uip |
−
|Iu |

|Iup |
> θCnt

pib
iu(r̂) : otherwise.

(7)

We denote the resulting hybrid recommender system by
KMRCnt

Hybrid.

6



• Switching on uncertainty in prediction: Here we use a dif-
ferent strategy for switching between the user- and item-
based predictors. We try to estimate the uncertainty in
the prediction by examining the “variance” in Wuφ(qi) and
Wiφ(qu). Since they are not real probability distributions,
we must first exclude the regions where the functions go
negative and normalise the output so that we can treat them
as densities and compute their variance. We denote the
variance by Varub and Varib for the user- and item-based
versions, respectively. We then switch the recommenda-
tion according to

piu(r̂) =

{
pub

iu (r̂) : if Varub − Varib > θVar

pib
iu(r̂) : otherwise. (8)

We denote the resulting hybrid recommender system by
KMRVar

Hybrid.

4.3. Combining kernels
In many applications there are multiple sources of informa-

tion that can be used to make a recommendation. We can eas-
ily accommodate different sources of information by combining
kernels. To illustrate this we will test our algorithm on datasets
consisting of film ratings where we have three types of infor-
mation available (refer to Section 5.2 for details)

• The ratings of other users from which we can construct a
kernel Krat

• “Demographic” information obtained from genre about
the films from which we can construct a kernel Kdemo

• “Feature” information obtained from a textual description
of the films from which we construct a kernel K f eat.

These kernels can be combined linearly

K = βratKrat + βdemoKdemo + β f eatK f eat, (9)

where the parameters βrat, βdemo and β f eat = 1 − βrat − βdemo

can be tuned by measuring the generalisation performance on a
validation set. This way of combining kernels can be viewed as
a concatenation of the feature vectors

φ = (
√
βratφrat,

√
βdemoφdemo,

√
β f eatφ f eat)

=
√
βratφrat ⊕

√
βdemoφdemo ⊕

√
β f eatφ f eat,

where ⊕ represents the direct sum. Alternatively we can com-
bine the kernels non-linearly

K = Krat · Kdemo · K f eat, (10)

where the · denotes the point-wise product of the kernel matri-
ces. This corresponds to taking a tensor product of the feature
vectors

φ = φrat ⊗ φdemo ⊗ φ f eat. (11)

5. Experimental setup

In this section we describe the datasets we used and the setup
of the experiments for benchmarking the proposed algorithms.

5.1. Datasets
As is common in the field of recommender systems we used

data from film recommendation sites to test the proposed al-
gorithm. These provide some of the largest available datasets
allowing us to test the scaling performance of the algorithm. In
addition, as these datasets are very commonly used in the litera-
ture, it allows us to benchmark our algorithm against competitor
algorithms. We used the following datasets:

• FilmTrust (denoted by FT) obtained by crawl-
ing (on 10th March 2009) the FilmTrust website
(http://trust.mindswap.org/FilmTrust/). Only users and
movies having more than five ratings were used. This has
been used before in [12, 15].

• MovieLens which we split into three groups

– Small MovieLens (denoted by SML) with 100 000

– 1 million rating dataset (denoted by ML)

– 10 million rating dataset (denoted by ML10)

This has been widely used [44, 59, 15, 12, 26].

• Random sub-sample of 20 000 users from the Netflix data-
set (denoted by NF). This dataset has been very widely
used (e.g see [22, 4, 5]), in part because of the prize of-
fered for achieving a level of improvement over a bench-
mark. We have not attempted to compare our algorithm
against the state-of-the-art Netflix algorithms for two rea-
sons. Firstly they have been highly tuned to that partic-
ular dataset, while we have concentrated on developing a
general purpose recommendation algorithm. Secondly, the
full Netflix dataset is so large that it is difficult to process
on a normal desktop machine without spending significant
time on optimising memory management.

5.2. Feature extraction and selection
To test the recommendation algorithm using textual informa-

tion we also obtained information about each movie. This was
used to construct two additional information vectors; a “fea-
ture” vector and a “demographic” vector. We downloaded in-
formation about each movie in the MovieLens (SML dataset)
and FilmTrust dataset from IMDB2. For the ML10 dataset, we
used the tags and genre information that is provided with this
dataset. After stop word3 removal and stemming4, we con-
structed a vector of keywords, tags, directors, actors/actresses,
producers, writers, and user reviews given to a movie in IMDB.
We used TF-IDF (Term Frequency-Inverse Document Fre-
quency) approach for determining the weights of words in a
document (i.e. movie). The document frequency (DF) thres-
holding feature selection technique was used to reduce the fea-
ture space by eliminating useless noise words having little (or
no) discriminating power in a classifier, or having low signal-
to-noise ratio.

To construct the demographic vector, we take the genre in-
formation about movies as employed in [59, 15] with the ex-
ception that we used the hierarchy of genre as shown in Fig-
ure 4. To determine the weight of a genre in the genre vector,

7



Table 4: Characteristics of the datasets used in this work. FT, SML, ML, ML10, and NF represent the FilmTrust, MovieLens 100k, MovieLens 1M, MovieLens
10M, and Netflix dataset respectively. Average rating represents the average rating given by all users in the dataset.

Characteristics Dataset
(FT) (SML) (ML) (ML10) (NF)

Number of users 10 16 943 6 040 71 567 20 000
Number of movies 314 1 682 3 706 10 681 17 766
Number of ratings 25 730 100 000 1 000 209 10 000 054 4 260 735
Rating scale 1.0-10.0 1 -5 1-5 1.0-5.0 1 -5
Sparsity 0.919 0.934 0.955 0.987 0.988
Max number of ratings from a user 133 737 2 314 7 359 17 653
Max number of ratings for a movie 842 583 3 428 34 864 9 667
Average rating 7.601 3.529 3.581 3.512 3.591

we used a simple weighting scheme as employed in QuickStep,
an Ontology-based recommender system [32]. To compute an
inner product between demographic vectors the immediate su-
per class is assigned 50% of a subject’s value, the next super
class is assigned 25%, and so on until the most general subject
in the Ontology is reached. By making a hierarchy of the genre
and assigning different weights to sub- and super-classes, we
hope to enrich an item’s profile.

Null

UnKnown

Animation

Children Fantasy

Drama

Musical ComedyRomance

Thriller

MysteryCrimeHorror

Film-Noir

Adventure

Action SciFi

WarWestern

Themes

1 *

Documentary

Figure 4: Hierarchy of genres based on [48]. All the super classes of a genre
get a share when a genre receives some interest. For instance if a rated movie
falls into “crime” genre, then the “crime” subject will get a weight of q, the
immediate super class, “Thriller” will get a weight of q/2; and the next super
class “Unknown” will get a weight of q/4.

5.3. Metrics
In the majority of the paper, we have used the Mean Abso-

lute Error (MAE) as our measure of performance as this is the
most commonly used measure and de facto standard for bench-
marking recommender systems. In practice, however, recom-
mender systems are commonly used for helping users in se-
lecting high quality items. Thus, arguably, a more appropriate
measure of accuracy is to study an algorithm’s ability to pre-
dict highly rated items. There are a number of metrics that
are more specifically designed to measure how well a recom-
mender classifies good quality (relevant) items. These include

the ROC-sensitivity and F1 measure. The details of all these
metrics are given in Appendix B. Furthermore, we also give
tables of results for these last two measures in that appendix.

5.4. Evaluation methodology

We performed 5-fold cross validation by randomly dividing
the dataset into a test and training set and reported the average
results. We further subdivided the training set into a test and
training set for measuring the sensitivity of the parameters. For
learning the parameters, we conducted 2-fold cross validation
on the training set.

5.5. Learning system parameters

There are a number of parameters that need to be learned.
Below, we discuss the training of these parameters.

5.5.1. Number of iterations
The algorithm we develop uses an iterative technique to learn

the Lagrange multipliers, α. As we increase the number of it-
erations the mean absolute error improves. The speed of con-
vergence will depend on the dataset and the type of information
we are using (e.g. user-based or item-based). Figures 5 and 6,
show the mean absolute error and the time taken to learn the
Lagrange multipliers versus the number of iterations for the FT
and SML datasets respectively.

