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Abstract Recent advances in machine learning, such as deep
neural networks, have caused a huge boost in many different
areas of artificial intelligence and robotics. These methods
typically require a large corpus of well-prepared and labeled
training data, which limits the applicability to robotics. In
our opinion, a fundamental challenge in autonomous robotics
is to design systems that are simple enough to solve simple
tasks. These systems should grow in complexity step by step
and more complex models like neural networks should be
trained by re-using the information acquired over the robot’s
lifetime. Ultimately, high-level abstractions should be gen-
erated from these models, bridging the gap from low-level
sensor data to high-level AI systems. We present first steps
into this direction and analyse their limitations and future
extensions in order to achieve the goal of designing autono-
mous agents.

Keywords Autonomous robots · Cognitive robotics ·
Developmental robotics · Lifelong learning · Robot
creativity · Robot playing

1 Introduction

The question about what constitutes human intelligence and
what enables them to act so effortlessly in our highly un-
structured world puzzled many of the greatest minds of hu-
mankind [1, 16, 28]. For a long time this topic was mainly
reserved for philosophers. However, during the last century,
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groundbreaking discoveries in medicine, biology and devel-
opmental psychology disclosed principles involved in the
human brain [6, 10, 11, 18]. Even though many basic prin-
ciples of the human brain are understood in a rudimentary
way, until recent years it was not possible to reproduce human-
like performance in most scenarios. This strongly changed
with the increase of computational power and the rise of ma-
chine learning approaches such as techniques summarized
under the term deep neural networks [22]. These methods
caused a breakthrough in several disciplines that were as-
sumed to be unsolvable for several decades to come [13,23].
Despite all these exciting developments, it is still not pos-
sible to buy robots in a shop in order to let them work in
households or other unstructured environments.

1.1 Burning questions in robotics

There is a large variety of reasons for the lack of functional
household robots. The sensorimotor space is huge and it is
impractical or even impossible to learn complex skills from
scratch by simple, unguided exploration of the whole space.
We believe that a learning agent needs to be equipped with
biases that allow it to reduce the problem complexity while
still maintaining generality. An example of such a bias is the
definition of meaningful dimensionality reductions like fea-
ture extractors on sensor data, limiting the controllable joints
or ignoring certain dimensions of the sensor data. Even hu-
man infants exhibit such biases, for example in the form of
the grasp reflex or the change of importance and strength of
certain senses. Abstract concepts can be trained from experi-
ence which in turn can change the nature of the used biases,
e.g. by unlocking consideration of additional dimensions of
the sensor data. This enables the robot to learn how to solve
more complex problems and to use its complete sensorimo-
tor capabilities based on the learned abstractions.
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Modern machine learning approaches typically require a
huge amount of training data. Currently this often requires
massive human intervention, which is equivalent to provid-
ing the described biases manually, e.g. by tagging images of
objects or designing simulated environments. This limits the
applicability of the powerful learning machinery to isolated
scenarios in which experts design appropriate solutions by
providing controlled learning environments [14], by design-
ing simulated environments for learning [19, 27, 32] or by
adding reasonable domain-specific assumptions [12]. When
training is done, these methods generalize well to a large va-
riety of environments for the specific task. However, there is
an infinite number of tasks which makes it hard to follow
this paradigm until all relevant tasks are covered.

1.2 Developmental robotics

In recent years a sub-discipline of robotics tackling this kind
of problems attracted increased attention, that is, develop-
mental robotics [2, 15, 31]. This branch treats the design of
self-learning and autonomous agents, often inspired by hu-
man or primate infants; c.f. Fig. 1. Stoytchev identified 5 key
principles that most work in developmental robotics has in
common in order to create autonomous robots [24]:

1. Verification principle: Novel skills can only be learned
autonomously to the extent that robots can verify the
success of performed action autonomously [26].

2. Principle of embodiment: In order to be able to gain new
knowledge about the world the robot requires a body
with which it can interact with the environment, i.e. per-
ceive (e.g. with sensors) and act (e.g. by using motors).

3. Principle of subjectivity: During the lifetime of a robot,
it makes many observations and gains knowledge about
the world. It learns how to act in this world and how to
achieve certain goals. How the robot does this strongly
depends on its subjective history. The robot is subject
to sensorimotor limitations, i.e. there is nothing to learn
about the world if it cannot be accessed by sensors or
motors, and to experimental limitations, i.e. the knowl-
edge the robot is able to acquire is limited by the exper-
iments it performs.

