Generalizing autonomously segmented complex trajectories based on
learned task-specific environment metrics

Simon Hangl, Emre Ugur, and Justus Piater

University of Innsbruck, Email: firstname.lastname @uibk.ac.at

I. INTRODUCTION

We study how a robot can learn how to make best use of a
number of demonstrated trajectories, which are effective for
an arbitrary manipulation task in different environments, in
order to accomplish the same task in a novel environment.
In our previous work [3], we showed that the new trajectory
can be computed as the weighted sum of the known tra-
jectories (encoded as Dynamic Movement Primitives) where
the weights are determined based on the similarities of the
corresponding environments compared to the new one.

We discussed that pre-defining a metric to compare envi-
ronment states is not realistic as the metric is not fixed
and depends on task-related variables of the environment.
For example the environment similarity depends on the size
and geometry of the objects in an obstacle avoidance task
whereas it depends on amount of liquid in a pouring task.

Thus, we proposed to learn this metric, representing it in
Mahalanobis distance form, estimating it using the Euclidean
distance between trajectories first, and finally refining it with
policy reinforcement learning methods. When it comes to
manipulation of real objects, just being able to generalize
to new environments is not enough. Robots have to act
in highly dynamic environments and have to be able to
react on environment changes online as there are too many
influencing components to be able to predict the appropriate
reaction before executing the action. For example a tennis
player may not predict external influences like wind, which
yields a changed trajectory of the ball and therefore the
number of mishits is increased on windy days, even for
professional players. However, they are still able to adapt
to the wind and other disturbances to some certain degree.

We showed how our control policy model can be used
to easily adapt the manipulation according to changing
environment. We demonstrated that the robot can effectively
combine the set of trajectories to compute a new trajectory
for new environments in tasks such as reaching and pouring
using Kuka light weight robot arm.

In this paper, we extend our metric learning approach to
complex tasks that involve multiple sub-tasks. We discuss
that learning a single metric to compare two environment
states for a complex task may not be sufficient as in different
time-points of this task, different sub-task related environ-
ment state variables become important for the comparison.
For example, in a complex task where obstacle avoidance is
followed by pouring, the size of the obstacle is important

first, and the amount of the liquid becomes important later.
To deal with such situations, we propose a method that over-
segments the trajectory, learns a metric for each segment us-
ing the original formulation, and combines the segments with
similar metric values to obtain the final segmentation. Thus,
our contribution is two-fold. First, based on learned metric
similarity along the trajectory, the task can be segmented and
subtasks can be automatically identified. Second, because
more precise metrics are learned for each sub-task, this
new formulation enables generalization of set of trajectories
for new environments in complex tasks, whereas the non-
segmented original formulation fails.

II. TASK-SPECIFIC METRIC LEARNING

This section provides a summary of the task-specific
metric learning approach that will be extended in this paper.
For details of this approach, please see [3].

A. Overall model

Our method assumes a set of pairs of query space vectors

and sample trajectories (modelled by some control policy
like dynamic movement primitives [7]) solving a task under
this state. Query space vector here corresponds to the task-
related environment state variables. When the task has to be
solved in a novel environment, a linear combination of the
trajectories in the dataset is computed. The different instances
have to be weighted differently, as not every sample has the
same importance for the current situation (e.g. if a robot can
pass right or left of a wall, simple averaging would lead to
a crash).
Assuming that similar situations (i.e. similar query vectors)
result in similar trajectories, the importance of a given sample
can be determined by using a distance metric on the query
space. As distance measure we use a Mahalanobis metric
and learn the coefficients automatically by reusing ideas from
multidimensional scaling [9] and reinforcement learning. The
main advantage of formulating the new control policy as a
linear combination is the ability to easily adapt the trajectory
as soon as a change of the systems state is observed. This
can be done by computing the new coefficients of the linear
combination and smoothly transfer the values from the old
to the new ones during execution.

B. Trajectory Blending

Let Z be a set of M sample trajectories associated with the
query vector q; (environment state in which this trajectory

(b) Pouring

Fig. 1.

solves the task) which are obtained through kinesthetic teach-
ing. The query vector is assumed to capture enough informa-
tion about the environment to decide, how the task should be
solved (e.g. if the problem is a reaching task, the query vector
would be a vector of Cartesian goal coordinates). Given such
a set of trajectories with corresponding query vectors, we
proposed a novel control policy model given by a linear
combination of all trajectories. Under the assumption that
these trajectories can approximate a manifold of all solutions
for a given task, an arbitrary task-specific trajectory ynew
solving the task for a novel situation can be approximated
by

