A Free and Open Web-Based IDE for the
Sphero Bolt

Simon Haller-Seeber @ #) | Christopher Kelter, Marko Zarié¢, and
Justus Piater © P)

Department of Computer Science, University of Innsbruck
{simon.haller-seeber, christopher.kelter, marko.zaric, justus.piater } Quibk.ac.at
Technikerstr. 21a, 6020 Innsbruck, Austria

Abstract. The Sphero Bolt robot is an educational tool designed to
make learning about coding and robotics engaging and hands-on. How-
ever, existing software environments present challenges for classroom use,
particularly due to limited support for open platforms. We developed a
free, browser-based IDE for the Sphero Bolt hardware. It is built on top
of Node.js and WebAssembly, using Pyodide. The IDE enables direct in-
teraction with the robot not requiring additional software installations.
This paper outlines the technical and educational contributions of our
IDE, including an example workshop on behavioral control concepts with
practical programming exercises. Inspired by Valentino Braitenberg’s ve-
hicles, we demonstrate how students can use the robot’s light sensors to
simulate reactive behaviors such as light avoidance and attraction. By
removing technical barriers and providing a seamless portable coding
environment, this IDE lets students and educators focus on the creative
and exploratory aspects of programming and robotics.

Keywords: educational robotics, artificial intelligence, web IDE, free software

1 Introduction

The STAIR (Software Testing AI Robotics) Lab is a state-of-the-art facility
designed to provide students and educators with hands-on experience in the fields
of artificial intelligence and robotics. The lab facilitates activity-based teaching,
offering a range of workshops and learning materials to enhance educational
experiences for students and teachers (Haller-Seeber et al., 2022).

As part of the Media, Inclusion & AI Space of the INNALP Education Hub,
the STAIR Lab contributes to a broader educational ecosystem that explores
topics such as inclusion, accessibility, assistive technologies, diversity, and media
culture in the context of schooling and teaching (Bouvier et al., 2025).

Several platforms already exist that integrate robotics with educational pro-
gramming. The Open Roberta framework (Jost et al., 2014), for instance, com-
bines block-based programming with partial simulation capabilities and direct

) @ https://orcid.org/0000-0002-1538-5906
b) ® https:/ /orcid.org/0000-0002-1898-3362

https://orcid.org/0000-0002-1538-5906
https://orcid.org/0000-0002-1898-3362

2 S. Haller—Seeber et.al.

programming of physical robots. Similarly, the MakeCode platform, especially
when paired with the BBC Micro:Bit, provides basic visualization features while
enabling the programming of physical devices. Cardenas et al. (2023) describes
a recent example of integrating this platform with AI applications.

A detailed comparison of various programming environments for educational
robotics—spanning online/offline, block-based, and text-based approaches—is
presented in Table 3.2 (Haller-Seeber, 2024, p.11), reproduced in the Appendix.
This analysis highlights the strengths and trade-offs of different platforms, un-
derscoring their potential for robotics and AI education. It also shows that only
a limited number of platforms combine installation-free access with the ability
to interact with physical devices, particularly for younger children using block-
based programming environments. Additionally, it reveals the need for more ac-
cessible IDEs that prioritize ease of use and hands-on engagement in educational
robotics tailored to children.

A

Fig. 1. Sphero Bolt Power Pack containing 15 robots and a single Sphero Bolt. Images
taken from https://sphero.com.

The Sphero BOLT (see Fig. 1) is an educational robot that offers an engaging,
hands-on approach to learning coding and robotics. The programmable robotic
ball is designed to teach coding, problem-solving, and STEAM concepts through
interactive activities. Equipped with an IMU, light sensor, LED matrix, and
Bluetooth connectivity, the Sphero BOLT supports block-based and JavaScript
programming. It has been used in classrooms for coding lessons, physics demon-
strations, and robotics challenges, as well as in after-school programs and camps
targeting underrepresented groups in STEAM (Mack et al., 2024). However, its
current software development environment poses challenges for classroom use.
The absence of an official SDK for Linux and the lack of open-source alterna-
tives make it difficult for teachers and students to integrate the robot seamlessly,
especially on devices that do not support proprietary SDK installations.

https://sphero.com

A Free and Open Web-Based IDE for the Sphero Bolt 3

2 DMotivation

Our primary goal is to eliminate the need for students or educators to install
SDKs on personal computers or tablets, which can be impractical and incon-
sistent in a classroom setting. On school computers, software configurations are
normally outside of our control. Each additional installation step can be time-
consuming and might shift the focus away from our teaching goals and disrupt
the learning process. Therefore, an installation-free, portable solution is essen-
tial—particularly in schools where flexibility and accessibility are paramount.