We note that for the FT dataset, the performance of the item-
based version suffers badly when the number of iterations are
very small. However, the performance of the user-based version
is quite good even after a few iterations. Hence, if one has a
constraint on the time required to build the model, then it is
better to switch to the user-based version rather than the item-
based version for the dataset. In contrast, in the SML dataset,
the convergence of all the methods was relatively quick. The
convergence clearly depends on the number of users/items and
the user/item profile length (e.g. rating profile, feature profile
length, etc.). It is not obvious a priori how many iterations
are needed to get good rating predictions. Based on our initial
experiments, we chose the number of iterations to be 400 for
the SML dataset, 300 for FT, 400 for ML, and 600 for ML10
and NF.

8



50 100 150 200 250 300 350 400

1.5

2

2.5

3

3.5

4

Number of Iterations (FT DataSet)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r 

(M
A

E
)

 

 

UB

IB

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Number of Iterations (FT DataSet)

T
im

e
 (

m
s
)

 

 

UB

IB

Figure 5: The number of iterations and time required to converge the proposed
algorithms for the FT dataset.

5.5.2. The optimal kernel parameters
We trained linear, polynomial, and poly-Gaussian kernels

and chose the one giving the most accurate results. The poly-
nomial kernel is of the form

K(x, y) =
(
〈x, y〉 + R

)d

For the rating-based version, the best polynomial kernel pa-
rameters (d,R) are found to be, for user-based and item-based
versions respectively: (3, 0.5) and (4, 0.5) for the SML dataset;
(6, 0.4) and (6, 0.4) for the FT dataset; and (6, 0.1) and (9, 0.1)
for the ML dataset. For the feature-based version, the best poly-
nomial kernel parameters were found to be (5, 0.5) for the SML
dataset and (5, 0.1) for the FT dataset.

We did not tune the parameters for the ML10 and NF
datasets, as it was computationally expensive. We fixed them
to (14, 0.5) for user- and item-based versions for both datasets
and (12, 0.5) for the feature-based version for the ML10 dataset.

For the demographic-based version, we found the best kernel
was the poly-Gaussian kernel (which is a simple extension of
the Gaussian one) given by

K(x, y) = exp
(
−
‖x − y‖q

τ

)
, (12)

where the best parameters (q, τ) were found to be (0.1, 0.1) for
the SML dataset; and (0.2, 0.1) for the FT dataset. Again we
did not tune parameters for ML10 dataset and they were fixed
to (0.5, 0.1).

The other parameter in setting up the kernel was the standard
deviation, σ, used in mapping ψ(r̂) = N(x|r̂, σ). We experi-
mented with learning this parameter for each user, but found
this computationally very expensive. We then tried grouping
the users according to the variance in their ratings into 100
groups and tuned σ for each group. Although this gave im-

50 100 150 200 250 300 350 400
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Iterations (SML DataSet)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r 

(M
A

E
)

 

 

UB

IB

Feature

Demo

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Number of Iterations (SML DataSet)

T
im

e
 (

m
s
)

 

 

UB

IB

Feature

Demo

Figure 6: The number of iterations and time required to converge the proposed
algorithms for the SML dataset.

proved performance, it was not found to be statistically signif-
icant. We therefore just used a single parameter σ which we
tuned using a validation set.

The parameter C (that punishes the slack variables in the La-
grange formulation) was fixed to 20, after initial experimenta-
tion. In the extension of the basic recommender there are other
parameters, such as the weights for combining kernels and var-
ious thresholds for switching between recommenders. The tun-
ing of these parameters are described in Appendix A.

6. Results

In this section, we describe the results obtained from our ex-
periments. In the tables we have denoted the proposed algo-
rithm by KMRsup

sub , where the subscript denotes the variant of
the algorithm and the occasional superscript describes the vari-
ant in more detail where necessary. The main variants are item-
based (ib), user-based (ub), feature-based (F) that use feature
vectors rather than rating vectors, demographic (D) that use de-
mographic vectors rather than rating vectors, and hybrid (Hy-
brid) that uses a mixture of user-based and item-based predic-
tions. For the hybrid algorithm we use the superscript to denote
the different mechanisms for combining user-based and item-
based predictions. When we use combinations of information,
e.g. item-based ratings and features, we use KMRib+F to denote
the case when we add the kernels and KMRib⊗F when we mul-
tiply the kernels. Finally, for the datasets with a limited amount
of ratings, instead of using the standard approach to predict-
ing a new rating, we combined the standard approach (value of
r̂ that maximises the predictor p(r̂)) with the mean, mode and
median of Wuφ(qi) (for the item-based approach). We denote
this version of the algorithm with a superscript M4.

We compare the proposed algorithms with other algorithms
described in the literature. We chose several other algorithms

9



Table 6: A comparison of different algorithms in terms of NMAE (Normalised
MAE) for the ML dataset. The proposed algorithms outperform URP [29],
Attitude [28], MatchBox [52], MMMF [41], ImputedSVD [16], and Item [35].
They give the comparable results to E-MMF [11] and NLMF [26]. Our results
and the best results are shown in bold font.

Algorithm NMAE
URP 0.4341 ± 0.0023
Attitude 0.4320 ± 0.0055
MatchBox 0.4206 ± 0.0055
ImputedSVD 0.4192 ± 0.0025
MMMF 0.4156 ± 0.0037
Item 0.4096 ± 0.0029
E-MMF 0.4029 ± 0.0027
NLMF Linear 0.4052 ± 0.0011
NLMF RBF 0.4026 ± 0.0020
KMRib 0.4125 ± 0.0036
KMRub 0.425 ± 0.0038
KMRVar

Hybrid 0.4065 ± 0.0031

based on the number of citations given in the literature; the al-
gorithm classification space (i.e. memory-based or model-based
approaches); and whether the algorithm claims to give state-of-
the-art results.

6.1. Direct comparison

We compared the proposed algorithms with three different al-
gorithms: user-based collaborative Filtering (CF) with Default
Voting (DV) proposed in [7] (which provides a useful base-
line for comparing algorithms), item-based CF proposed in [44]
(shown by Item-Based CF), and a SVD based approach pro-
posed in [46] (shown by SVD). To provide as fair a comparison
as possible, we tuned all parameters of the algorithms.

Table 5 shows that the KMR-based algorithms outperform
all the aforementioned algorithms. The percentage decrease in
error of KMRib, KMRub, and KMRVar

Hybrid over the baseline ap-
proach is found to be 2.68%, 1.48%, and 2.96% for the FT5
dataset; 4.16%, 2.01%, and 4.69% for the SML dataset; 6.09%,
2.83%, and 6.80% for the ML dataset; 5.90%, 4.28%, and
6.64% for the ML10 dataset; and 4.07%, 3.65%, and 4.35%
for the NF dataset. The ROC-sensitivity and F1 measure on the
same dataset are shown in Tables A.11 and A.12, respectively.

6.2. Indirect comparison

In this section, we compare our results with other algorithms
indirectly, i.e. we take the result from the respective papers
without re-implementing them, which might make the compar-
ison less than ideal. We conducted the weak generalisation test
procedures of [28] using the All-But-One protocol—for each
user in the training set a single rating is withheld for the test
set. We averaged the results over the three random train-test
splits as used in [26, 28, 41].

A comparison in terms of Normalised MAE (NMAE)—
see Appendix B—of the algorithms is given in Table 6. In
Table 6, URP represents the algorithm proposed in [29], At-
titude represents the algorithm proposed in [28], MatchBox5 is

Table 7: A comparison of different algorithms in terms of RMSE for the ML10
dataset. NLMF represents the non-linear matrix factorisation technique as pro-
posed in [26] and M3F-TIB represents the Mixed Membership Matrix factori-
sation model as proposed in [27]. Our results and the best results are shown in
bold font.

Algorithm RMSE
NLMF 0.8740 ± 0.02
M3F-TIB 0.8447 ± 0.009
KMRib 0.8721 ± 0.011
KMRub 0.8994 ± 0.015
KMRVar

Hybrid 0.8612 ± 0.011

proposed in [52], MMMF represents the maximum margin ma-
trix factorisation algorithm proposed in [41], ImputedSVD is
proposed in [16], Item is proposed in [35], E-MMF represents
the ensemble maximum margin matrix factorisation technique
proposed in [11], and NLMF represents the non-linear matrix
factorisation technique (with linear and RBF versions) as pro-
posed in [26].

