arXiv:2204.03028v1 [cs.RO] 6 Apr 2022

Software Testing, AI and Robotics (STAIR)
Learning Lab

Simon Haller-Seeber ¢2, Thomas Gatterer, Patrick Hofmann,
Christopher Kelter, Thomas Auer, and Michael Felderer

Department of Computer Science, University of Innsbruck
Technikerstr. 21a, 6020 Innsbruck, Austria

Abstract. In this paper we presented the Software Testing, AI and
Robotics (STAIR) Learning Lab. STAIR is an initiative started at the
University of Innsbruck to bring robotics, Artificial Intelligence (AI) and
software testing into schools. In the lab physical and virtual learning
units are developed in parallel and in sync with each other. Its core
learning approach is based the develop of both a physical and simulated
robotics environment. In both environments Al scenarios (like traffic sign
recognition) are deployed and tested. We present and focus on our newly
designed MiniBot that are both built on hardware which was designed for
educational and research purposes as well as the simulation environment.
Additionally, we describe first learning design concepts and a showcase
scenario (i.e., Al-based traffic sign recognition) with different exercises
which can easily be extended.

Keywords: digital twin, educational robotics, physical computing, ar-
tificial intelligence, software testing, internet of things

1 Introduction

We established our school outreach program several years ago, and apart from
some Lego Mindstorms classes we saw very little robotics in Tyrolean schools.
So we started specialized efforts to bring educational robotics and physical com-
puting to schools ([1], [3], [5]). We as well had specialized university courses to
teach our student teachers possibilities on how to do robotics in schools and
guide teachers to build and program robots with their students to participate in
national ‘and international robotic competitions.

In general, we want to get young people interested in science, technology,
engineering and mathematics (STEM) matters, and in computer science in par-
ticular. We see physical computing and robotics as an intuitive and motivat-
ing playground — things move and interact, making the everyday relevance of
computer science tangible. The ability to connect physical and virtual objects
(things) with one another in almost any way has grown in importance and now
permeates all areas of life, such as mobility (“smart mobility”, “autonomous
driving”, “smart city”), housing (“smart home”), agriculture (“smart agricul-
ture”), health (“smart health”) or production (“Industry 4.0”). The high practi-
cal importance and the almost unlimited possibilities to realize digital ideas and

https://orcid.org/0000-0002-1538-5906
https://orcid.org/0000-0003-3818-4442

2 S. Haller—Seeber et.al.

products also with AI technologies via e.g. Internet of Things (IoT) systems are
in contrast to the high level of technical understanding which is required to grasp
these technologies. In order to master the complexity of such systems and to ex-
ploit their potential, basic understanding and basic knowledge of the underlying
technologies are therefore an indispensable component of an innovation-oriented
digital education. The physical computing part additionally can help in form-
ing students’ knowledge and thinking and provide better understanding of the
effects of mechanics and mathematics via not only pure algorithmic thinking.
Problem solving methods are developed, which give pupils and students advan-
tages in later everyday life while laying a foundation for lifelong learning. One of
the ways of making digital education more relevant is to integrate such elements
of modern technology into appropriate teaching subjects. There are of course
initiatives which already implemented such efforts at different educational lev-
els, from school programs to small workshops, but there is very little to none
in the Tyrolean area. Additionally, we want to widen our aims compared to our
previous initiatives, therefore we further developed our efforts, started a new
collaboration with the Media Inclusion Al Lab were the outcome is now our
joint Learning Space as part of the INNALP Education Hub!.

The Learning Lab serves the following objectives and goals in the fields of
AT, robotics and software testing:

— Activity-based teaching of basic and advanced knowledge in those fields

— Provision and develop learning materials with the involvement of teachers
for all ages and for any prior knowledge

— Provide a simulated and physical lab infrastructure to support advanced
testing and teaching scenarios

2 Hardware and Software

To give students a good introduction to Al, robotics and software testing, it is
important to provide them also with hands-on experience. This can be done in
a virtual or a physical environment. To address both options, we do not only
look at the hardware capabilities of a physical platform, but also on the available
software stack. A physical platform itself should be affordable, easy to use for all
ages, robust, and yet be able to showcase research or more complex algorithms.
At the moment there is no suitable, off-the-shelf product out there. Either they
are really cheap and do not provide any sensory feedback, or they are industrial
or research products which are too expensive, the intended usage is too narrow,
or they are unreliable. [4], [6]

Therefore a combination of consumer products building up a robot which
is capable of performing interesting tasks, ranging from moving around, self-
localisation and mapping (SLAM), planning, grasping, object recognition and
the ability to use modern state of the art machine learning algorithms, is attrac-
tive.