The Sphero Bolt robot is a viable platform to introduce key concepts from
Cybernetics and Behavioral Control, which are prominent in robotics and ar-
tificial intelligence. Combined with an easy-to-use IDE, educators can focus on
fostering creativity and problem-solving skills in programming while learning
about robotics concepts.

To create an accessible and efficient development environment for this robot,
we aimed to eliminate the technical and infrastructural barriers. Existing tools,
including an open-source Python library for the Sphero BOLT available on
GitHub (Wang and Feliciano, 2024), provided a starting point but required sig-
nificant modification to align with our goals of ease of use, portability, and mini-
mal setup. Motivated by these limitations, we developed a lightweight, web-based
IDE utilizing WebAssembly, capable of running directly in any Chromium-based
browser (e.g., Chrome, Edge, Opera) without installation or reliance on network
connectivity. The IDE functions entirely on the client side, independent of server
infrastructure, not storing any user data locally or remotely, thereby addressing
common privacy and security concerns in educational settings.

Given our focus on browser-based deployment, we encountered compatibility
limitations due to the lack of Web Bluetooth API support in Firefox and Sa-
fari.! Their stance against implementing this API stems from concerns about the
potential risks of granting Bluetooth access to arbitrary websites, given the un-
certainty around device readiness and the difficulty of managing generic API in-
teractions securely. By contrast, Chromium browsers address these risks through
a permission model that requires explicit user approval for each Bluetooth con-
nection, enhancing the security and control of device interactions.

To overcome the browser support gap, we initially thought of introducing
a Bluetooth bridge, similar to the approach used by Mind+?2, which enables
broader compatibility via a native application. However, this would compro-
mise the IDE’s lightweight, installation-free architecture and impose mainte-
nance overhead for cross-platform support. It would potentially undermine its
suitability for classroom environments where simplicity and immediacy are im-
portant, especially if one wants to, i.e., visit different schools doing workshops.

Furthermore, the IDE’s local execution model ensures stable and consistent
performance. It is unaffected by network conditions, which can be an advantage

! For an up-to-date list see https://caniuse.com/web-bluetooth. The Mozilla dev team
also provides a statement on the Web Bluetooth API at https://mozilla.github.io/
standards-positions/#web-bluetooth.

2 https://mindplus.cc/en.html

https://caniuse.com/web-bluetooth
https://mozilla.github.io/standards-positions/#web-bluetooth
https://mozilla.github.io/standards-positions/#web-bluetooth
https://mindplus.cc/en.html

4 S. Haller—Seeber et.al.

in diverse educational contexts. Our solution prioritizes ease of access, privacy,
and a consistent user experience. This allows learners to focus entirely on the
creative aspects of programming and robotics, fostering a more engaging and
productive educational experience.

2.1 Background

This section introduces the key concepts that can be taught implicitly through
carefully crafted exercises that use Sphero Bolt robots’ movement and sensing
capabilities in practical teaching sessions.

Cybernetics provides a framework for analyzing feedback mechanisms in var-
ious systems using universal mathematical methods. This approach typically
begins with creating models that simulate a phenomenon’s behavior under sim-
plified conditions. Valentino Braitenberg’s vehicles exemplify this methodology.
These vehicles are minimalistic yet capable of demonstrating complex behaviors,
making them iconic models in the field of cybernetics.

Behavioral control refers to a modular and flexible approach to robotics,
where small programs—called behaviors—read sensor inputs and control ac-
tuators. Each behavior is designed to perform a simple task, such as obstacle
avoidance, line following, or speed maintenance. A key advantage of behavioral
control systems is their modularity: Behaviors are independent yet can function
cooperatively, allowing the system to adapt to environmental changes and per-
form complex tasks. For instance, a robot using behavioral control might simul-
taneously avoid obstacles while following a light source, enabling sophisticated,
emergent behavior.

Braitenberg vehicles (Braitenberg, 1984) are simple autonomous agents that
move based on sensor inputs. Each vehicle consists of two motor-driven wheels
and sensors, typically for detecting light intensity. The sensor outputs influence
the motors, either positively or negatively, depending on how the sensors are
connected to the motors.

Despite their simplicity, the placement and wiring of the sensors can result
in diverse and seemingly intelligent behaviors of an vehicle, such as:

Fear: moving away from a light source.