Table 6 shows that the NLMF and E-MMF perform better
than the rest. The proposed hybrid algorithm gives slightly
poorer results to them with NMAE = 0.4065. The percent-
age increase in the NMAE was 0.96 and 0.89 for NLMF and
E-MMF respectively. It is worth mentioning that the E-MMF
is an ensemble of about 100 predictors, which makes this algo-
rithm unattractive. From this table, we may conclude that the
proposed algorithm is comparable to the state-of-the-art algo-
rithm for the MovieLens (1M) dataset.

To the best of our knowledge, the best results for the Movie-
Lens 10M dataset that have been reported in the literature
are those proposed in [26] and [27]. They claimed their pro-
posed algorithm gives RMSE accuracy of 0.8740 ± 0.02 and
0.8447 ± 0.009, respectively. We followed their experimental
setup and the results have been shown in Table 7. Table 7
shows that the proposed algorithms outperform [26]’s results.
The percentage improvement is found to be 1.46% in the case of
KMRVar

Hybrib. The M3F-TIB algorithm gave the best results out-
performing our best algorithm KMRVar

Hybrid with 1.92% decrease
in error. Actually the M3F-TIB integrates two complementary
algorithms—discrete mixed membership modeling and contin-
uous latent factor modeling (i.e. matrix factorisation)—into a
common framework using the Bayesian approach, which illus-
trates the power of carefully combining different algorithms.

Unfortunately, no NMAE (or MAE) was provided for M3F-
TIB technique [27] over Movielens 1M dataset, which makes it
harder to compare different algorithms’ results with M3F-TIB.
Considering these results, we conclude that the proposed ap-
proach appears to be competitive with the current state-of-the-
art approaches.

6.3. Combining different kernels

As discussed in Section 4.3, there can be different sources
of information that can be used for making recommendations.
The proposed framework allows these different sources to be
exploited by combining different kernels built from different

10



Table 5: A comparison of the proposed algorithm with others in terms of MAE. The average with the respective standard deviation of results over 5-fold is shown.
The best results are shown in bold font.

Algorithm Best MAE
SML ML ML10 FT NF

User-based CF 0.746 ± 0.001 0.706 ± 0.000 0.678 ± 0.000 1.419 ± 0.008 0.713 ± 0.001
Item-based CF 0.764 ± 0.001 0.715 ± 0.000 0.675 ± 0.001 1.429 ± 0.006 0.719 ± 0.001
Hybrid CF 0.752 ± 0.001 0.702 ± 0.001 0.667 ± 0.000 1.427 ± 0.002 0.717 ± 0.001
SVD 0.774 ± 0.001 0.730 ± 0.001 0.691 ± 0.001 1.483 ± 0.005 0.725 ± 0.001
KMRib 0.715 ± 0.001 0.663 ± 0.001 0.638 ± 0.001 1.381 ± 0.002 0.684 ± 0.001
KMRub 0.731 ± 0.001 0.686 ± 0.001 0.649 ± 0.001 1.398 ± 0.002 0.687 ± 0.001
KMRVar

Hybrid 0.711 ± 0.001 0.658 ± 0.001 0.633 ± 0.001 1.377 ± 0.002 0.682 ± 0.001

Table 8: Comparing the performance found with different combinations of kernel for the SML dataset. The average with the respective standard deviation of results
over 5-fold is shown. The best results are shown in bold font.

Algorithm MAE ROC Precision Recall F1
KMRib 0.715 ± 0.001 0.708 ± 0.002 0.562 ± 0.002 0.546 ± 0.005 0.533 ± 0.003
KMRD 0.748 ± 0.001 0.692 ± 0.002 0.546 ± 0.003 0.532 ± 0.004 0.505 ± 0.004
KMRF 0.729 ± 0.001 0.693 ± 0.002 0.552 ± 0.003 0.526 ± 0.005 0.506 ± 0.003
KMRib+F+D 0.733 ± 0.001 0.705 ± 0.002 0.550 ± 0.002 0.540 ± 0.003 0.517 ± 0.002
KMRib+F 0.721 ± 0.001 0.706 ± 0.003 0.561 ± 0.002 0.545 ± 0.005 0.522 ± 0.002
KMRib+D 0.732 ± 0.001 0.705 ± 0.002 0.556 ± 0.003 0.542 ± 0.005 0.517 ± 0.003
KMRF+D 0.735 ± 0.001 0.699 ± 0.002 0.544 ± 0.002 0.516 ± 0.005 0.501 ± 0.002
KMRib⊗F⊗D 0.736 ± 0.001 0.697 ± 0.003 0.551 ± 0.002 0.542 ± 0.016 0.510 ± 0.003
KMRib⊗F 0.714 ± 0.001 0.698 ± 0.002 0.555 ± 0.004 0.532 ± 0.005 0.510 ± 0.003
KMRib⊗D 0.727 ± 0.001 0.705 ± 0.002 0.554 ± 0.002 0.542 ± 0.003 0.518 ± 0.003
KMRF⊗D 0.739 ± 0.001 0.695 ± 0.002 0.551 ± 0.002 0.540 ± 0.003 0.509 ± 0.003

information vectors. In particular, we consider the rating in-
formation, feature information, and demographics information
as described in Section 5.2.

Table 8 shows the performance of different combinations of
kernels for the SML dataset. We have shown not only the Mean
Absolute Error (MAE), but also a number of measures of the
ability to classify films as either highly rated or poorly rated (re-
fer to Appendix B for details). We observe reasonable perfor-
mance using just rating information, demographic information
and feature information. Interestingly, for this dataset, com-
bining kernels does not give significantly better performance
than using a kernel based on a single source of information. A
plausible explanation of this observation is that our error rates
are close to the optimum that can be achieved (there is a limit
on the performance of any system due to the fickleness of the
users making the ratings); or, at least, we are close to the op-
timum given the way we have represented the problem. On
other datasets where, for example, ratings for some users are
very sparse, demographic and feature information can be much
more significant. The other striking feature of Table 8 is that
multiplying kernels together seems to be more successful than
adding different kernels.

Similar results (not shown) were observed in the case of FT
and ML10 datasets. We also attempted to linearly combine the
predictions from different kernels, but again this gave no im-
provement.

6.4. Combining the user- and item-based versions

The methods of combining the user- and item-based versions
(mentioned in Section 4.2) did not give any significant improve-
ment over the individual results for the whole dataset. To check
the performance for imbalanced datasets, we (randomly) se-
lected 200 users and 300 movies from the SML dataset, and 200
users and 50 movies from the FT dataset; and randomly with-
held x% of their ratings. We checked the performance for two
cases: for Case 1, the value of x was chosen uniformly at ran-
dom to lie between 0 to 50 (i.e. x ∈ [0, 50]), whereas for Case 2,
the value of x lies between 0 to 100 (i.e. x ∈ [0, 100]). The lat-
ter case creates a relatively imbalanced subset of the dataset as
compared to the former one.

Table 9 shows the performance of user-based, item-based,
and different methods used to combine the individual versions.
We use the average of user- and item-based versions as a base-
line. We observe that linearly combining the individual recom-
mender systems does not give significant improvement over the
baseline and the same is true for the second method (discussed
in 4.2). However, KMRVar

Hybrid does significantly improve the
performance, with p-value in the case of pair-t test compared
with the baseline recommender found to be less than 10−6 for
both datasets. Similar results were observed for other datasets
as well. What is evident from Table 9 is that user- and item-
based versions of the algorithm are complementary and can im-
prove the performance, if combined in a systematic way, for the
imbalanced dataset.

11



Table 9: Combining the user-based and item-based versions under imbalanced datasets. The Case 2 produces a relatively sparse subset of the dataset compared to
Case 1. The best results are shown in bold font.

