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Abstract— Inspired by biological systems, complex object ma-
nipulation can benefit from using the environment to stabilize
the involved objects. We show that this holds as well for robotic
manipulation by evaluating how the environment can be used to
optimize a screwing task. We compared the same manipulation
with and without using the environment. We were able to
improve the success rate as well as to minimize the stress for the
robots joints by stabilizing the object with pressing it against
a table and by using the robots impedance mode to reduce the
applied forces.

I. INTRODUCTION

Animals use physical support provided by the static envi-
ronments in complicated tasks that they cannot achieve using
their sensorimotor skills with the tools that they actively
control. For example, chimpanzees use stones as active tools
in order to crack the nuts, but they need a stable and static
surface to crash the stone against [6]. As another example,
the chimpanzees can assemble long sticks by inserting one
into another in order to extend their reachability but they
again need a static support for stabilization [11]. While they
are very skilled in bi-manual manipulation, insertion of one
stick into the other one is still difficult as it requires very fine
control of both objects. The stick needs to be inserted into
a small hole while maintaining the collinear arrangement of
the sticks. In order to achieve this task, the chimpanzees use
ground surface to stabilize one of the objects while focusing
on the control of the other one as shown in Fig. 1.

In this paper, we aim to utilize a similar support mecha-
nism in order to increase the performance of a robotic bi-
manual manipulation task, namely screwing. Screwing is a
complicated task as it involves two objects that need to be
grasped and aligned first, and manipulated with fine control
in complex trajectories later. Manually coding such motor
program is possible (actually this is done in factory settings
in industrial robots), but is very time-consuming and do
not scale well to changing objects and noisy environments.
Learning such a complex action from scratch is not realistic
as well because of the high dimensional search space.

We use learning by demonstration paradigm [4], where
the robot observes a screwing performance, and imitates the
observation to achieve the task autonomously. As the phys-
ical interaction dynamics between the robot and the objects
is very crucial in screwing task, it is not straightforward to
map observed human demonstration to robot’s sensorimo-
tor space. Thus, we formulate this problem in kinesthetic
teaching framework, where the demonstration is performed
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Fig. 1. These photographs taken during Wolfgang Kohler’s seminal
experiments[11] show that chimpanzees have the ability to benefit from
support provided by the environment in order to stabilize one of the objects
during bi-manual stick assembly task.

with robot’s own body, i.e. the robot is physically guided
through screwing. The robot then is able to reproduce the
task based on its one-shot experience. The exact replication
of the demonstrated action trajectory does only perform well
in the exactly same noise-free environment, which is not a re-
alistic assumption. In this paper, we use Dynamic Movement
Primitives (DMPs) to learn and reproduce complex screwing
action where the action trajectory is encoded with a small
number of parameters [13]. DMPs, inspired from human
motor control, enable robots to learn complex tasks ranging
from drum playing [8] to biped locomotion [12]. Recorded
movements are represented as a set of differential equations
that provide robustness against perturbations, reaching to
the attractor point, adaptation to different initial and goal
positions, and learning of non-linear movement trajectories.

The main focus of this paper is to realize the use of
environment support in screwing task in order to increase the
performance. This support is not explicitly encoded in robot
control; but instead, the DMP-based screwing action that is
learned through kinesthetic teaching is applied in various
configurations with and without environment support. We
also analyze the effect of joint stiffness in different settings,
and conclude that the robot with flexible joints achieves this
task best when one of the objects is pressed against a table.

The remainder of this paper is structured as follows.
Section III provides an overview of our robotic system and
its environment. Section IV then introduces our approach to
robot object manipulation and how the robot actually exploits
the environment. Next, in Section V we discuss the results
of our experiments as well as positioning them w.r.t. related



work. We conclude in Section VI with a summary of the
major contributions and an outlook on future work.