4. Principle of grounding: Even though the verification prin-
ciple states that everything has to be verified autono-
mously, there must be an atomic information entity in
which the robot has to trust. An example would be the
low-level tactile feedback of an artificial skin if the robot
has no other possibility to check for the correctness of
the observed data.

5. Incremental development: Not everything could be learned
at the same time, because some problems are simply too
complex for a certain stage of development, e.g. humans
do not learn integrals before addition.

These principles enable robots to gather information over
a lifetime with which powerful learning techniques can be
used. Robots can interact with and improve their knowl-
edge about the world. The robot first gains simple knowl-
edge and skills and simplifies whenever possible, e.g. by re-
ducing the dimensionality of sensor data. The more experi-
ence the robot gains, the more complex the models get and
the harder the task to solve can be. This represents differ-
ent stages of development in a robot’s life. In this work we
summarise the authors’ previous work that spans the transi-
tion from simple random combination of learned behaviours
to elementary goal-based planning and finally to high-level
cognitive capabilities. We check this work for agreement
with the principles of developmental robotics and analyse
the limitations and future challenges.

1.3 Intrinsic motivation

A prominent area of interest is the field of intrinsic moti-
vation [3, 4, 17, 20, 25, 30] in which robots explore the en-
vironment autonomously. The idea is to explore situations
that are simple enough to be able to learn something, but
complex enough to observe novel properties. Schmidhuber
provides a sophisticated summary of work on intrinsic moti-
vation and embedds the idea into a general framework [21].
He states that many of these works optimise some sort of
intrinsic reward, which is related to the improvement of the
prediction performance of the model. He further argues that
such a general framework can explain concepts like creativ-
ity and fun.

In such systems the robot constructs models of the world
and extends them slightly over time by autonomously in-
teracting with the environment. One major problem is that
many of these approaches represent a very early stage of
robotic development and therefore the solved tasks are quite
simple, e.g. learning how to reach to a certain position. This
gave rise to previous the author’s previous work in order to
come up with methods that preserve the high autonomy of
intrinsic motivation approaches but enable the robot to solve
more complex tasks. These approaches shall be outlined in
the following sections.

2 Robotic playing

Hangl et al. have presented work on robotic playing based
on insights in developmental psychology [9]. Piaget studied
human infants and identified different developmental stages
[18]. An early stage in infant development is the so-called
coordination of secondary schemata, which is dominant dur-
ing an age between 8 and 12 months. In this phase, infants
try to reach certain goals by sequencing behaviours they
learned earlier. A key point is that they do not yet create
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Fig. 1: The goal of developmental robotics is to design
robots that learn like human infants. This can be done by
life-long learning and interaction with the environment [9].

sophisticated plans but rather learn that a certain combina-
tion works well to achieve a desired goal without actually
understanding yet why.

2.1 Learning behaviour sequences

We followed this principle by learning combinations of so-
called behaviours which are functions b : S→ S, s 7→ s′ that
map (partially observable) environment states s ∈ S to other
states s′ ∈ S. A behaviour bσ ∈ B is part of a skill σ =

(bσ ,Successσ ) if the robot additionally holds a success pred-
icate Successσ which enables it to verify whether or not a
goal was achieved. In this case the behaviour bσ is called
the basic behaviour of the skill σ . The domain of applica-
bility (DoA) Dσ = {s ∈ S |Successσ (bσ (s)) = true} is the
set of all states in which the goal can be achieved.

The idea is to train new skills by teaching a basic be-
haviour, e.g. by kinesthetic teaching or simple programming,
for a specific, restricted DoA. The robot then increases the
DoA by using other trained behaviours to prepare the envi-
ronment such that the basic behaviour can be executed suc-
cessfully again. This is equivalent to learning behaviour se-
quences b◦bσ (ŝ) with Successσ (b◦bσ (ŝ)) = true for states
ŝ that were not in the DoA of the skill before, i.e. ŝ /∈ Dσ .

We illustrate this on the task of placing an object in a
drawer. The basic behaviour bσ is to place an object inside
an open drawer with a simple trajectory. If the drawer is
open, i.e. the environment is in state sopen, no preparation
is required. If the drawer is closed, preparation is done by
opening it with an opening behaviour bopen and therefore
the skill is executed by bopen ◦ bσ (sclosed). Whether or not a
drawer is open can be determined either by using vision or,
as done in our framework, by analysing haptic feedback ac-
quired by poking the drawer. The robot identifies the haptic
feedback corresponding to relevant states, so-called percep-

tual states, by playing with the involved objects, and tries
out different combinations of behaviours in order to achieve
the task.