Approach

MAE
Case 1 Case 2

FT SML FT SML
KMRib 1.969 ± 0.002 0.882 ± 0.002 1.996 ± 0.002 0.941 ± 0.002
KMRub 1.525 ± 0.001 0.831 ± 0.002 1.751 ± 0.001 0.903 ± 0.002
(KMRib + KMRub)/2 1.675 ± 0.002 0.829 ± 0.002 1.763 ± 0.002 0.901 ± 0.002
KMRLinear

Hybrid 1.524 ± 0.002 0.826 ± 0.002 1.715 ± 0.002 0.895 ± 0.002
KMRCnt

Hybrid 1.516 ± 0.002 0.825 ± 0.001 1.704 ± 0.002 0.903 ± 0.001
KMRVar

Hybrid 1.463 ± 0.002 0.765 ± 0.001 1.545 ± 0.002 0.802 ± 0.001

6.5. Sparse, skewed, and imbalanced datasets
In practical applications recommender systems often have

access to limited and highly skewed information. Examples of
these are

New user cold-start scenario where new users have
relatively few ratings.

New-item cold-start scenario where new items have
relatively few ratings.

Long tail scenario where the majority of items have only a
few ratings.

Imbalanced sparse datasets where the majority of
users/items have only a few ratings.

In the datasets that we have used so far our test set consists
of randomly chosen ratings and these are overwhelmingly in
the dense region of the rating matrix. That is, the users that
we tested typically have rated many items and the items have
been rated by many users. Thus, the results we have described
so far are not strongly influenced by problems of limited and
skewed information. However, these problems are often vital
for a recommender system to prosper. For example, to attract
new users it is highly beneficial to be able to give them good
quality recommendations before they have made many ratings.
Similarly, to introduce new items into the system it is useful
to make sensible recommendations even if the item has only
gained a few ratings.

We have tested the four scenarios outlined above by modify-
ing the datasets we have been using to exaggerate the sparseness
or skewness of the data. We found that in all cases the standard
predictor that we have been using up to now gives very poor
performance. However, we could very substantially improve
the performance by combining the standard predictor with pre-
dictions using the mean, median and mode of Wuφ(qi) as de-
scribed in Section 3.1.2. In the tables shown below we denote
the modified predictor with a superscript M4.

We concentrate on the new-user cold-start scenario as the
results are representative of all four scenarios. The only ma-
jor difference is in the new-item cold-start scenario where the
feature-based and demographic-based recommenders also per-
form well as they are less influenced by a lack of ratings. Re-
sults for the new item cold-start, long tail, and sparse data sce-
narios are given in Appendix C.

6.5.1. New user cold-start scenario
To test the performance of the proposed algorithms under the

new user cold-start scenario, we selected 100 random users, and
kept their number of ratings in the training set to 2, 5, 10, 15,
and 20. Keeping the number of ratings less than 20 ensures that
a user is new, and it captures well the new user cold-start prob-
lem. The corresponding MAE, represented by MAE2, MAE5,
MAE10, MAE15, and MAE20 is shown in Table 10. Using
the standard predictor provides very poor performance. We
can substantially improve the performance by combining the
standard predictor with predictions using the mean, median and
mode of Wuφ(qi) as described in Section 3.1.2.

Recall that we learn the weights for combining the standard
predictor with the predictor using the mean, mode and median.
The value of the weights depend on the dataset. Figure 7 shows
how the weights that have been learned change in the new user
cold-start scenario as we increase the number of ratings in the
training set. (The new user cold-start scenario is taken as an
example; similar results were observed in both the new item
cold-start and long tail scenarios). The x-axis shows the number
of ratings given by users (selected as cold-start users) and the y-
axis shows the weights associated with different predictors. We
observe that the contribution of the mode, mean, and median
predictors decreases with the increase in the number of ratings,
and finally become zero when the maximum number of ratings
are available, whereas, the contribution of the standard (ratings-
based) predictor increases with the increase in the number of
ratings, and becomes 1 when the maximum number of ratings
are available.

7. Conclusion and future work

Recommender systems is a major research area in machine
learning and data mining. A number of approaches have
been proposed to solve the recommender system problem in-
cluding: content-based filtering, Ontology-based approaches,
supervised classification techniques, unsupervised clustering
techniques, memory-based collaborative filtering, model-based
approaches spanning a number of algorithms including singu-
lar value decomposition, matrix factorisation techniques, and
principal component analysis. All these algorithms suffer from
potential problems such as accuracy, scalability, sparsity and
imbalanced dataset problems, cold-start problems, and long tail

12



Table 10: Comparing MAE observed in different approaches under new user cold-start scenario, for the SML dataset. The superfix M4 represents the corresponding
version of the KMR algorithm, where we take into account the max, mean, mode, and median of the output probability distribution. The best results are shown in
bold font.

Approach Best MAE
MAE2 MAE5 MAE10 MAE15 MAE20

KMRib 3.841 ± 0.002 3.542 ± 0.002 2.872 ± 0.002 2.683 ± 0.002 2.504 ± 0.002
KMRub 2.102 ± 0.002 1.984 ± 0.002 1.672 ± 0.002 1.547 ± 0.002 1.374 ± 0.001
KMRD 3.623 ± 0.002 3.321 ± 0.002 2.091 ± 0.002 1.955 ± 0.002 1.896 ± 0.002
KMRF 3.652 ± 0.002 3.452 ± 0.002 1.944 ± 0.002 1.836 ± 0.002 1.757 ± 0.002
KMRM4

ib 0.858 ± 0.002 0.851 ± 0.002 0.809 ± 0.001 0.790 ± 0.001 0.784 ± 0.001
KMRM4

ub 0.843 ± 0.002 0.841 ± 0.002 0.795 ± 0.001 0.776 ± 0.001 0.774 ± 0.001
KMRM4

F 0.860 ± 0.002 0.856 ± 0.002 0.814 ± 0.002 0.801 ± 0.002 0.783 ± 0.002
KMRM4

D 0.866 ± 0.002 0.865 ± 0.002 0.815 ± 0.002 0.795 ± 0.002 0.786 ± 0.002
KMRM4

ib+F 0.859 ± 0.002 0.857 ± 0.002 0.810 ± 0.002 0.786 ± 0.002 0.779 ± 0.002

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Ratings (SML DataSet)

W
e
ig

h
ts

 o
f 
th

e
 i
n
d
iv

id
u
a
l 
p
re

d
ic

to
rs

 i
n
 t
h
e
 f
in

a
l 
p
re

d
ic

ti
o
n

 

 

Rating Weight

Mean Weight

Mode Weight

Median Weight

Figure 7: Weight learning over the validation set for the new user cold-start
problem (SML dataset). “Number of Ratings” represents the number of ratings
given by an active user in the training set.

problems in one way or the other. Against this background,
we propose a new class of kernel-based recommendation algo-
rithms that give state-of-the-art performance and eliminates the
recorded problems with the recommender systems making the
recommendation generation techniques applicable to a wider
range of practical situations and real-world scenarios.

The proposed algorithm is competitive with what we believe
to be the recommender with the best performance proposed by
[26] and [27]. Interestingly both the proposed algorithm and
the recommender proposed in [26] use kernel-based methods
though in a very different way. Although kernel-based tech-
niques are known to give excellent performance, recommender
systems are challenging because of the size of the datasets. By
carefully choosing the constraints we have been able to create a
kernel-based learning machine that can be trained in linear time
in the number of data points.

The algorithm we have developed is very flexible, thus we
can easily adapt it so that it is either user-based or item-based.
In addition it can use other information such as text-based fea-
tures and these features can be easily combined. The best al-

gorithm on the large datasets switches between the user-based
and item-based information depending on the reliability of the
predictions as measured by the spread in the prediction of the
algorithms.

One interesting feature of the proposed approach is that we
map the residues in the ratings onto a density function which
encodes the uncertainty in the residue. For unseen residues we
have interpreted the mapping Wuφ(qi) as an approximation to
a density function for the residue. Even though this function
is not itself a density function (it becomes negative in some re-
gions and is not normalised), nevertheless, it is very useful to
consider the positive part of the function as a density function
from which we can measure the mean, mode, median and vari-
ance. These measurements help in improving the performance,
particularly in the case of sparse data.