. Aggression: moving to it, increasing speed when approaching.

. Love: approaching a light source but slowing down as it nears the source.

. Exploration: avoiding light but slowing down while exploring illuminated
areas.

W N

By introducing multiple light sources or attaching light sources to the vehi-
cles themselves, it is possible to create more intricate and dynamic behaviors.
Similarly, integrating additional sensors, such as infrared proximity sensors, al-
lows the vehicles to respond to diverse environmental conditions. This demon-
strates how simple rules and components can produce complex, emergent,
and seemingly intelligent behaviors.

A Free and Open Web-Based IDE for the Sphero Bolt 5

Fig. 2. Long night of research 2024 STAIR-Lab Demos

3 Challenges

To develop a browser-based ID for the Sphero BOLT, we explored several op-
tions. One approach involved executing Python code within a Docker container
on the local machine, while the alternative focused on running Python code di-
rectly in the browser using WebAssembly. Given the educational context and the
limited technical expertise of the target audience, the WebAssembly-based ap-
proach was considered more suitable, as it eliminates the need for specific setup
and resource installation. After careful evaluation, we identified three potential
tools. The first, Emscripten®, is a complete compiler toolchain for WebAssem-
bly that enables the transformation of existing projects written in general-
purpose programming languages into a WebAssembly executable. The second
tool, Pyodide?*, is a framework that includes a compiled version of CPython
for WebAssembly. Pyodide supports nearly all Python features and provides a
JavaScript API to enable Python code execution in the browser in a lightweight
way. Additionally, it includes a package management system that allows users
to import packages from PyPI (The Python Package Index) or integrate custom
Python packages. The third tool, Py2wasm/Nuitka®, is a Python-based compiler
that converts Python code into a WebAssembly executable. Although Py2wasm
presents potential as a lightweight alternative, its current developmental lim-
itations outweigh its advantages. Moreover, it necessitates compilation before
execution in a browser environment. Emscripten, although powerful, lacks the
specificity and ease of use required for Python-centric applications. Pyodide’s
maturity and robustness include features and compatibility make it the most
suitable choice for our project, enabling the creation of a browser-based IDE
that facilitates seamless interaction with the Sphero Bolt robot.

The following section shows our approach to designing and implementing a
free, open-source Integrated Development Environment (IDE) tailored for the
Sphero Bolt. Our solution emphasizes portability, eliminating the need for ad-
ditional software installations and providing an accessible, efficient, and collab-
orative coding environment for classrooms. We also give one example workshop
to evaluate during the upcoming year.

3 https://emscripten.org
4 https://pyodide.org
® https://github.com/wasmerio/py2wasm

https://emscripten.org
https://pyodide.org
https://github.com/wasmerio/py2wasm

6 S. Haller—Seeber et.al.

3.1 Technical Implementation
Key steps in our implementation process included:

Public Demonstration and Feedback We directly tested the University of
Pennsylvania’s Python Sphero v2 library (Wang and Feliciano, 2024) devel-
oping a Braitenberg Vehicle demo for the Long Night of Research event (see
Fig. 2), gathering valuable oral feedback from the general public about the
demonstration and robot interactions.

Rewrite of the Sphero v2 API The Sphero v2 Python library offers a way
of connecting to different Sphero robots using Bluetooth. The implementa-
tion’s use of threads prevents it from being directly utilized with our WASM
Python interpreter because multithreading support has not been added. To
make use of WASM support of asyncio, we rewrote the partially modified
asyncio version of the Sphero v2 library.

Access to the Bluetooth Web API in Pyodide In addition to the limita-
tion that Python in WebAssembly does not support threads, there is also
no direct access to the Bluetooth API. However, Pyodide has a JavaScript
bridge that allows the execution of JavaScript source code in Python. For this
reason, we implemented a new Bluetooth adapter for the Sphero v2 asyn-
cio API. Using the JavaScript Bridge, it provides the same methods as the
previously-used bleak’® (Bluetooth Low Energy Platform Agnostic Client)
API. This ensures that only the adapter needs to be replaced without any
further changes to the source code of the Sphero v2 asyncio API. Fig. 3 gives
an overview of how Bluetooth access was implemented. This implementation
results in JavaScript code being executed for each command sent to a robot.

KP clidh

odide

4 [WASM Python 3 Interpreter)
S \

(ftlo\cn
P(foohaﬂe Spl\ero v2
JavaScr?P‘t

- async io
Bridge

\

Pyti«on Source
L [T Pyodide BT Code

“. adapter _.=

P({ti«on Libraries
- OpencV
-
- J

N\ _/

Fig. 3. An overview of the infrastructure that is used to use the Bluetooth Web API.