A perceptual state is characterised by task-relevant as-
pects of the sensor data. This generally requires dimension-
ality reduction and is done by training a classifier to decide
which perceptual state is present, e.g. sopen, sclosed. The nec-
essary information is gathered by playing with the object
and exploring it with different sensing actions in the respec-
tive perceptual states. In the most basic version this requires
a human playing partner which prepares the environment
such that the corresponding perceptual states are present.
The sensing action that is identified to be most effective to
discrminate between different perceptual states is used in the
future to estimate the state. Before executing a skill, the per-
ceptual state is estimated, and, depending on the state, an
appropriate preparatory behaviour is identified by autono-
mous playing.

When a skill is well trained, it can be used as prepara-
tory behaviour for other skills by constructing skill hierar-
chies, in order to solve more and more complex tasks. An
example might be the task of filling the drawer with objects
and closing it again. Here, the basic behaviour is to close the
drawer, and the preparatory behaviour is the placement skill
described before.

2.2 Typical setting

The described approach was tested using a robot with two
KUKA LWR 4+ arms and a Schunk SDH gripper attached
to each arm, c.f. Fig. 1. Both arms are used in parallel in
order to manipulate objects. Force / torque data from the arm
sensors was recorded during the execution of the sensing
actions. In this type of setting it is typically very difficult to
learn complex manipulations from scratch. However, with
our method we were able to reduce the problem complexity
well enough so that complex manipulations can be learned.

A typical skill that can be learned with this kind of learn-
ing approach is how to grasp a book from a solid surface.
The basic behaviour is to grasp a book at the spine. The book
is squeezed between both hands (c.f. Fig. 2). It is slightly
lifted in order to get the fingers below it and is grasped af-
terwards. If the book is placed on the table in a different
orientation, this does not work anymore. However, the robot
can still increase the DoA by learning that rotating the book
to the correct position is sufficient to achieve the goal.

By playing, the robot figured out that the execution suc-
cess of such a basic behaviour depends on the orientation
of the book which is estimated by sliding along the sur-
face of the book. After determining the most useful sensing
action and the corresponding observable perceptual states,
the robot played with the book in order to rotate it correctly
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(a) Learning curve without any extensions (no boredom, no creativity)
with a continious increase of the success rate over time.
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(b) Learning curve with the boredom and creativity extensions switched
on. The success rate curve shows an exploration phase (until roll-out
number 30) and an execution phase afterwards.

Fig. 2: Learning behaviour for a book grasping skill with different modes of the developmental robotic system described in
sections 2 and 3. The graphs are generated from experiments published in previous work [7].

before executing the basic behaviour. In this case, the use-
ful behaviours are rotate 90◦, rotate 180◦, rotate 270◦ and
the void behaviour (if the book is already rotated correctly).
Each of them solves the problem for one of the four possi-
ble rotations of a book. A skill is executed by the sequence
estimate state → prepare → execute basic behaviour. The
learning rate in this typical manipulation scenario is dis-
played in Fig 2a and shows a continuous increase of the
success rate. The longer the robot plays with the object, the
more situations can be solved.

2.3 Analysis

This kind of approach has some advantages that make it very
easy to fulfill the principles of developmental robotics and
are therefore well suited for autonomous robots.

A typical problem in fulfilling the verification principle
is to gather the data required for making a valid decision
about success. This is typically due to the large domain of
applicabilities and strongly varying sensor data for different
states. For example, the joint or Cartesian arm positions vary
strongly for different object positions in a grasping task. We
strongly reduce this problem by transforming the environ-
ment to the same state in which the basic behaviour was
trained. This drastically reduces the variety of sensor data
encountered. For example, the book is always pushed into
the same orientation from which it is grasped, and therefore
it is much simpler to train the success predicate Successσ .
In previous work we demonstrated that such a predicate can

be trained from successful training data by using recurring
neural networks [8].

Another important property is that the robot learns to
ground relevant perceptual states in the sensor data, i.e. hap-
tic data in our case. Here we make a pragmatic compromise
by either having a human supervisor prepare the perceptual
states or by telling the robot how to prepare them autono-
mously. This can be viewed as supervised playing, just as it
is done with babies as well.