One of the current drawbacks of the proposed algorithm is
that the training occurs in one step. Thus, when new data are
added it is costly to retrain the system. For practical recom-
mender systems this is a significant problem as ratings are typ-
ically being added continuously. We are currently investigat-
ing using a perceptron-like algorithm for updating the Lagrange
multipliers.

Acknowledgments

The work reported in this paper has formed part of the Instant
Knowledge Research Programme of Mobile VCE, (the Virtual
Centre of Excellence in Mobile & Personal Communications),
www.mobilevce.com. The programme is co-funded by the UK
Technology Strategy Board’s Collaborative Research and De-
velopment programme. Detailed technical reports on this re-
search are available to all Industrial Members of Mobile VCE.

Appendix A. Parameter learning

In this section, we describe how we tuned the other parame-
ters of the system.

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

Value of Threshold Parameter (ρ) (SML DataSet)

M
e
a
n
 A

b
s
o
lu

te
 E

r
r
o
r
 (

M
A

E
)

 

 

Hybrid UBIB

UB

IB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

Value of Threshold Parameter (ρ) (FT DataSet)

M
e
a
n
 A

b
s
o
lu

te
 E

r
r
o
r
 (

M
A

E
)

 

 

Hybrid UBIB

UB

IB

Figure A.8: Learning the optimal value of threshold parameter ρ, over the vali-
dation set, for the imbalanced datasets (refer to Section 6.4)

Appendix A.1. Parameters βrat, β f eat, and βdemo

Parameters βrat, β f eat, and βdemo = 1 − βrat − β f eat determine
the relative weights of rating, feature, and demographic ker-
nels in the final prediction. Note that we assume the three β-
values are all positive and sum to one. 66 parameter sets were
generated by producing all possible combination of parameters
values, ranging from 0 to 1.0 with differences of 0.1. The pa-
rameter sets βrat = 1 and β f eat = 0 gave the lowest MAE for all
the datasets.

Appendix A.2. Parameter ρ

Parameters ρ and (1 − ρ) determine the relative weights of
user-based and item-based CF in the final prediction respec-
tively. We changed the value of ρ from 0 to 1 with a difference
of 0.1 and the resulting MAE has been shown in Figure A.8.
Figure A.8 shows that for the SML dataset, the MAE is mini-
mum at ρ = 0.3, after which it starts increasing again; whereas,
for the FT dataset, the MAE keeps on decreasing, reaches its
minimum at ρ = 0.9, an then increases again. We choose the
optimal value of ρ to be 0.3 and 0.9 for SML and the FT data-
set respectively. Similarly, the value of ρ was trained for other
datasets. It is worth noting that the item-based version got more
weight (except for the FT dataset) in the final prediction, for all
datasets.

Appendix A.3. Parameter θCnt

In the hybrid variant, KMRCnt
Hybrid the parameter θCnt deter-

mines the switching point between using the item-based and
user-based algorithms depending on the number of ratings of
the item and the user. We determine the best value of θCnt

by varying it between 0 and 1 in steps of 0.04. Figure A.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

Value of Threshold Parameter (θ
Cnt

) (SML DataSet)

M
e

a
n

 A
b

s
o

lu
te

 E
r
r
o

r
 (

M
A

E
)

 

 

Hybrid UBIB

UB

IB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

Value of Threshold Parameter (θ
Cnt

) (FT DataSet)

M
e

a
n

 A
b

s
o

lu
te

 E
r
r
o

r
 (

M
A

E
)

 

 

Hybrid UBIB

UB

IB

Figure A.9: Learning the optimal value of threshold parameter, θCnt over the
validation set, for the imbalanced datasets (refer to Section 6.4)

shows the parameter θCnt learned (for Case 1, as discussed in
Section 6.4) over the validation set. We observe that for the
SML dataset, the MAE keeps on decreasing with the increase
in the value of θCnt, reaches its minimum at θCnt ∈ [0.64, 0.68]
and then either stays stable or starts increasing again. For the
FT dataset, the MAE decreases initially, when the value of θCnt

changes from 0 to 0.04 and then starts increasing when the value
of θCnt increases beyond 0.04. For this reason, we choose the
value θCnt to be 0.68 and 0.04 for SML and the FT datasets
respectively. Similarly, the value of θCnt was trained for other
datasets.

Appendix A.4. Parameter θVar

In the hybrid algorithm, KMRVar
Hybrid, the parameter θVar con-

trols the switching from the user-based prediction to the item-
based prediction depending on the uncertainty in the predic-
tions measured by the variance in the Wuφ(qi). To learn this
parameter we changed its value from 0 to 1 in steps of 0.04
and observed the corresponding MAE. Figure A.10 shows the
parameter θVar learned (for Case 1 as discussed in Section 6.4)
over the validation. We observe that for the SML dataset, the
MAE keeps on decreasing with the increase in the value of θVar,
reaches its peak at 0.24, and then starts increasing again. For
the FT dataset, the decrease in the MAE is not very significant,
when θVar < 0.44; however, afterwards, a sharp decrease in the
MAE is observed. The MAE keeps on decreasing, reaches its
minimum at 0.64, and then either it stays stable or starts in-
creasing again. We choose the optimal value θVar to be 0.24
and 0.64 for SML and the FT datasets respectively. Similarly,
the value of θVar was trained for other datasets.

14



Table A.11: A comparison of the proposed algorithm with others in terms of ROC-Sensitivity metric. The average with the respective standard deviation of results
over 5-fold is shown. The best results are shown in bold font.

Algorithm Best ROC-Sensitivity
SML ML ML10 FT NF

User-based CF 0.714 ± 0.004 0.742 ± 0.001 0.721 ± 0.002 0.526 ± 0.008 0.651 ± 0.002
Item-based CF 0.654 ± 0.003 0.730 ± 0.002 0.731 ± 0.002 0.541 ± 0.006 0.642 ± 0.002
Hybrid CF 0.708 ± 0.003 0.755 ± 0.002 0.724 ± 0.001 0.535 ± 0.006 0.658 ± 0.002
SVD 0.607 ± 0.002 0.634 ± 0.002 0.652 ± 0.002 0.469 ± 0.012 0.624 ± 0.003
KMRib 0.708 ± 0.002 0.732 ± 0.001 0.732 ± 0.002 0.570 ± 0.008 0.654 ± 0.003
KMRub 0.716 ± 0.002 0.752 ± 0.001 0.718 ± 0.002 0.590 ± 0.006 0.661 ± 0.003
KMRVar

Hybrid 0.729 ± 0.002 0.758 ± 0.001 0.738 ± 0.002 0.592 ± 0.006 0.662 ± 0.002

Table A.12: A comparison of the proposed algorithm with others in terms of F1 (measured over top-20 recommendations) metric. The average with the respective
standard deviation of results over 5-fold is shown. The best results are shown in bold font.

Algorithm Best F1
SML ML ML10 FT NF

User-based CF 0.536 ± 0.003 0.549 ± 0.002 0.542 ± 0.041 0.516 ± 0.004 0.427 ± 0.002
Item-based CF 0.526 ± 0.002 0.542 ± 0.002 0.550 ± 0.040 0.521 ± 0.004 0.434 ± 0.003
Hybrid CF 0.528 ± 0.021 0.562 ± 0.002 0.549 ± 0.040 0.518 ± 0.004 0.436 ± 0.002
SVD 0.441 ± 0.002 0.407 ± 0.003 0.477 ± 0.012 0.445 ± 0.003 0.404 ± 0.003
KMRib 0.533 ± 0.003 0.596 ± 0.003 0.549 ± 0.018 0.523 ± 0.005 0.439 ± 0.003
KMRub 0.531 ± 0.003 0.587 ± 0.003 0.545 ± 0.013 0.540 ± 0.004 0.440 ± 0.003
KMRVar

Hybrid 0.539 ± 0.003 0.606 ± 0.003 0.551 ± 0.004 0.545 ± 0.004 0.442 ± 0.003

Table A.13: Comparing the MAE observed in different approaches under new item cold-start scenario, for the SML dataset. The superfix M4 represents the
corresponding version of the KMR algorithm, where we take into account the max, mean, mode, and median of the output probability distribution. The average
with the respective standard deviation of results over 5-fold is shown. The best results are shown in bold font.