! https://projekte.ffg.at /projekt /4119035

https://projekte.ffg.at/projekt/4119035

Software Testing, Al and Robotics (STAIR) Learning Lab 3

We conducted a market research and compared them to identify feasible
partial solutions to build such a robot.

As a mobile base platform the choice fell on Sphero RVR?. It has a broad
software support (Python, C4++, etc.), the hardware is build in a stable way,
includes a vast variety of sensors: a 9-axis IMU (3-axis gyroscope, 3-axis ac-
celerometer and 3-axis magnetometer/compass), an rgb color sensor, a distance
and light sensor, and it is not too expensive.

For grasping and manipulation we chose the 4 DoF Lynxmotion Arm?. The
LSS Motors provide additional sensor feedback (voltage, current, temperature,
position, and rotation per minute) and they can set properties such as angular
stiffness, holding stiffness, acceleration and deceleration. The software support
was not too broad but we build upon the complete open reference. As a compute
module we chose the Nvidia Jetson Nano? in combination with an Intel D435
depth camera® which can be used for machine learning algorithms. A picture of
the robot and its design is shown in Fig. 1. Because this combination of hard-

Fig. 1. Sphero RVR with Lynxmotion Arm and in Arm Camera. (Left: in simulation.
Right: as physical platform)

ware is new, we provide a standardized way for accessing this robot using a robot
operating system (ROS) middelware. We chose ROS in this educational context

2 https:/ /sphero.com/products/rvr

3 https://robotshop.com/de/de/lynxmotion-lss-4-dof-roboterarm-kit.html
4 https://developer.nvidia.com/embedded /jetson-nano-developer-kit /

5 https://www.intelrealsense.com/depth-camera-d435/

https://sphero.com/products/rvr
https://www.robotshop.com/de/de/lynxmotion-lss-4-dof-roboterarm-kit.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://sphero.com/products/rvr
https://robotshop.com/de/de/lynxmotion-lss-4-dof-roboterarm-kit.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit/
https://www.intelrealsense.com/depth-camera-d435/

4 S. Haller—Seeber et.al.

because then we have a consistent way to control the simulation and a real robot.
Additionally, we can address all age levels from beginners to university students.
For beginners we will provide an easy block based web programming interface
and a simple python API for intermediate pupils and students, advanced univer-
sity students can dive into the controller back-end similar to [2]. We provide a
full ROS integration for all parts and the complete robot including the following:

Nvidia Jetson: An updated way to build an Ubuntu 20.04 image including
ROS Noetic. This is important for the possibility to use python3, ROS and
current implementation of machine learning algorithms. We also provide an
Package repository for easy OpenCV and Tensorflow installation.

Sphero RVR: We provide a full integration for the base platform, this in-
cludes especially: A ROS Description Package (including a URDF model),
and a basic ROS node for robot interaction and simulation. Robot control,
tf, odometry and other sensor data provisioning is done in such a way that
one can benefit from the off-the-shelf ROS ecosystem (see Fig. 2).

sensor data topics

services & topics
/tf/odom

/emd_vel

/V

/sensor/ambient_light

N

update pose
intern

/move_to_pose | |

publish update

or call

/rvr_ros /sensor/color

/get_battery -

1 /sensor/magnetometer

/set_leds

Fig. 2. Sphero RVR ROS Services and Topics

Lynxmotion LSS 4DoF Arm: We provide a full integration for this hard-
ware, which includes: A ROS Description Package (including a URDF model),
a basic ROS node for arm interaction and simulation, and a ROS Arm Movelt
package for planning. A simplified view on the current ROS integration of
the Arm is shown in Fig. 3.

Intel Camera/AI: Demos and usage examples.