This process resulted in a fully functional, browser-based IDE capable of
interacting with the Sphero Bolt, making programming and robotics accessible
across diverse environments without requiring additional software installations.

5 https://github.com/hbldh/bleak

https://github.com/hbldh/bleak

A Free and Open Web-Based IDE for the Sphero Bolt 7
4 Example Workshop

This section illustrates an example workshop that leverages our web-based IDE
to implement light-avoidance behavior in the Sphero Bolt robots. Fig. 4 shows a
screenshot of the IDE with an integrated exercise sheet on the left and the coding
environment on the right. The exercise sheet can be uploaded as a Markdown file
to the IDE, enabling seamless integration of interactive educational content. To
solve the programming exercise, students can choose from two distinct editors, a
block-based editor and the Monaco Editor”, which supports Python. These edi-
tors empower users to solve tasks suited to their level of expertise. Additionally,
the settings menu allows users to connect and configure a Sphero Bolt robot.

BOLTBlockly [) Datel v & Einstellungen v = sgoso (b)

Blocks Python code

Mir ist zu hell—mein
lichtmeidender Roboter!

Roboter
Bewegungen
Farben

Lichter Kompass Kalibrieren

Programm starten mit Sphero BOLT
Die folgende Aufgabe erkléirt das Konzept der Braitenberg- Stabilisierung W]
Fahrzeuge. Programmiere den Sphero Bolt Roboter so, dass er

sich von Licht entfernt, z. B. wenn eine Taschenlampe auf ihn

gerichtet wird, I Watic
I Konwole mache | setze (KD auf |, Ugebungsiicht
! ’) s -
Was sind Braitenberg-Fahrzeuge? EEpit @ Em
= e Role | orzzanige crabel W] Geschvindket ur oY Sekcuncen
Braitenberg-Fahrzeuge sind Fahrzeuge, die auf ihre Umgebung || | Logik ganzzahlige Zufaliszahl zwischen | €9 | und | (IR =
auf splelerische Welse reagieren. I wMathemaiik b=
Beispiele: I 7o sonst | Anhalten
« Ein Fahrzeug néhert sich einem Licht als ob s "Licht I variablen

lieben" wiirde.

« Ein anderes Fahrzeug scheint Angst vor Licht zu haben,
da es dieses meidet. Das Verhalten der Fahrzeuge hangt
davon ab, wie Sensoren und Motoren miteinander
verbunden sind. In dieser Aufgabe bauen wir ein
einfaches Braitenberg-Fahrzeug das Licht meidet.

Ziel
« Wenn unser Sphero Bolt Roboter helles Licht von einer
Taschenlampe erkennt, bewegt er sich von der
Lichtquelle weg.
« Wenn kein Licht vorhanden ist dann soll der Roboter
stehen bleiben.

Aufgabe: Programmierung den Roboter
1. Materialien

Du brauchst

« Einen Sphero Bolt-Roboter.
« Eine Taschenlampe oder anderes Licht.

2. Verhalten des Fahrzeugs

Fig. 4. Sphero Bolt Block-based Programming Interface (with example instructions in
German) accessible at https://stair-lab.uibk.ac.at/sphero-blockly/. The Code is avail-
able at https://git.uibk.ac.at/informatik/stair /sphero-blockly.

4.1 Scope and Goal

As a case study, we showcase Braitenberg vehicles using the ambient light
sensor of the Sphero Bolt robot®. This choice serves multiple purposes:

— To introduce the concept of Cybernetics and Behavioral (or reactive)
control, foundational topics in robotics and artificial intelligence,

" https:/ /microsoft.github.io/monaco-editor/
8 https://edu.sphero.com/cwists/preview/18144x

https://stair-lab.uibk.ac.at/sphero-blockly/
https://git.uibk.ac.at/informatik/stair/sphero-blockly
https://microsoft.github.io/monaco-editor/
https://edu.sphero.com/cwists/preview/18144x

8 S. Haller—Seeber et.al.

— to illustrate how our IDE can be combined with the classic tutorials provided
by Sphero, and

— to honor Valentino Braitenberg, whose almae matres includes the University
of Innsbruck.

The Sphero Bolt IDE and its support for programming Braitenberg like ve-
hicles highlight the educational potential of integrating foundational concepts
in cybernetics and robotics with hands-on programming tools. This synergy en-
gages learners and fosters a deeper understanding of how simple rules drive
complex systems.