Approach Best MAE
MAE2 MAE5 MAE10 MAE15 MAE20

KMRib 1.782 ± 0.003 1.692 ± 0.004 1.421 ± 0.004 1.321 ± 0.004 1.221 ± 0.004
KMRub 3.253 ± 0.005 3.055 ± 0.004 2.811 ± 0.004 2.610 ± 0.004 2.453 ± 0.004
KMRF 0.881 ± 0.005 0.821 ± 0.002 0.792 ± 0.002 0.783 ± 0.003 0.776 ± 0.002
KMRD 0.924 ± 0.005 0.873 ± 0.002 0.813 ± 0.002 0.809 ± 0.004 0.809 ± 0.002
KMRM4

ib 0.953 ± 0.003 0.948 ± 0.004 0.928 ± 0.003 0.918 ± 0.003 0.887 ± 0.003
KMRM4

ub 0.840 ± 0.002 0.848 ± 0.004 0.847 ± 0.003 0.837 ± 0.003 0.832 ± 0.002
KMRM4

F 0.905 ± 0.003 0.904 ± 0.003 0.838 ± 0.003 0.790 ± 0.003 0.782 ± 0.003
KMRM4

D 0.916 ± 0.003 0.916 ± 0.003 0.863 ± 0.003 0.815 ± 0.003 0.796 ± 0.003
KMRM4

F+ib 0.849 ± 0.002 0.837 ± 0.002 0.807 ± 0.002 0.795 ± 0.002 0.786 ± 0.002

Table A.14: Comparing MAE observed in different approaches under long tail scenario, for the SML dataset. The superfix M4 represents the corresponding version
of the KMR algorithm, where we take into account the max, mean, mode, and median of the output probability distribution. The average with the respective standard
deviation of results over 5-fold is shown. The best results are shown in bold font.

Approach Best MAE
MAE2 MAE4 MAE6 MAE8 MAE10 MAE15

KMRib 3.666 ± 0.005 3.652 ± 0.005 3.487 ± 0.005 3.432 ± 0.005 3.414 ± 0.004 3.371 ± 0.005
KMRub 3.481 ± 0.004 3.415 ± 0.004 3.336 ± 0.005 3.265 ± 0.004 3.239 ± 0.004 3.208 ± 0.004
KMRF 3.022 ± 0.004 3.017 ± 0.004 2.964 ± 0.004 2.894 ± 0.005 2.822 ± 0.004 2.761 ± 0.004
KMRD 2.963 ± 0.004 2.946 ± 0.004 2.872 ± 0.004 2.820 ± 0.005 2.683 ± 0.004 2.608 ± 0.004
KMRM4

ib 0.976 ± 0.005 0.966 ± 0.003 0.865 ± 0.003 0.840 ± 0.003 0.820 ± 0.004 0.817 ± 0.003
KMRM4

ub 0.884 ± 0.005 0.875 ± 0.005 0.843 ± 0.003 0.834 ± 0.003 0.828 ± 0.003 0.820 ± 0.003
KMRM4

F 0.988 ± 0.003 0.970 ± 0.003 0.869 ± 0.003 0.845 ± 0.003 0.818 ± 0.003 0.810 ± 0.003
KMRM4

D 0.966 ± 0.004 0.964 ± 0.004 0.867 ± 0.004 0.841 ± 0.004 0.819 ± 0.004 0.815 ± 0.004
KMRM4

ib+F 0.885 ± 0.003 0.860 ± 0.003 0.835 ± 0.003 0.829 ± 0.003 0.809 ± 0.003 0.802 ± 0.002

15



Table A.15: Comparing the performance of the algorithms under imbalanced and sparse datasets. The superfix M4 represents the corresponding version of the
KMR algorithm, where we take into account the max, mean, mode, and median of the output probability distribution. The average with the respective standard
deviation of results over 5-fold is shown. The best results are shown in bold font.

Approach
MAE

x ∈ {50%, 100%} x ∈ {75%, 100%}
FT SML FT SML

KMRib 1.790 ± 0.002 1.040 ± 0.002 1.930 ± 0.002 1.171 ± 0.002
KMRub 2.237 ± 0.002 1.091 ± 0.002 2.250 ± 0.002 1.182 ± 0.002
KMRD 1.801 ± 0.002 1.052 ± 0.001 1.943 ± 0.002 1.174 ± 0.002
KMRF 1.773 ± 0.002 1.030 ± 0.001 1.912 ± 0.002 1.162 ± 0.002
KMRM4

ib 1.752 ± 0.002 0.941 ± 0.001 1.771 ± 0.002 0.981 ± 0.001
KMRM4

ub 1.775 ± 0.001 0.945 ± 0.001 1.791 ± 0.002 0.983 ± 0.001
KMRM4

D 1.762 ± 0.002 0.931 ± 0.001 1.781 ± 0.003 0.955 ± 0.001
KMRM4

F 1.758 ± 0.002 0.938 ± 0.001 1.775 ± 0.002 0.951 ± 0.001
KMRM4

ib+F 1.739 ± 0.001 0.921 ± 0.001 1.749 ± 0.001 0.931 ± 0.001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

Value of Threshold Parameter θ
var

 (SML DataSet)

M
e

a
n

 A
b

s
o

lu
te

 E
r
r
o

r
 (

M
A

E
)

 

 

Hybrid UBIB

UB

IB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.4

1.5

1.6

1.7

1.8

1.9

2

Value of Threshold Parameter θ
var

 (FT DataSet)

M
e

a
n

 A
b

s
o

lu
te

 E
r
r
o

r
 (

M
A

E
)

 

 

Hybrid UBIB

UB

IB

Figure A.10: Learning the optimal value of threshold parameter θvar , over the
validation set, for the imbalanced datasets (refer to Section 6.4)

Appendix B. Evaluation Metrics

Appendix B.1. Mean Absolute Error (MAE)

MAE measures the average absolute deviation between a rec-
ommender system’s predicted rating and a true rating assigned
by the user. It is computed as

MAE =
1
n

n∑
i=1

|pi − ai|,

where pi and ai are the predicted and actual values of a rating re-
spectively, and n is the total number of rating records in the test
set. A rating record is a tuple consisting of a user ID, movie ID,
and rating, 〈uid,mid, r〉, where r is the rating a recommender

system has to predict. It has been used in [7, 46, 45, 44, 61, 58?
, 12, 15? ]. The aim of a recommender system is to minimize
the MAE score.

Normalised Mean Absolute Error (NMAE) has been used in
[28, 26], and is computed by normalising the MAE by a factor.
The value of the factor depends on the range of the ratings; for
example, for the MovieLens dataset, it is 1.6. The motivation
behind this approach is that, the random guessing produces a
score of 1. For further information, refer to [26].

A closely related measure to the MAE is the Root Mean
Squared Error (RMSE), which is calculated as follows:

RMSE =

√√
1
n

n∑
i=1

(pi − ai)2.

Both MAE and RMSE are quoted in the literature. RMSE will
be slightly more sensitive to large outliers. The RMSE value
will always be greater than or equal to the MAE value.

Appendix B.2. Receiver Operating Characteristic (ROC) Sen-
sitivity

ROC measures the extent to which an information filtering
system can distinguish between good and bad items. ROC sen-
sitivity measures the probability with which a system accepts a
good item. The ROC sensitivity ranges from 1 (perfect) to 0
(imperfect) with 0.5 for random. To use this metric for recom-
mender systems, we must first determine which items are good
(signal) and which are bad (noise). We followed the procedure
describe in [13] while using this metric. It has been used in
[15, 12, 13].

Table A.11 shows the ROC-sensitive for the same set of al-
gorithms on the same datasets as shown in Table 5.

Appendix B.3. Precision, Recall, and F1
Precision, recall, and F1 evaluate the effectiveness of a rec-

ommender system by measuring the frequency with which it
helps users selecting/recommending a good item. Precision
gives us the probability that a selected item is relevant. Re-
call gives us the probability that a relevant item is selected.

16



Precision and recall should be reported together, as increasing
the precision typically reduces the recall. The F1 Measure [18]
combines the precision and recall into a single metric and has
been used in many research projects, e.g. [46, 45, 49]. F1 is
computed as follows:

F1 =
2 × Precision × Recall

Precision + Recall
.