1 M
Ynew (qnewJaO) = _ZsiYi (Qi,t,ei) (1)
Sreg j=1

where s, is a normalization term given by sy, = Z?i] S;
and y; is a trajectory from the dataset. However, how to
determine the weights s; is a non-trivial problem in general,
as it highly depends on the task. Given the assumption
that similar situations can be handled by similar trajectories,
s; is assumed to be based on some similarity measure on
the query space. The coefficients should have high values
whenever a trajectory is more important than others for
solving the current task. As it is assumed that the situation
is fully described by the query/state vector, the coefficients
can be defined by any strictly (with distance) decreasing
function. This distance is measured by an arbitrary metric.
As the query vectors q can have arbitrary dimensions and
units, it is not straightforward to learn this metric for an
arbitrary problem. One subclass of metrics is given by the
Mahalanobis distance

miana) =/ (4 —0)"M(q - q) @

where M is a positive semi-definite matrix. The main idea
is to learn the coefficients of the metric from the trajectories
in the dataset, in order to determine the appropriate values
for the coefficients s;. It is important to note that with

N

(c) Pouring (d) Following

Pouring experiment done with the original approach

our proposed control policy formulation it is possible to
generalize to novel situations by feeding the new query point
(which reflects the current state of the environment) into the
system. It is only required to re-estimate the coefficients s;
by using the previously learned similarity metric.

C. Metric Learning

As we use a metric to measure the importance of a sample
trajectory for the currently observed environment state, the
proposed control policy requires to learn this metric from
the sample dataset. The metric is strongly dependent on the
task and needs to be learned automatically.

In order to perform a supervised metric learning approach
to learn a Mahalanobis metric for m(q;,q;) = m;;, where
q;,q; are query vectors and m;; is the distance between
these vectors, the values q;, q;, m;; would be required.
Unfortunately, the distances m;; between the query vectors
in the database are unknown. Therefore, a two step approach
has been selected. A supervised metric learning algorithm
using multidimensional scaling is used to compute an initial
estimate by using trajectory similarity measures to compute
mjj.

Multidimensional scaling is a method to reconstruct a
matrix Q of query vectors if the matrix D of pairwise
squared distances between these vectors is known. Given
that Q (query vectors of the trajectory database) and D
(estimated from trajectory comparison) are already known,
it is possible to estimate the coefficients of the Mahalanobis
metric m(q,qy) instead of computing Q. Please note that
in this phase we only compute the values m;; from trajectory
similarity, while in fact these values belong to the distance
of the query vectors.

This uses the assumption that similar trajectories are
generated by control policies for similar query vectors. Even
though this assumption might be too strong, it provides
a good initial estimate of the metric m. However, this
first step does not deliver a very precise estimate for the
metric. Therefore, in a second step, the metric will be
refined by using control policy reinforcement learning by

optimal —
initial
generalized —

optimal —
generalized —

o 0.5 1 1.5 -3 2.5 3 3.5 4 4.5)

time

] 0.5 1 1.5 2 2.5 3 2.5 4 4.5 5
time

(a) Without segmentation: Method fails to model second part of the trajectory (b) With segmentation: Method is able to reproduce ground truth trajectory

Fig. 2.

Simulated trajectory for obstacle avoidance and subsequent reaching with the original (without segmentation) and the novel approach; green line:

generalization with initial metric (no reinforcement learning), blue line: generalization after convergence of reinforcement learning, red line: ground truth

control policy reinforcement learning algorithms like PI?
[8], POWER [4] or policy gradient descent methods [6].

D. Trajectory Transitioning

Adaptive manipulation is especially important in case the
manipulation of an object can result in the unexpected move-
ment of this object due to the applied forces (e.g. screwing
a nut, pushing an object) or in case that external forces can
change the systems state unexpectedly (e.g. wind changes the
trajectory of a tennis ball). Generalization to novel situations
can be done by determining a new query vector Qpex; and
re-estimating the coefficients using the learned metric as
described above. Further, in order to make a smooth the
transition between the current coefficients (sf*™) and next
coefficients (s7**') we used the following update formula

s§0+At — S?ext (1 _ e—(ZSAl> _’_SEOG—(XSAI (3)
with the free parameter .

III. METRIC LEARNING WITH AUTONOMOUS
SEGMENTATION

In robotic manipulation, it often occurs that tasks are a
concatenation of different action primitives. However, the
sample data is provided as a single trajectory, where the
borders between each primitive are not obvious to identify.
We propose a new method to segment a trajectory at points,
where the intrinsic structure of the problem changes. There-
fore, we assume that action primitives differ in the geometry
of the query space. This means that the metric changes over
time if there is more than one primitive used to accomplish a
task. We can use this information to identify action primitives
that are meaningful for the corresponding manipulation task.
This enables us to increase the precision of our method in
more complex tasks in which the intrinsic problem changes
over time.

To be able to identify the involved skills with this ap-
proach, the metric (and therefore coefficients s; in Eq.