4.2 Programming Exercise

The goal of the practical programming exercise is to use the web-based IDE to
implement the following scenario with two behavioral possibilities:

1. The Sphero Bolt detects bright light and moves away from the light source.
2. There is no light, and the Sphero Bolt remains still.

The students will get an exercise sheet with a step-by-step guide (Fig. 4 on
the left). The three main programming steps are reading the light sensor value,
setting a threshold condition for the light sensor, and making the robot move
away from the light if the threshold is exceeded. Upon completion, the students
have to test their program by shining a flashlight on the robot. Here, they learn
to evaluate if the goal was achieved and are tasked to make adjustments until
the desired behavior can be demonstrated iteratively.

5 Outlook

We are actively working on several future improvements and applications to
enhance the IDE’s capabilities and broaden its educational impact:

Multilanguage Support: This feature is relatively straightforward to imple-
ment and will be prioritized next, with at least English language support
being added initially.

Python WebAssembly Thread Support: Currently, the IDE uses asyncio
for managing concurrent tasks. We aim to incorporate WebAssembly thread
support to enable more efficient execution and facilitate more complex, in-
teractive applications.

Multi-Robot Support: Currently, the IDE can connect to only one robot. We
plan to extend its functionality to support multiple robots simultaneously,
enabling more complex, maybe even swarm robotics scenarios and collabo-
rative learning experiences.

OpenCV and Camera Integration: By introducing visual programming bl-
ocks for OpenCV and enabling USB camera access, students will be able
to explore advanced robotics topics, such as computer vision and image
processing.

A Free and Open Web-Based IDE for the Sphero Bolt 9

Workshops and Evaluations: We plan to conduct workshops with children
using the IDE and evaluate their experiences. These workshops will take
place as part of the teaching and learning labs within the INNALP Educa-
tion Hub. Additionally, the workshops are organized within the framework
of the FFG-funded project AIRE. Feedback from these sessions will pro-
vide valuable insights into usability and educational impact, guiding further
platform refinement.

By addressing these areas, we aim to enhance the IDE’s functionality and
continue promoting accessible, hands-on robotics and Al education for learners
of all ages.

References

Bouvier, F., Gleirscher, L., Haller-Seeber, S., Hug, T., Kaiserer, M., Sonntag, M.:
Innovative Lehr- und Lernansitze in Lernlaboren: Einblicke in den Media,
Inclusion & AI Space des INNALP Education Hub. Medienimpulse 63 (3
2025), https://journals.univie.ac.at/index.php/mp/article/view /9253

Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press,
Cambridge, MA, USA (1984)

Cardenas, M.I., Molas, L., Puertas, E.: Artificial Intelligence with Micro:Bit
in the Classroom. In: Robotics in Education. LNNS, vol. 747, pp. 337-350.
Springer (Oct 2023)

Haller-Seeber, S., Gatterer, T., Hofmann, P., Kelter, C., Auer, T., Felderer, M.:
Software Testing, Al and Robotics (STAIR) Learning Lab. In: Robotics in
Education. LNNS; vol. 515, pp. 182-189. Springer (July 2022)

Haller-Seeber, S.M.: Innovative approaches to developing educational robots.
(Sept 2024), Master Thesis, https://ulb-dok.uibk.ac.at/urn/urn:nbn:at:
at-ubi:1-161112

Jost, B., Ketterl, M., Budde, R., Leimbach, T.: Graphical programming envi-
ronments for educational robots: Open roberta - yet another one? In: 2014
IEEE International Symposium on Multimedia. pp. 381-386 (2014)

Mack, N.A.; Adeleke, M.B., Ballou, E., Davis, D., Ingram, V., Cox, K.: Breaking
Stereotypes and Feeding the STEM Pipeline. In: Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1. p. 771-777.
SIGCSE 2024, Association for Computing Machinery, New York, NY, USA
(2024), https://doi.org/10.1145/3626252.3630793

Wang, H., Feliciano, E.: spherov2.py, an unofficial Python library for Sphero toys
that supports its Version 2 Bluetooth low energy API. https://github.com/
artificial-intelligence-class/spherov2.py /releases/tag/0.12.1 (2024)

https://journals.univie.ac.at/index.php/mp/article/view/9253
https://ulb-dok.uibk.ac.at/urn/urn:nbn:at:at-ubi:1-161112
https://ulb-dok.uibk.ac.at/urn/urn:nbn:at:at-ubi:1-161112
https://doi.org/10.1145/3626252.3630793
https://github.com/artificial-intelligence-class/spherov2.py/releases/tag/0.12.1
https://github.com/artificial-intelligence-class/spherov2.py/releases/tag/0.12.1