The first step in computing the precision and recall is to di-
vide items into two classes; relevant and irrelevant, which is
the same as in ROC-sensitivity. We calculated precision, recall,
and F1 measures for each user, and reported the average results
over all users.

Table A.12 shows the F1 measure for the same set of algo-
rithms on the same datasets as shown in Table 5.

Appendix C. Sparse, skewed, and imbalanced datasets

In this appendix we present results for the new item cold-start
scenario, the long tail scenario and for sparse datasets.

Appendix C.1. Performance evaluation under new item cold-
start scenario

We tested the new item cold-start scenario in exactly the
same way we did the new user cold-start scenario. That is, we
selected 100 random items, and kept the number of users in the
training set who have rated the these item to 2, 5, 10, 15, and 20.
Table A.13 shows again that the standard predictor fails under
this scenario, whereas including the mean, mode and median
predictor gives very good performance. We note that for new
items the feature-based and demographic-based recommenders
work well for the cold-start scenario as these measures are not
strongly influenced by a lack of rating information for an item.

Appendix C.2. Performance evaluation under long tail sce-
nario

The long tail scenario [36] is an important scenario for prac-
tical recommender systems. In a large E-commerce system like
Amazon, there are huge numbers of items that are rated by very
few users and hence the recommendations generated for these
items would be poor, which could weaken the customers’ trust
in the system.

To test the performance of the proposed algorithms under
long tail scenario we created the artificial long tail scenario by
randomly selecting the 80% of items in the tail. The number
of ratings given in the tail part were varied between 2 to 15—
this ensures that the item is new and has very few ratings. Ta-
ble A.14 again shows the failure of the standard predictor in the
long tail scenario and the improvement obtained by using the
mean, mode and median predictor.

Appendix C.3. Performance evaluation under very sparse and
imbalanced datasets

To check the performance of the proposed approaches under
(very) sparse and imbalanced datasets, we created subsets of the
datasets by withholding x% of the ratings from a rating profile

of user/item, where x ∈ [xmin, xmax]. We show results for two
scenarios: (1) xmin = 50%, xmax = 100%, (2) xmin = 75%,
xmax = 100%. Changing the value of xmin creates different
sparse subsets of the dataset, whereas keeping the value of xmax

to 100% ensures that the imbalanced dataset is created for each
scenario.

For the SML and FT datasets, the results are shown in Ta-
ble A.15. Again this follows the same pattern as the long tail
and cold-start scenarios.

Notes

1It might be due to the reasons that they used very simple kernels, such as
correlation, identity, etc.; however, we used polynomial kernels, which are in
turn are addition of correlation, identity, etc.

2We matched the movie titles, provided by the SML and FT dataset, against
the titles in the IMDB (www.imdb.com).

3We used Google’s stop word list
www.ranks.nl/resources/stopwords.html.

4We used Porter Stemming algorithm for stemming.
5The authors did not provide any numeric value, only a graph is presented

showing the minimum value approximately to 0.673.

References

[1] Hyung Jun Ahn, A new similarity measure for collaborative filtering to
alleviate the new user cold-starting problem, Information Sciences 178
(2008), 37–51.

[2] Katja Astikainen, Liisa Holm, Esa Pitkanen, Sandor Szedmak, and Juho
Rousu, Towards structured output prediction of enzyme function, BMC
Proceedings 2 (2008), no. Suppl 4, S2+.

[3] J. Basilico and T. Hofmann, Unifying collaborative and content-based
filtering, Proceedings of the twenty-first international conference on Ma-
chine learning (New York, NY, USA), ACM Press, 2004, pp. 65–72.

[4] R.M. Bell, Y. Koren, and C. Volinsky, The BellKor solution to the Netflix
prize, in: AT&T Labs–Research: Technical report November, 2007.

[5] Robert M. Bell and Yehuda Koren, Lessons from the netflix prize chal-
lenge, SIGKDD Explor. Newsl. 9 (2007), 75–79.

[6] Yolanda Blanco-Fernández, Martı́n López-Nores, Alberto Gil-Solla,
Manuel Ramos-Cabrer, and José J. Pazos-Arias, Exploring synergies
between content-based filtering and Spreading Activation techniques
in knowledge-based recommender systems, Information Sciences 181
(2011), no. 21, 4823–4846.

[7] John S. Breese, David Heckerman, and Carl Kadie, Empirical analysis of
predictive algorithms for collaborative filtering, Proceedings of the Four-
teenth conference on Uncertainty in artificial intelligence (San Francisco,
CA, USA), UAI’98, Morgan Kaufmann Publishers Inc., 1998, pp. 43–52.

[8] Robin Burke, Integrating knowledge-based and collaborative-filtering
recommender systems, In AAAI Workshop on AI in Electronic Com-
merce, AAAI, 1999, pp. 69–72.

[9] , Hybrid recommender systems: Survey and experiments, User
Modeling and User-Adapted Interaction 12 (2002), no. 4, 331–370.

[10] Mark Claypool, Anuja Gokhale, Tim Mir, Pavel Murnikov, Dmitry Netes,
and Matthew Sartin, Combining content-based and collaborative filters
in an online newspaper, In Proceedings of ACM SIGIR Workshop on
Recommender Systems (Berkeley, California), ACM, 1999.

[11] Dennis DeCoste, Collaborative prediction using ensembles of maximum
margin matrix factorizations, Proceedings of the 23rd international con-
ference on Machine learning (New York, NY, USA), ICML ’06, ACM,
2006, pp. 249–256.

[12] Mustansar A. Ghazanfar and Adam Prügel-Bennett, An Improved Switch-
ing Hybrid Recommender System Using Naive Bayes Classifier and Col-
laborative Filtering, Lecture Notes in Engineering and Computer Sci-
ence: Proceedings of The International Multi Conference of Engineers
and Computer Scientists 2010, IMECS 2010, 17–19 March, 2010, Hong
Kong, 2010, pp. 493–502.

17



[13] , Building Switching Hybrid Recommender System Using Ma-
chine Learning Classifiers and Collaborative Filtering, IAENG Interna-
tional Journal of Computer Science 37 (2010), no. 3, 272–287.

[14] , Novel significance weighting schemes for collaborative filtering:
Generating improved recommendations in sparse environments., DMIN,
CSREA Press, 2010, pp. 334–342.

[15] , A scalable, accurate hybrid recommender system, Proceedings
of the 2010 Third International Conference on Knowledge Discovery and
Data Mining (Washington, DC, USA), WKDD ’10, IEEE Computer So-
ciety, 2010, pp. 94–98.

[16] , The advantage of careful imputation sources in sparse data-
environment of recommender systems: Generating improved svd-based
recommendations, IADIS European Conference on Data Mining, July
2011.

[17] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry, Using
collaborative filtering to weave an information tapestry, Commun. ACM
35 (1992), 61–70.

[18] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl, Evaluating collaborative filtering recommender systems, ACM
Trans. Inf. Syst. 22 (2004), 5–53.

[19] Thorsten Joachims, Training linear svms in linear time, Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discov-
ery and data mining (New York, NY, USA), KDD ’06, ACM, 2006,
pp. 217–226.

[20] Heung-Nam Kim, Abdulmotaleb El-Saddik, and Geun-Sik Jo, Collabora-
tive error-reflected models for cold-start recommender systems, Decision
Support Systems 51 (2011), no. 3, 519 – 531.

[21] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Her-
locker, Lee R. Gordon, and John Riedl, Grouplens: applying collabora-
tive filtering to usenet news, Commun. ACM 40 (1997), 77–87.

[22] Yehuda Koren, Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (New York,
NY, USA), KDD ’08, ACM, 2008, pp. 426–434.

[23] Yehuda Koren, Factor in the neighbors: Scalable and accurate collabo-
rative filtering, ACM Transactions on Knowledge Discovery from Data
(TKDD) 4 (2010), no. 1.

[24] M. Kurucz, A.A. Benczúr, and K. Csalogány, Methods for large scale
SVD with missing values, Proceedings of KDD Cup and Workshop, Cite-
seer, 2007.