We emphasise the support for incremental development
in which simple skills are trained first, which can then be
used as preparatory behaviours for other, more complex
skills.

3 Transition to goal-driven planning

Even though the approach described in section 2 supports
autonomous behaviour, cognitive capabilities and the expres-
sive power are limited. For example the robot does not un-
derstand the environment it is acting on in a sense that it
knows the effects of its actions. The autonomous playing is
essentially based on trying out different combinations of be-
haviours in order to achieve a task without requiring a model
of the environment, i.e. a function that predicts the effect of
a behaviour. In the spirit of the principles of incremental
development and subjectivity we extended this approach by
learning such an environment model in order to reach the
next developmental stage [7]. The idea arises from the in-
sight that during the autonomous playing the effects of ex-
ecuted behaviours can be observed by estimating the per-
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ceptual state again after executing a behaviour. This way, a
probability distribution p(s′ |s,b) over the effect s′ ∈ S of the
behaviour b ∈ B on the state s ∈ S can be learned over time.
Initially, without any knowledge, the distribution is uniform
because the outcome of certain actions is completely un-
known. The distribution is refined by updating the transition
probabilities given observations made. We do so by using
an approach to autonomous agents called projective simula-
tion [5]. The environment model becomes more and more
mature over time and can be used to unlock higher-level
cognitive capabilities instead of the undirected exploration
described in section 2. As an example we enabled the robot
to feel bored and implemented creative behaviour.

3.1 Bored robots

Experience showed that the robot wastes time if a perceptual
state is present in which the solution is already known very
well. If the goal is to learn how to achieve a task in general,
there is no sense in learning how to solve the specific sit-
uation even better; this is boring. However, just rejecting a
given situation is not enough in an autonomous setting, as
further learning requires a different and more interesting sit-
uation. Here, we use the environment model to compute the
likelihood of being able to reach a certain interesting and
desired state sint ∈ S. An interesting state is a state in which
the solution is not known yet. The robot tries to reach the in-
teresting state sint ∈ S from the current, boring state sbor ∈ S.

The likelihood of a transition sbor
b1−→ s′

b2−→ s′′ ...−→ sint can
be computed by using the environment model, and the robot
can change the state if it is bored. We use the transition en-
tropy H (s′ |s,b) to measure how predictable the outcome
of executing the behaviour b is in a state s. If the entropy
is high, the outcome is either unknown or highly unpre-
dictable. If it is low, the outcome is highly predictable re-
spectively. We normalise the transition entropies in order to
obtain an entropy value Ĥ (s′ |s,b) between 0 and 1. This can
be used to compute the transition likelihood for a complete

path sbor
b1−→ s′

b2−→ s′′ ...−→ sint by multiplying the normalised
entropies on the path. The robot then selects goal states sint
that it cannot solve yet but that have a high transition likeli-
hood.

3.2 Creative robots

Another application of such an environment model is to en-
able the robot to show creative behaviour. In section 2 the
goal is to extend the domain of applicability by selecting
one preparatory behaviour with Successσ (b◦bσ (ŝ)) = true.
In many cases just one preparatory behaviour might not be
enough, For example for reading a book that is placed up-
side down, it has to be rotated and opened and therefore

Successread(brot ◦ bopen ◦ bread(sup)) = true. In the basic ver-
sion described in section 2, sequences of arbitrary length
were forbidden for good reason, namely to prevent an ex-
plosion of the space to explore. For example, if 5 behaviours
are available, allowing at most 3 behaviours in a sequence
would require the robot to try 125 different combinations.
However, if a model of the environment is available, not
all combinations have to be tried out, but only those that
seem to be promising according to the model. As soon as
the robot has identified at least one perceptual state sgoal it
can solve with the original basic approach, i.e. Successσ (b◦
bσ (sgoal)) = true, this state is marked as a goal state. If an-
other perceptual state scurr ∈ S is observed and there exists

a strong transition scurr
b1−→ s′

b2−→ s′′ ...−→ sgoal, it is promis-
ing to try whether the sequence (b1,b2, . . . ,bL,b) yields suc-
cess. This way the robot can creatively generate novel be-
haviours composed of more elementary behaviours in order
to achieve increasingly complex tasks.