10 S. Haller—Seeber et.al.

Appendix

Editor Online/Web Hardware Platform Language Simulator Compile/Flash Open Source. XZZ"LEV&I
Adafiruit webIDE No® Raspberry PI, Beaglebone l;:j‘;’c‘im and mo:z“"y' No Runs live on Board Yes (AGPLv3) 10+
Arduino Blocks Semi Arduino, ESP32 Blocks, C No Yes (with Connector) ~ No 6+
Ardu Block No (Addon) ~ Arduino Blocks, C No No Yes (GPLv3) 6+
Arduino IDE No Arduino c No No Yes (AGPLv3 10+
Arduino Web Editor Yes Arduino c No Yes (with Plugin) Yes (AGPLv3 10+
BlueJ and Creenfoot No Raspberry PI, Beaglebone Java (for Beginners) No Runs live on Board ~ Yes (GPLv2 10+
BIPES Yes ffgo = 3'.“;::;";:Ori‘“*"‘"""y Ph Blocks, Python No Yes Yes (GPLv3) 10+
Colobot No Programming Robot Game C(like) Yes No Yes (GPLv3 12+
EVCdevelop No EV3 c No No Yes (MIT) 10+
Gearsbot Yes Configurable / no specific Blocks, Python Yes No Yes (GPLv3) 6+
;‘&‘ES; udio (successor of 8;;;:& 19 \ore than 120 platforms c No Yes No 12+
Micro:Bit Blocks Editor Yes Micro:Bit Blocks, JavaScript Yes Yes Yes (MIT 6+
Micro:Bit MicroPython Yes Micro:Bit, Calliope (limited) Python No Yes Yes 10+
Mind+ Yes'” Arduino, Micro:Bit, ESP32 & more Block No Yes Yes (App is GPLv2) 6+
Mu No Raspberry PI, Micro MicroPython No Yes (offline cross- o py g 10+
Y : compiling)
NXT, EV3, Open Roberta Sim,
Open Roberta Lab Yes Calliope, Micro , BOB3, NAO, Blocks Yes Yes Yes (Apache2) 6+
Bot'n'Roll

S1A - SeratchdArduing 2(:\(‘,?1(’1;10,1 to 2:3\;?::; Diccimila, Duemilanove g Yes No Yes (MIT) .
TinkerCad Yes Arduino, Circuits, and 3D Designs Block Type Yes IDD"E'“I“d for Arduino 8+
VS Code using Plugins No More than 120 platforms Various (no Block-Type) No Yes No & Yes (source,),

MIT)

Table 1. Extended comparison of programming environments suitable for educational
robotics, original from Haller-Seeber (2024, Table 3.2, p.11).

9 Runs a Server on the specific Hardware-Platform

10 There is a App for Windows, Mac and Linux which support a wider variety of
Hardware. The Web-Version does currently not support Hardware connections when
using Linux OS.

https://learn.adafruit.com/webide/overview
https://github.com/adafruit/Adafruit-WebIDE
http://www.arduinoblocks.com
https://learn.sparkfun.com/ArduBlock
https://github.com/taweili/ardublock
https://www.arduino.cc/en/Main/Software
https://github.com/arduino/arduino-ide
https://create.arduino.cc/editor
https://github.com/arduino/arduino-ide
https://www.bluej.org/raspberrypi/index.html
https://www.greenfoot.org/door
https://github.com/k-pet-group/BlueJ-Greenfoot
https://bipes.net.br/wp/
https://github.com/BIPES/BIPES
https://github.com/colobot/colobot
https://github.com/colobot/colobot
http://www.evcdevelop.at/
https://gears.aposteriori.com.sg/
https://github.com/QuirkyCort/gears
https://www.keil.arm.com/
https://makecode.microbit.org/
https://github.com/microsoft/pxt-microbit
http://python.microbit.org/
https://mindplus.cc/
https://ide.mindplus.top/
https://codewith.mu
https://github.com/mu-editor/mu
https://lab.open-roberta.org
https://github.com/OpenRoberta/openroberta-lab
http://s4a.cat/
https://scratch.mit.edu
http://s4a.cat/
https://tinkercad.com
https://vscode.org

	A Free and Open Web-Based IDE for the Sphero Bolt