[25] Ken Lang, NewsWeeder: learning to filter netnews, Proceedings of the
12th International Conference on Machine Learning, Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA, 1995, pp. 331–339.

[26] Neil D. Lawrence and Raquel Urtasun, Non-linear matrix factorization
with gaussian processes, Proceedings of the 26th Annual International
Conference on Machine Learning (New York, NY, USA), ICML ’09,
ACM, 2009, pp. 601–608.

[27] Lester Mackey, David Weiss, and Michael I. Jordan, Mixed membership
matrix factorization, Proceedings of the 27th International Conference on
Machine Learning, June 2010.

[28] Benjamin Marlin, Collaborative Filtering: A Machine Learning Perspec-
tive, Master’s thesis, University of Toronto, 2004.

[29] , Modeling user rating profiles for collaborative filtering, Ad-
vances in neural information processing systems 16 (2004), 627–634.

[30] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani, Spectral regu-
larization algorithms for learning large incomplete matrices, J. Mach.
Learn. Res. 99 (2010), 2287–2322.

[31] Prem Melville, Raymod J. Mooney, and Ramadass Nagarajan, Content-
boosted collaborative filtering for improved recommendations, Eigh-
teenth national conference on Artificial intelligence (Menlo Park, CA,
USA), American Association for Artificial Intelligence, 2002, pp. 187–
192.

[32] Stuart E. Middleton, Capturing knowledge of user preferences with rec-
ommender systems, Ph.D. thesis, UNIVERSITY OF SOUTHAMPTON,
UK, September 2002.

[33] Stuart E. Middleton, Harith Alani, and David C. De Roure, Exploiting
Synergy Between Ontologies and Recommender Systems, The Eleventh
International World Wide Web Conference (WWW2002), 2002.

[34] Raymond J. Mooney and Loriene Roy, Content-based book recommend-
ing using learning for text categorization, Proceedings of the fifth ACM
conference on Digital libraries (New York, NY, USA), DL ’00, ACM,

2000, pp. 195–204.
[35] S.T. Park and D.M. Pennock, Applying collaborative filtering techniques

to movie search for better ranking and browsing, Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2007, pp. 550–559.

[36] Yoon-Joo Park and Alexander Tuzhilin, The long tail of recommender
systems and how to leverage it, Proceedings of the 2008 ACM conference
on Recommender systems (New York, NY, USA), RecSys ’08, ACM,
2008, pp. 11–18.

[37] Michael J. Pazzani, A framework for collaborative, content-based and
demographic filtering, Artif. Intell. Rev. 13 (1999), 393–408.

[38] Michael J. Pazzani and Daniel Billsus, The adaptive web, Springer-
Verlag, Berlin, Heidelberg, 2007, pp. 325–341.

[39] David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles,
Collaborative filtering by personality diagnosis: A hybrid memory and
model-based approach, Proceedings of the 16th Conference on Uncer-
tainty in Artificial Intelligence (San Francisco, CA, USA), UAI ’00, Mor-
gan Kaufmann Publishers Inc., 2000, pp. 473–480.

[40] C. Porcel, A. Tejeda-Lorente, M. A. Martı́nez, and E. Herrera-Viedma, A
hybrid recommender system for the selective dissemination of research re-
sources in a technology transfer office, Information Sciences 184 (2012),
1–19.

[41] Jasson D. M. Rennie and Nathan Srebro, Fast maximum margin matrix
factorization for collaborative prediction, Proceedings of the 22nd inter-
national conference on Machine learning (New York, NY, USA), ICML
’05, ACM, 2005, pp. 713–719.

[42] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl, Grouplens: an open architecture for collaborative filtering
of netnews, Proceedings of the 1994 ACM conference on Computer sup-
ported cooperative work, CSCW ’94, ACM, 1994, pp. 175–186.

[43] R. Salakhutdinov and A. Mnih, Probabilistic matrix factorization, Ad-
vances in Neural Information Processing Systems 20 (2008), 1257–1264.

[44] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl, Item-
based collaborative filtering recommendation algorithms, Proceedings of
the 10th international conference on World Wide Web (New York, NY,
USA), WWW ’01, ACM, 2001, pp. 285–295.

[45] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, Anal-
ysis of recommendation algorithms for e-commerce, Proceedings of the
2nd ACM conference on Electronic commerce (New York, NY, USA),
EC ’00, ACM, 2000, pp. 158–167.

[46] , Application of dimensionality reduction in recommender
system–a case study, IN ACM WEBKDD WORKSHOP, Citeseer, 2000.

[47] , Recommender systems for large-scale e-commerce: Scalable
neighborhood formation using clustering, Proceedings of the Fifth In-
ternational Conference on Computer and Information Technology, 2002.

[48] Vincent. Schickel-Zuber and Boi Faltings, Using an Ontological A-priori
Score to Infer User’s Preferences, Workshop on Recommender Systems-
ECAI06, 2006, pp. 102–106.

[49] Jesus Serrano-Guerrero, Enrique Herrera-Viedma, Jose A. Olivas, An-
dres Cerezo, and Francisco P. Romero, A google wave-based fuzzy recom-
mender system to disseminate information in university digital libraries
2.0, Information Sciences 181 (2011), 1503–1516.

[50] Upendra Shardanand and Pattie Maes, Social information filtering: algo-
rithms for automating word of mouth, Proceedings of the SIGCHI confer-
ence on Human factors in computing systems (New York, NY, USA), CHI
’95, ACM Press/Addison-Wesley Publishing Co., 1995, pp. 210–217.

[51] Nathan Srebro, Jasson D. M Rennie, and T. Jaakkola, Maximum-margin
matrix factorization, Advances in neural information processing systems
17 (2005), 1329–1336.

[52] David H. Stern, Ralf Herbrich, and Thore Graepel, Matchbox: large scale
online bayesian recommendations, Proceedings of the 18th international
conference on World wide web (New York, NY, USA), WWW ’09, ACM,
2009, pp. 111–120.

[53] Sandor Szedmak, Ni Yizhao, and Gunn Steve R., Maximum margin learn-
ing with incomplete data: Learning networks instead of tables., Journal
of Machine Learning Research - Proceedings Track 11 (2010), 96–102.

[54] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk,
Investigation of various matrix factorization methods for large recom-
mender systems, Proceedings of the 2nd KDD Workshop on Large-Scale
Recommender Systems and the Netflix Prize Competition (New York,
NY, USA), NETFLIX ’08, ACM, 2008, pp. 6:1–6:8.

18



[55] , Scalable collaborative filtering approaches for large recom-
mender systems, J. Mach. Learn. Res. 10 (2009), 623–656.

[56] Loren Terveen, Will Hill, Brian Amento, David McDonald, and Josh
Creter, Phoaks: a system for sharing recommendations, Commun. ACM
40 (1997), 59–62.

[57] Robin van Meteren and Maarten van Someren, Using content-based fil-
tering for recommendation, Proceedings of the Machine Learning in the
New Information Age: MLnet/ECML2000 Workshop, Citeseer, 2000.

[58] Manolis Vozalis and Konstantinos G. Margaritis, Applying SVD on gen-
eralized item-based filtering, International Journal of Computer Science
and Applications 3 (2006), no. 3, 27–51.

[59] , Using svd and demographic data for the enhancement of gen-
eralized collaborative filtering, Information Sciences 177 (2007), 3017–
3037.

[60] Mingru Wu, Collaborative filtering via ensembles of matrix factoriza-
tions, Proceedings of KDD Cup and Workshop, Citeseer, 2007.

[61] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong
Yu, and Zheng Chen, Scalable collaborative filtering using cluster-based
smoothing, Proceedings of the 28th annual international ACM SIGIR con-
ference on Research and development in information retrieval (New York,
NY, USA), SIGIR ’05, ACM, 2005, pp. 114–121.

[62] Daoqiang Zhang, Zhi-Hua Zhou, and Songcan Chen, Non-negative ma-
trix factorization on kernels, Proceedings of the 9th Pacific Rim inter-
national conference on Artificial intelligence (Berlin, Heidelberg), PRI-
CAI’06, Springer-Verlag, 2006, pp. 404–412.

19