(1)) have to be time dependent. In contrast to the origi-
nal approach, we do not use a single metric but several
metrics that are responsible for specific durations along
the trajectory. These metrics are uniformly distributed over
time. If two adjacent metrics differ strongly, they are con-
sidered to correspond to a different skill and therefore, a
segmentation is done. Let T := {r,...,fy} be a set of time
points, then M, is the used metric in the time range Ry :=
[(tx —tr—1) /2, (tx1 — 1) /2]. Therefore, the distance between
two query vectors (;,q; at time ¢ € Ry is given by

Mo (a4, =\ (@ —a) My (@i—q;) @)

This extended metric mex (q;,q;,7) replaces the metric
m(q;,q;) in the original approach. The learning of the metric
is done similarly by initializing M;, = Mjp;; for all ¢ and
refining all metrics by reinforcing their coefficients with the
approach described Section II. As soon as the new metric
mex¢ 1S learned, the distance between two neighbouring
matrices is computed using Frobenius norm:

di,(i+l) = ||Mti _Mti+1 HF

where Frobenius norm (||||7) is defined as

lAlr = /Y. Y A% (5)
k 1

If this distance is below a pre-set threshold for two neigh-
bouring metrics, they are considered to belong to the same
skill. If the distance is higher, a segmentation is done
between the corresponding time points.

IV. PRELIMINARY RESULTS AND CONCLUSION

In our previous work we evaluated the method without
segmentation for a pouring task, where a certain amount
of corn had to be poured from one cup into another. The
position of the target cup was varied while manipulation.
Snapshots of this experiment can be found in Fig. 1.
To motivate our new approach we designed a simulated
obstacle avoidance experiment which the original method

was not able to solve. The robot should avoid an obstacle of
varying height (# < 3) and do a reaching movement (¢ > 3)
with different velocities after passing the obstacle (see
Fig. 2). Therefore, the query vector is given by q = (h,v)
with the obstacle height # and the velocity v. In Fig.
2(a) it can be seen that from ¢t = 3 the original method
is not able to perform the reaching movement properly,
as a different metric would be required to perform it.
On the other hand, with the new method, it is possible
to properly reproduce the ground truth trajectory (see
Fig. 2(b)). We learned the metric for 3 different time
positions (¢t € {1.0,2.5,4.0}). The algorithm delivered the
metric results Mo = ((1,0.9589),(0.9589,0.9449)),
M,s = ((1,0.9051),(0.9051,0.8893)), Myoy =
((1,0.7364),(0.7364,4.1484)). It can be seen that Mo
and M, 5 are similar and therefore correspond to the same
action primitive, while My o differs from both. Therefore a
segmentation has been performed. The result can be found
in Fig. 2(b).

At the current stage of research, we uniformly over-
segmented the trajectory, where the number of segmentation
points has been defined manually. To provide a more
meaningful over-segmentation other state of the art
segmentation algorithms [1], [2], [5] could be used, where
the extracted segments are then analysed by our method.
The over-segmentation could also be determined by simple
geometric properties (minima, maxima, ...) of the trajectory.
It is important to note that the performance of the method
strongly depends on the choice of the over-segmentation, as
each additional segment introduces a number of further free
parameters that have to be determined by reinforcement
learning.

We presented an extension to our previous work on control
policy metric learning that is able to segment a sample task
to meaningful action primitives. This is done by introducing
a time dependent metric, which replaces the metric in the

original approach. Further, we showed that this approach
significantly improves the generalization performance of our
method.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-
grammes FP7/20072013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies) un-
der grant agreement no. 610532, Squirrel and FP7/2007-2013
(Specific Programme Cooperation, Theme 3, Information and
Communication Technologies) under grant agreement no.
270273, Xperience.

REFERENCES

[1] M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. Segmenting
trajectories: A framework and algorithms using spatiotemporal criteria.
Journal of Spatial Information Science, (3):33-63, 2011.

[2] M. Buchin, H. Kruckenberg, and A. Kolzsch. Segmenting trajectories
based on movement states. In Proc. I5th International Symposium
on Spatial Data Handling (SDH). Springer, 2012. Accepted for
publication.

[3] S. Hangl, E. Ugur, S. Szedmak, A. Ude, and J. Piater. Reactive, task-
specific object manipulation by metric reinforcement learning. In /EEE-
RAS International Conference on Humanoid Robots, 2014. submitted.

[4] J. Kober and J. Peters. Policy search for motor primitives in robotics.
Mach. Learn., 84(1-2):171-203, July 2011.

[5] S. Lee, I. Suh, S. Calinon, and R. Johansson. Autonomous framework
for segmenting robot trajectories of manipulation task. Autonomous
Robots, pages 1-35, 2014.

[6] J. Peters and S. Schaal. Policy gradient methods for robotics. In Pro-
ceedings of the IEEE International Conference on Intelligent Robotics
Systems (IROS 2006), 2006.

[7]1 S. Schaal. dynamic movement primitives - a framework for motor
control in humans and humanoid robots. In the international symposium
on adaptive motion of animals and machines, 2003.

[8] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral
control approach to reinforcement learning. J. Mach. Learn. Res.,
11:3137-3181, Dec. 2010.

[9]1 E. W. Young. Multidimensional Scaling: History, Theory, and Appli-
cations. Lawrence, Erlbaum Associates, Publishers (Hillsdale, New
Jersey; London), 1987.