II. RELATED WORK

Aiyama [1] analysed the kinematics of environment-
contacting tasks by a position-controlled manipulator with a
free-joint structure. For this, both, a kinematic and geometric
analysis of the manipulated object is done. Further, by the
outcomes of these analyses, conditions to achieve desired
manipulation against friction and loss of contact are deter-
mined. Aiyama applied his approach successfully for object
sliding and insertion tasks. Verma et al. [16] investigated
the robot box-pushing of stationary objects in interaction
with a planar environment that is equipped with embedded
sensors. The purpose of the sensors is to detect pushable
objects. Verma et al. showed that pushes then are more
accurate if the pose information of the objects, retrieved by
the sensors, is used when pushing. Related work is done in
the area of dynamic interaction, such as cooperative robot-
human tasks. Amor et al. [2] employ interaction models
between two humans in on-going interaction tasks with the
aim to learn how to respond to human partners. Similar work
has been done by Berger et al. [3], who infer guidance
information from a cooperative human-robot task. They
propose a machine learning approach, which learns statistical
model during an interaction phase to predict the outcome of
future interactions. If the actually measured forces deviate,
this is considered as robot guidance. Traversaro et. al. [14]
estimated friction, inertial and motor parameters by partial
least-square method to be able to detect contacts with the
environment.

III. SYSTEM DESCRIPTION

Our work is implemented using two KUKA 7 DoFs
Lightweight robot 4+ with Servo-electric 3-Finger SCHUNK
SDH-2 hands mounted on them (Fig. 2). There are three
different control strategies offered by the robot arms:

• Position control: Exact positioning in both joint angles
and cartesian coordinates is enabled.

• Impedance control: In this mode the robot simulates a
virtual spring-damper system, whenever external forces
are applied to it. It is possible to define the impedance
settings either in Cartesian or joint space. The robot
allows to set the stiffness of the virtual spring, the spring
damping as well as settings for maximum torque or de-
viation from the desired position. Important settings that
have been used to implement the described experiments
are listed with their respective minimum and maximum
values in table I. Impedance control can be of great
use in robot manipulation as it reduces the stress on the
robot joints and enables the robot to react on unexpected
behaviour (e.g. assembly of complex parts by Giordano
et. al [9])

• Gravity compensation: This controller allows free guid-
ance of the robot while it compensates for gravity.

The KUKA LWR is able to safely pick up objects of an
approximate weight of m = 15 kg (Maximum force F =

Short Description Min
Value

Max
Value

Unit

Cartesian spring stiffness 0.01 5000 N / m
Cartesian spring damping 0.01 1 N s / m
Maximum applied force (Cartesian
space)

0 150 N

Maximum Cartesian deviation 0.01 100 mm
Maximum torque per joint 0 - N m

TABLE I
ROBOT CONSTANTS

150 N). It provides force and torque sensors for each joint.
Further, the controller computes the forces and torques in
Cartesian space from the force/torque information in joint
space. The arms can be programmed by a combination of
the KRL (KUKA robot language) and the FRI (Fast Research
Interface), which allows to control them via an Ethernet con-
nection. The high level control has been done by a modified
version of OROCOS [7] and the Kukadu framework [10],
which provides support for dynamic movement primitives,
regression techniques and reinforcement learning. For further
information concerning the robot arm the interested reader
might consult [5].
Two Schunk SDH-2 hands have been mounted on the arms. It
is a dexterous robotic hand providing pressure sensor panels.
It has a total length of 253 mm and consists of three modular
fingers. Two fingers can rotate along their vertical axis, which
can be used to implement different grasping types. Each
finger itself has two degrees of freedom, which can be used to
open and close the hand. Hence, in total it provides 7 degrees
of freedom. The maximal momentum per joint is of special
interest, as it defines the strength of the grasp. The joints 2,
4 and 6 can apply a momentum of M = 2.1 Nm, while the
joints 3, 5 and 7 can provide a momentum of M = 1.4 Nm.
However, the actually exerted momentum highly depends
on the current hand temperature. High temperature leads to
lower momentum and therefore weaker grasps. The hand
expects a maximum current of I = 5A and a voltage of
U = 24V. Each finger has two pressure sensor arrays, where
all arrays are made of 6×14 sensor texels and each texel has
a size of s = 3.4 mm. The communication for hand control
and sensor data retrieval can be done by two separate serial
ports.
In order to do the evaluation of the proposed approach,
two environments have been used. In environment 1 the
pendulum is pressed against the table during execution of the
task (Fig. 2 left). Environment 2 does not use the table to
support the screwing execution by stabilizing the pendulum.
The table is used only for picking up the pendulum head
(Fig. 2 right).
For the screwing task implementation we used the pendulum
and the pendulum head shown in Fig. 3. To increase the
tables friction coefficient, we used a rubber foam sheet on
the table as it can be seen in the Fig. 2.