Tips and instructions on how to build the robot hardware, as well as how to
install and build the software setup can be found at https://stair-lab.uibk.ac.at/.

https://stair-lab.uibk.ac.at/

Software Testing, Al and Robotics (STAIR) Learning Lab 5

services

/Iss_4dof_to_pose

call

/Iss_4dof_to_named | /lss_4dof_controller

subscribes

publish|

Nss_4dof_place

publish : /robot_state

/gripper_controller

/lss_4dof_pick action
call

Fig. 3. Simplified view: ROS integration (Services and Topics) for the Arm and Gripper

The code base and implementations for the robot base and arm as well as the
build environment for the Nivida Jetson can be found at: https://git.uibk.ac.at/
informatik /stair/.

3 The Learning Lab on a Running Example

In our learning environment, we use a digital twin, among other things. This is
the virtual representation of our robot and scenario. We use a physical simulation
to not only experiment and learn, but also to evaluate exercises. While our
digital twin does not control any hardware, it can provide a valuable learning
environment outside of our workshops. It offers an easy way to check trained
AT models and written software. Additionally, we can do best practice software
testing. We run, test and debug all ROS nodes either with a plugin for Visual
Studio Code or with a plugin for Intelli] IDEA.® Both work with multiple test
frameworks out of the box.

In general one can use our environment with many already existing exer-
cises and tasks from other robots and environments: From easy and beginner
level block programming e.g. building a line- or wall-follower, to intermediate
ones using our simple python API (which uses our ROS modules): e.g. explor-
ing a maze. In the following section we show-case a scenario which is not very
common for beginner level students and briefly present possible extensions for
intermediate and advanced learners.

3.1 Traffic Sign Recognition

In the living environment of pupils taking the driver’s license test at high-school
age, traffic-sign recognition is quite important. They recognize that the car mar-
ket is changing and that autonomous cars will take over much of the content

5 ROS VS Code Plugin: https://marketplace.visualstudio.com/items?itemName=
ms-iot.vscode-ros
IntelliJ Idea Plugin: https://plugins.jetbrains.com/plugin/11235-ros-support

https://git.uibk.ac.at/informatik/stair/
https://git.uibk.ac.at/informatik/stair/
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://marketplace.visualstudio.com/items?itemName=ms-iot.vscode-ros
https://plugins.jetbrains.com/plugin/11235-ros-support

6 S. Haller—Seeber et.al.

Fig. 4. Our Robot in the traffic sign recognition example scenario (Left: simulated
environment; Right: robot in the arena)

they focus on. This gives students a good understanding of what tasks an arti-
ficial intelligence has to do and what problems arise. After hands-on training,
students can see the robot driving around in a real or simulated world, looking
for traffic signs with its camera. Each time a traffic sign is detected, the image
processing algorithm sends a command to the robot telling it how to respond to
that sign. For example, if the robot finds a “stop” sign, it stops in front of the
sign not continuing or going in another direction. A visualisation of the simulated
environment and in a real arena is shown in Fig. 4.

In this scenario we have prepared three different exercises for students of
different age groups and with different prior knowledge:

Beginner: Train a model with printed and/or self designed traffic signs at
Teachable Machine”. This model can then be easily incorporated via our
ROS Blockly environment (see Fig. 5). Afterwards one has to specify ac-
tions for recognized classes in the robot control loop. Because we use ROS it
is easy to switch between execution on the real robot and execution on the
digital twin.

Intermediate: Train a support vector machine (SVM). Compare the outcome
between the beginner and this exercise. This is an interesting task, because
one needs just a few training examples and low compute requirements, mean-
ing that this could be done on the Nvidia Jetson Nano.

Advanced: For a more advanced machine learning algorithm exercise we pro-
pose to train a YOLO model and test it. The training can’t be (realistically)
done on the Nvidia Jetson Nano, but it is possible to evaluate this state of
the art algorithm on the robot.

7 https://teachablemachine.withgoogle.com /train/image

https://teachablemachine.withgoogle.com/train/image
https://teachablemachine.withgoogle.com/train/image

Software Testing, AI and Robotics (STAIR) Learning Lab 7

Blocks Python Code

search Q
Robots
Action
Sensor

Evaluation (Al) ("add teachable machine model
Logic
Control

(8T https://teachablemachine.withgoogle.com/ [I

=i cam_img v feo) (‘ return [CIIEA camera image

Math =

@) i e a——— | " stop |
Text L “‘ return classification of image m“‘ . STOP |/

Variables do Stop
—

else | Drive [ZINEICRS

L Speed [m/s]

/image_raw, . /cmd_ve
e /traffic_sign_detector = @

Fig. 5. Left: Blocktype Programming with Al: Example program using a trained model
from Teachable Machine; Right: Simulated Robot; Below: Backend - ROS nodes used
for this example in our hardware environment

4 Conclusion

In this paper we presented the Software Testing, Al and Robotics (STAIR)
Learning Lab. Its core idea is the develop of a physical and simulated robotics
environment in parallel and in sync with each other. In both environments Al
scenarios (like traffic sign recognition) are deployed and tested.