3.3 Typical setting

In this section we will extend the example described in sec-
tion 2.2 in order to illustrate our approach for robotic bore-
dom and creativity. The robot setting (including the used
sensors) remains the same. However, the sequence to ex-
ecute a skill is changed from estimate state→ prepare→
execute basic behaviour to estimate state → prepare →
estimate state → execute basic behaviour. This way the
robot is able to train a forward model of the effects of be-
haviours on certain perceptual states. By knowing the ef-
fect of behaviours, the robot can now create multi-behaviour
plans. In the basic playing described in section 2, the correct
bevahiour sequence already has to be contained as one be-
haviour in the set of available behaviours. In the creativity
condition the robot can generate these sequences by itself,
e.g. rotate 180◦ = rotate 90◦ ◦ rotate 90◦.

3.4 Analysis

In the work described above we demonstrated the impor-
tance of the principle of incremental development. The robot
starts with the very basic version described in section 2 and
collects all the available data for later use. The only ad-
ditional overhead is introduced by requiring re-estimation
of the perceptual state after executing a preparatory be-
haviour in order to train the environment model. An im-
portant property of our method is the incremental devel-
opment. The brute-force exploration of behaviour combina-
tions is replaced by higher-level planning in a natural way
over time. There is no sharp boundary between the different
phases which can be observed in Fig. 2b. Figure 2b shows
the learning rate in the book grasping scenario described
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in section 2.3. However, in this case the behaviours rotate
180◦ and rotate 270◦ are missing, which requires creative
creation of these behaviours. This can be done by compos-
ing them out of rotate 90◦ behaviours. In the learning curve
a first exploration phase with a continuous increase of the
success rate can be seen. This is due to the fact that two sit-
uations can be solved with the avaible rotate 90◦ and void
behaviours. At some point the robot reaches a plateau after
around 30 attempts but shows a strong increase of the learn-
ing rate again as soon as the environment model is mature
enough to creatively generate the behaviours rotate 180◦ and
rotate 270◦. High-level planning becomes more dominant as
the environment model matures.

We demonstrated that our system mimics certain natural
human behaviours such as boredom or creativity. Humans
refuse to perform certain activities if they are monotonic and
if there is nothing new to learn anymore; they avoid bore-
dom. In this case humans search for different and more in-
teresting tasks instead of simply being idle.

4 Bottom-up learning of high-level symbols

In sections 2 and 3 the goal is to equip the robot with the
capabilities to slowly perform a transition from very low-
level skill learning to more and more complex concepts in a
smooth way. An approach slightly different in nature tackles
the problem of mapping low-level data to high-level sym-
bolic planning with logic planners [29]. The goal is not to
solve a task directly but to learn a symbolic representation of
action effects and object relations. If a task is to be achieved,
a logic planner is run on the symbolic representation.

4.1 Dimensionality reduction by abstract symbol learning

Each object o in the scene has a continuous object state fo.
The continuous object state is grounded in actual experience
via the robot’s sensors, and can consist of any sensor infor-
mation available to the robot; in our work we use RGB-D
sensors. Several objects can be present in the scene, and the
continuous world state (fo1 , fo2 , . . . , foN ) is a tuple combining
all object states in the scene. Similarly to the notion of per-
ceptual states in sections 2 and 3, a dimensionality reduction
of the high-dimensional state vectors is required. The robot
holds a set B of behaviours. Each behaviour b ∈ B gives rise
to effect categories εb by observing the effect of executing
it. For example, if a ball oball is poked from the side with the
behaviour bpoke, the ball rolls off the table and disappears,
and the effect category is εpoke = disappear. Given a set B of
behaviours, the tuple So =

(
εb1 ,εb2 , . . . ,εbM

)
of effect cat-

egories of all behaviours applied to the object o defines its
object category.

The first goal is to learn the dimensionality reduction
from the continuous world state to the object category.
This is done by executing each behaviour many times for
all available objects (using a real robot or in simulation)
and measuring the change of the continuous object state
(∆fo)

b. Given the set of state changes {(∆fo)
b
j}, the robot

can perform unsupervised clustering in order to identify rel-
evant dimensionality reductions εb of the state information.
In order to be able to identify future effect categories, a
classifier Predictb : fo 7→ εb is trained for each behaviour.
In consequence, the estimated object category is given by
So =

(
Predictb1(fo),Predictb2(fo), . . . ,PredictbM (fo)

)
. More-

over, the same procedure is done for behaviours involving
multiple objects, e.g. stacking, and multi-object effect cate-
gories are learned as well.