Fig. 2. The robot setup and different configurations used in experiments. Environment 1 uses table (left), whereas in Environment 2 the table has been
removed (right)

Fig. 3. Objects used for screwing (pendulum head and pendulum); they
are placed on the table and picked up by spherical (pendulum head) and
cylindrical grasp (pendulum)

IV. APPROACH

This section describes the overall approach used in this pa-
per. Firstly, the framework of dynamic movement primitives
(DMP) is described. This section is followed by the descrip-
tion of the experimental approach that has been chosen to
evaluate the influence of the usage of the environment for
more complex manipulation tasks. We used a screwing task
to evaluate the influence of the usage of the environment on
the performance of the manipulation. The used robot setting
as well as the used objects have been described in section
III.

A. Evaluation environments

To evaluate the influence of the environment we used two
different environments (see Fig. 2):

• Environment 1: The first environment applies the pre-
viously described screwing approach by pressing the
pendulum onto the table to stabilize it (left arm). The
two objects (pendulum and pendulum head) have been
placed on a fixed position on the table, where the robot
grasped it. The pendulum has been pressed on the table
with force while the right arm applies the screwing
operation. This force is due to the teaching process
where the pendulum end is positioned slightly below
the level of the table. This enforces the robot to press
the pendulum against the table because it tries to reach
the desired position.

• Environment 2: Here, the pickup procedure started the
same as in environment 1. As soon as the objects have
been grasped, the table has been removed, while the
rest of the execution was the same. This has been done
to ensure comparability of the two approaches as both
scenarios use the same training data to do screwing.

As the table had to be moved to execute the experiment
in env. 2 to avoid contact between table and pendulum, the
environment had to be calibrated before every new execution
to get reliable data. This had been required because it was
not possible to move back the table to the exact desired
position, which led to changed object locations. As the
grasping positions had been fixed, calibration of the table
position was necessary. This has been done by performing
the screwing in env. 1 until it succeeded. Afterwards we
performed the next evaluation in env. 2. The results of in
total 20 trials (10 per environment) are presented in section
V.

B. Learning of Screwing Operation

The screwing operation has been learned by a combination
of programmed grasps and a screwing trajectory learned from
kinesthetic teaching (a human provides a sample trajectory
by guiding the robot). Therefore, the whole manipulation can
be split up in two phases. The first part is responsible for
grasping the two objects (pendulum head with right hand
and pendulum with left hand). The objects are placed at
predefined locations and orientations, where the grasping
positions have been provided manually to the system. After
moving the arms to the desired grasping point, the hands
are closed with maximum force in order to be able to
pick up the objects. Afterwards the objects are prepared for
screwing (see Fig. 2). Depending on the used environment,
the pendulum is pressed against the table (Env. 1) or moved
to the same position without the presence of the table (Env.
2). In phase two the screwing itself is executed by a trajectory
encoded with DMPs in joint space. The screwing operation
is started by co-linearly aligning the arm, which is holding
the pendulum head, to the pendulum. Afterwards, the last



joint of the right arm is actuated, which yields a rotation of
360 degrees around the pendulum axis, while simultaneously
pressing the pendulum head on the pendulum. To execute the
supervised trajectory, we use dynamic movement primitives
[13]. To determine the coefficients of a discrete DMP from
the supervised trajectory, linear regression is used.

C. Dynamic Movement Primitives
A Dynamic movement primitive is a parametrized control

policy formulation which comes up with some desirable
properties out of the box. Here, a short overview on the
mathematical formulation and the most important properties
will be given. For further information the reader might be
interested in [13].

The core of the mathematical formulation is given in
equations 1 and 2. It consists of two dependent first order
differential equations, which together form a system of
differential equations. A dynamic movement primitive is a
system of differential equations of the form

τ ż = αz (βz (g− y)− z)+ f (1)

τ ẏ = z (2)

where g is the goal state, αz and βz are time constants
(spring stiffness, damping), τ is a temporal scaling factor
and f is an arbitrary continuous function of the form

f (x) =
∑

N
i=1 ψi(x)wi

∑
N
i=1 ψi(x)

x (3)

where ψi are Gaussian basis functions. Here, the variables
wi have to be learned as they define the shape of the resulting
trajectory. The constants αz, βz and τ should be selected such
that the system converges to 90 percent of the goal state
after t = tmax. By design, DMPs guarantee that the trajectory
will always reach the attractor point g. The execution can
be stretched by changing the temporal scaling factor. The
non-linear function f is responsible for the shape of the
trajectory, thus containing the DMPs parameters that have
to be learned. A detailed analysis on why DMPs can ensure
these properties is given in [10]. The variable x itself is again
defined by another differential equation (DE), which depends
on the type of movement one wants to describe with DMPs.