We managed to build a robot which can be used for various courses in the
fields of robotics, Al and software testing. Currently we build one scenario with
different exercises for different learning environments. These can be used in sim-
ulation environment and on a physical robot. We contributed a complete ROS
interface for the Sphero RVR platform, Lynxmotion LSS 4DoF Arm. Addition-
ally, we provide the kinematics of the robot and several examples. As a next
development step of our learning lab we will provide easily-accessible courses
and workshops around this robot which will then be offered to Tyrolean schools
in the upcoming term. In parallel, we will evaluate the workshops and their
learning effects to finally provide evidence-based learning units.

Acknowledgement

The authors want to thank the GMAR summer school participants 2021 for their
valuable input. They tested an alpha version of the robots hard- and software
and provided suggestions for software improvement. The authors also want to
thank Theo Hug and Justus Piater for proofreading the manuscript. Additional
financial support was provided by the Austrian Research Promotion Agency

https://www.uibk.ac.at/informatik/forschung/gmar-robotics-school-2021.html

8 S. Haller—Seeber et.al.

(FFG) under the scope of the research project INNALP Education Hub (FFG
contract number 4119035).

References

1. Auer, T., Felderer, M.: Towards a learning environment for internet of things test-
ing with lego® mindstorms®). In: 2020 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). pp. 457-460 (2020).
https://doi.org/10.1109/ICSTW50294.2020.00081

2. Gervais, O., Patrosio, T.: Developing an Introduction to ROS and Gazebo Through
the LEGO SPIKE Prime. In: Robotics in Education. pp. 201-209. Springer, Cham
(Apr 2021). https://doi.org/10.1007/978-3-030-82544-7_19

3. Haller-Seeber, S., Renaudo, E., Zech, P., Westreicher, F., Walzthoni, M., Vidovic,
C., Piater, J.: ROSSINI: RobOt kidS deSIgn thiNkIng. In: Robotics in Education.
vol. 1, pp. 16-25. Springer Advances in Intelligent Systems and Computing (01
2021). https://doi.org/10.1007/978-3-030-67411-3_2

4. Karalekas, G., Vologiannidis, S., Kalomiros, J.: Europa: A case study for teach-
ing sensors, data acquisition and robotics via a ros-based educational robot.
Sensors 20(9) (2020). https://doi.org/10.3390/520092469, https://www.mdpi.com/
1424-8220/20,/9/2469

5. Lamprecht, P., Haller-Seeber, S., Piater, J.: A Block—based IDE Extension for the
ESP32. In: Robotics in Education. vol. 1, pp. 304-310. Springer Advances in Intelli-
gent Systems and Computing (01 2021). https://doi.org/10.1007/978-3-030-67411-
3.27

6. Webresource, part of University of Innsbruck course LV703051/19: Mini
overview on affordable physical computing platfroms which are suitable
to build educational robots (2020), https://docs.google.com/spreadsheets/d/
18ft AGsW0e-4THu9VnFUISIkZ3Pj3ZBPwdiHq7ZgXySw

https://projekte.ffg.at/projekt/4119035
https://doi.org/10.1109/ICSTW50294.2020.00081
https://doi.org/{10.1007/978-3-030-82544-7_19}
https://doi.org/10.1007/978-3-030-67411-3_2
https://doi.org/10.3390/s20092469
https://www.mdpi.com/1424-8220/20/9/2469
https://www.mdpi.com/1424-8220/20/9/2469
https://doi.org/10.1007/978-3-030-67411-3_27
https://doi.org/10.1007/978-3-030-67411-3_27
https://docs.google.com/spreadsheets/d/18ftAGsW0e-4IHu9VnFUISlkZ3Pj3ZBPwdiHq7ZgXySw
https://docs.google.com/spreadsheets/d/18ftAGsW0e-4IHu9VnFUISlkZ3Pj3ZBPwdiHq7ZgXySw

	Software Testing, AI and Robotics (STAIR) Learning Lab