4.2 Bootstrapping complex skills by previous experience

In a final step, the idea of learning dimensionality reduc-
tions from interaction is done for more complex actions
like multi-object actions. The basic idea is to relate pairs
of single-object categories (So1 ,So2) to multi-object effect
categories, e.g. εstack. For example the single-object cate-
gories So1 ,So2 might contain the effect categories εinside and
εon top denoting the finger being inside a hollow object and
the finger stopping on top of a rigid object respectively. In
such a case stacking an object o1 on top of an object o2
with effect category εinside is likely to cause o1 being in-
serted into o2. The effect category εinside is again created
by clustering visual features with data acquired from in-
teracting with different pairs of objects. Again, a classifier
is trained in order to predict the effect category given two
objects; however, in this case it is not trained on raw im-
age features but on the single-object categories So1 ,So2 and
their relations Ro1,o2 ,Ro2,o1 . This keeps the learning problem
tractable and prevents a state space explosion. Following
this paradigm, logical rules modelling object relations of the
form {(So1 ,So2 ,Ro1,o2 ,Ro2,o1)→ εstack} can be represented
in symbolic notation like STRIPS. The symbol Ro1,o2 de-
notes relations between objects like o1

smaller−−→ o2 and are hand-
crafted by the designer and later automatically detected by
the system. This way, a logic planner can be asked to build
towers of objects or to insert objects into each other.

4.3 Analysis

The method described in the previous section is quite dif-
ferent in nature to the approaches given in sections 2 and
3. Instead of slowly performing a transition from rudimen-
tary brute-force skill learning to higher-level planning, high-
level symbolic planning is learned directly. The level of ab-
straction is much higher compared to the autonomous play-
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ing. This enables the robot to generate complex plans for
tasks that were never done before, e.g. building a tower of
minimal / maximal height. Moreover, this also works for
objects that were never used together for multi-object be-
haviours like stacking. This approach even works objects
that were never seen before if their object categories can
successfully be detected. This is possible because reason-
ing is based on single-object categories abstracted from the
sensor data, instead of using the raw sensor data directly.
Therefore complex object manipulations can be learned for
unseen objects much faster by reusing the learned abstract
object categories compared to performing the clustering of
effect categories on visual features directly.

However, the direct bottom-up learning of high-level sym-
bols comes at a cost, as it requires a simple setup that is
already designed to allow abstraction with very little real
unpredicted emergence for the acquisition of the symbolic
world model. For example, identifying single-object effect
categories requires a large amount of data with a well-prepared
environment for each execution of a behaviour. This is the
reason why the learning of effect categories was done mostly
in simulation, which again requires some effort to design a
simulated model of the environment.

5 Future challenges

In this work we investigate the problem of applying modern
machine learning technologies to autonomous robotics. We
pointed out that even though powerful supervised learning
techniques are available, they cannot directly be applied to
robotics. The required large amount of training data needs
to be gathered autonomously in order to design robots that
can act in unstructured environments.

Developmental robotics is one way to design robotic sys-
tems that addresses the problem of autonomous acquisition
of the required data. The expressive power of the involved
approaches, and therefore the complexity of the solvable
tasks, shifts from simple to complex in a developmental par-
adigm. At each stage, this keeps the search space small enough
to keep the problem solvable, and increases the complexity
after certain basics have been acquired.

We presented two tracks of work, (i) robotic playing
(sections 2 and 3) and (ii) bottom-up learning of high-level
symbols (section 4). Approach (i) starts from low-level, sim-
ple sequencing of behaviours and slowly develops goal-driven
planning capabilities. In this setting, the level of autonomy
is high and the required interaction with a human supervisor
is very limited. Approach (ii) on the other hand reaches a
much higher level of abstraction by using simulated scenes
and well-founded priors at the cost of a reduced autonomy
during learning.

We believe that one of the future challenges in autono-
mous robotics will be to combine such methods to provide

an integrated life cycle of autonomous robots. This life cy-
cle should start from low-level paradigms such as approach
(i), and should lead to high levels of capability such as ap-
proach (ii). This might require additional, intermediate de-
velopmental stages like learning more sophisticated envi-
ronment models than those presented in section 3. From
these detailed models powerful abstractions such as the high-
level symbols introduced in section 4 can be learned. This
could involve mimicking typical human-like concepts such
as intuition in order to create abstractions from strong envi-
ronment models.
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