DMPs provide two different types of movements, namely
discrete movement and rhythmic movement.

1) Discrete Movement: A discrete movement is a move-
ment of finite time. An example for this kind of movement
is a reaching task. The DE defining x(t) is given in equation
4.

τ ẋ =−αxx, x(0) = 1 (4)

This differential equation can be adjusted to react on devia-
tions during the trajectory execution. One possibility is the
so-called phase stopping which slows down the trajectory
execution in case of high deviations from the desired path.
This can be formulated by the equation

τ ẋ =−αx
x

1+αc (yactual − y)2 (5)

which takes into account the current state of the trajectory
execution.

2) Rhythmic Movement: A rhythmic movement can be
imagined as an infinite repetition of a cyclic movement (start
and end point are the same). To be able to represent this, the
Gaussian basis functions ψi are replaced by

ψi = e−hi(cos(x−ci)−1) (6)

An example for this kind of movement is playing the drums
with the same rhythm [15]. In this paper we only analyse the
influence of the environment usage on discrete movements.

V. RESULTS AND DISCUSSION

In this section the experimental results will be presented
and discussed. The experimental setting has been described
in section III. In total, 20 trials (10 per environment) have
been performed. During the experiment, the success rate as
well as the forces measured at end effector positions of
both arms have been collected. Here, we define a trial to be
successful if the pendulum head cannot be removed from the
pendulum without further rotation. A comparison of the force
data between trials in both environments, hand temperature
dependent success rates in different environments and affects
of impedance mode on the performance are given in the
following section.

A. Measured Forces in both Environments

By analysis of our data, four representative samples have
been identified:

• Sample 1 (red): Screwing in env. 1 with position mode.
The execution succeeded.

• Sample 2 (green): Screwing in env. 2 with position
mode. The execution failed because of the pendulum
slipping through the hand holding it.

• Sample 3 (cyan): Screwing in env. 2 with position mode.
The execution succeeded.

• Sample 4 (magenta): Screwing in env. 1 with impedance
mode. The stiffness settings have been selected with
values of 4000 and 250 for Cartesian stiffness and end-
effector stiffness respectively. The damping was chosen
with 0.7.

Figures 4-6 visualize the measured forces for all four sam-
ples. Fig. 4 presents the absolute value of the measured forces
vectors, whereas Fig. 5 and Fig. 6 show the components of
the Cartesian force vectors. We omitted the data measured
until t = 50s as it contains data for grasping the objects,
which is the same in all samples. They plot the evolution
of the forces for all four samples over time. In 4, the most
important phases are already identifiable.

B. Identification of Phases

In section IV-B the different phases of the manipulation
have been listed. In Fig. 4, these phase can be identified.
The first notable event has been observed at t = 60s, which
shows a strong increase of the forces in samples 1 and 4 due
to the robot pressing the pendulum on the table. Note that
this does not occur in samples 2 and 3, as the robot holds



Fig. 4. Absolute value of the measure forces vectors for each arm (Right
arm performs screwing, Left arm holds the pendulum). Colors: Red (Sample
1), Green (Sample 2), Cyan (Sample 3), Magenta (Sample 4)

the pendulum freely. The screwing operation starts at time
t = 90s. This manipulation leads to increase of the exerted
forces on both arms. The screwing phase is the longest one
and continues until t = 165s, where the right arm stops to
rotate the pendulum head. However, the right hand is still
closed which is the reason, why some force is measured.
Finally, in t = 170 the right hand releases the pendulum head.

C. Comparison of Absolute Forces

We will compare each sample to sample 1, as it had a
very high success rate of 90 percent. In general, it can be
seen, that by pressing the pendulum against the table, the
robot is able to exert higher forces, which is a sign of high
stability of the setting. However, this leads to higher stress
of the robot joints (compare red and cyan line). Additionally,
in the graph for an unsuccessful trial in env. 2 (Fig. 4) it can
be seen that the reason for the failure is due to the inability
of the robot to apply the forces required to do the screwing
(green line). The higher forces in the end of the execution
result from the right arm still pushing the pendulum head on
the pendulum without being able to screw further.
Further, experiments in impedance mode have been per-
formed (magenta line). It should be noted that this sam-
ple resulted in much lower forces while still being able
to perform the screwing successfully. The forces are low
compared with the unsuccessful sample 2. The difference
can be found in the beginning of the screwing where a
higher force during the phase of catching the pendulum and
pendulum head is measured. Therefore it can be concluded
that in the unsuccessful sample 2 the two objects lose contact
in the beginning.
Indeed, evidence for this assumption can be found in the
measured force at t = 95s, where the measured force jumps
8N to 5N (left arm) and 8N to 2N (green line). In the video
that has been recorded during execution the reason can be
found: the pendulum is slightly slipping through the left hand

Fig. 5. Measured forces measured for each Cartesian dimension (Right arm
- performing screwing operation), Colors: Red (Sample 1), Green (Sample
2), Cyan (Sample 3), Magenta (Sample 4)

because the grasp of the left hand is not strong enough to
stabilize the system. This motivates why the success rate
for env. 1 is higher than the one for env. 2 (see section V-
E). Still, this weakness is not always present, as sample 3
is showing (cyan line). In Fig. 4 the force measured at the
right arm is even getting higher than the one for sample 1
at t = 95s. The success of the screwing in env. 2 is prone to
slight variations in the initial grasp, which gives rise for the
approach to use the environment. An inexact grasp in env. 1
can still be compensated by the stabilization that is achieved
by pressing the pendulum on the table. This is not the case
for env. 2, which leads to a lower success rate. This issue
gets an even bigger problem as soon as the object locations
are not fixed any more but estimated by some vision system,
as these systems are not exact. However, the usage of the
table (env. 1) does not come without any practical problems.

D. Disadvantages of Using Environment

One typical problem that has been observed over all
trials is the slipping of the pendulum on the table while
manipulating the two objects. Note that this should not be
confused with the problem of pendulum slipping through
the hands while holding it. This behaviour can be seen in
Fig. 6 (Z component) for sample 1. At time t = 95s (begin
of screwing) the force increases strongly until a certain
maximum is reached, which then leads to a spontaneous
reduction. This effect can be seen even stronger at t =
150s. Even though this had no influence on the success
of the manipulation, it can potentially apply strong force
changes on the robot, which can be harmful. These results
for sample 1 may lead to future approaches to estimate the
friction coefficient between objects. Similar work has been
done by Aiyama [1], who used kinematic and geometric
analysis to successfully estimate the friction coefficient for
object sliding and insertion tasks. A possible solution to the
slipping-pendulum problem has been found in the usage of



Fig. 6. Measured forces measured for each Cartesian dimension (Left arm
- performing screwing operation), Colors: Red (Sample 1), Green (Sample
2), Cyan (Sample 3), Magenta (Sample 4)

the impedance mode where the measured forces have been
smoothed and the slipping has not been observed at all. It can
be seen that the usage of impedance mode led to smoothing
of the measured forces (see Fig. 5) by preserving the success
rates of sample 1 (see section V-E).

E. Success Rates

The success rates have been measured for the two different
environments. The success rate for env. 1 has been deter-
mined with 90 percent, whereas the success rate for env. 2
has been much lower with 60 percent. By using impedance
mode on top of reusing the environment, no significant
change of the success rate has been observed. However, the
applied forces were much lower and smoother as for the
sample with position mode. Additionally, the influence of the
robot hand temperature should be mentioned as overheating
of the hand led to a strong reduction of the success rates for
both environments. This is due to the fact that the hand was
not able to apply sufficiently stable grasps if the temperature
has been to high. Here, even the method with using of the
environment was not able to improve the performance.

VI. CONCLUSION

In this paper we investigated the potential effect of envi-
ronment exploitation to achieve a complex task. As main
contribution we have shown that object manipulation in
robotics can benefit from considering to use the environ-
ment tot stabilize the execution. We evaluated environment
exploitation for a screwing task that requires bi-manual
manipulation which potentially benefits from environment
usage, as a table can be used to stabilize the objects.
Experimental results show that the success rate can be
improved significantly. Additionally, the stress on the robot
joints can be reduced by setting the robots stiffness settings
appropriately. Further, with this approach, problems such as
slipping of the manipulated objects can be overcome. In

future we plan to study how object manipulation can be
optimized by the estimation of the friction coefficient.
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