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Abstract— We introduce a novel paradigm for robot pro-
gramming with which we aim to make robot programming
more accessible for unexperienced users. In order to do so we in-
corporate two major components in one single framework: au-
tonomous skill acquisition by robotic playing and visual program-
ming. Simple robot program skeletons solving a task for one
specific situation, so-called basic behaviours, are provided by the
user. The robot then learns how to solve the same task in many
different situations by autonomous playing which reduces the
barrier for unexperienced robot programmers. Programmers
can use a mix of visual programming and kinesthetic teaching
in order to provide these simple program skeletons. The robot
program can be implemented interactively by programming
parts with visual programming and kinesthetic teaching. We
further integrate work on experience-based skill-centric robot
software testing which enables the user to continuously test
implemented skills without having to deal with the details of
specific components.

I. INTRODUCTION

Despite large progress in the community to make robot
programming more accessible to a larger public, it is still
very hard for beginners to get started. Software projects in
robotics consist of a complex interplay of many components
such as robot control, object detection, machine learning,
path planning and many more. Additionally, skill acquisition
in robotics is a very hard problem which is still not solved
yet. Due to the diversity of the state spaces and the high
number of the controlled degrees of freedom it is very hard
to design well-generalising controllers. This problem is often
solved by introducing large task-specific priors designed by
engineers who are experts in a certain subfield.

This is clearly not an option if the goal is to enable
beginners to design simple robotic skills. Another possibility
is to design abstract visual programming languages with
which the users can easily program a skill for a limited range
of situations. Provided with such a simple program, the robot
can add the rest, e.g. the generality by autonomous playing.

In previous work work we introduced an approach for
(semi-) autonomous skill acquisition in which programmers
provide so-called basic behaviours, that solve a task in a
narrow range of situations [1], [2]. This range is extended
by autonomous playing, where sequences of behaviours are
used to prepare the environment such that the basic behaviour
can be applied successfully. We further introduced a novel
approach for autonomous skill-centric testing which enables
even non-experts to automatically run tests on robot software
without the need for designing unit tests [3].
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We propose a novel programming paradigm based on our
previous work on autonomous robots [1]–[3]. We extend
our system to support visual programming. Developers can
implement basic behaviours via drag and drop for a narrow
range of situations. Further, developers can interactively add
parts of the basic behaviour by kinesthetic teaching. After
providing the basic behaviour the rest, i.e. how to generalise
to more situations, can be learned autonomously by the robot.

Further, we embedded autonomous testing to our program-
ming framework in which buggy functions can be identified
without deep knowledge of robotic systems. This can help
to pinpoint problems which can be fixed either by the
developers themselves if they have the required knowledge,
or by experts that can be consulted based on the output.

II. CONTRIBUTION

Our contribution is an integrated platform for robot de-
velopment based on technology for autonomous robotics.
We combine previous work on autonomous skill acquisition
and robot software testing [1]–[3] in a unified framework.
We further extend our framework by a visual programming
capability in which a basic behaviours can be implemented in
a simple way. Skills implemented this way can then be tested
autonomously without requiring the user to be an expert.

We provide an abstract architecture and an open source
implementation1. We demonstrate that our approach can be
used to program simple robotic skills by visual programming
and to make them generalise by autonomous robotic playing.
This simplifies the implementation process and makes robot
programming accessible to non-experts and even end-users.

III. RELATED WORK

Our framework aims to contribute to the field of end-user
development [4]. Domain-specific end-user programming is a
powerful tool in order to enable users to develop applications
for their own purpose. Eco-systems for end-user program-
ming have to fulfill specific properties to ensure that end-
users are able to understand them properly [5]. Frameworks
and programming languages for end-users need to be simple
but powerful enough to implement useful programs. One way
is to follow a visual programming paradigm using abstract
symbols in which the symbols are tailored to the specific
domain. Popular examples are the scratch framework [6],
Snap!2 or Blockly3.

1https://github.com/shangl/kukadu
2http://snap.berkeley.edu/
3https://developers.google.com/blockly/



Visual programming received some attention in robotics
in recent years [7]–[9] and it was shown that properly
designed visual programming interfaces can make robot
programming even accessible to children [10]. Each of these
methods incorporates certain assumptions in order to ensure
simplicity and the required generality. Jackson published
on the Microsoft robotics studio (MSRS) [8] which aims
to be a general purpose robotics platform. Similar to the
software presented in this paper, interfaces for hardware are
defined in order to provide an abstraction from the raw
hardware. This hardware can be used in a webservice-like
structure, where distributed webservices implement certain
skills and behaviours. Similar to our approach, skills and
behaviours can be coordinated by visual programming. Kim
and Jeon designed a visual programming language based on
LabVIEW4 and the MSRS for Lego mindstorm robots [7].

Nguyen et al. [9] follow a different approach with
their system called ROS Commander (ROSCo). Generic
parametrised skills are developed by experts in the respective
field. End-users can combine them by visual programming
in the form of hierarchical finite state machines (HFSM).
These state machines are a generic representation of a skill
which then can be deployed. Other users can load these state
machines and adapt the skill to their local environment, e.g.
by teaching where certain behaviours should be applied to.
Our system uses a mixed paradigm in which the generic skills
are either created by the end-user by visual programming and
subsequent autonomous playing or by field experts which
make the corresponding controller available.

Alexandrova et al. designed a flow-based visual pro-
gramming language called RoboFlow [11]. Skills are either
created top-down, i.e. by implementing a skill from scratch
by drag & drop, or bottom-up, i.e. demonstrating the solution
for one situation and editing it afterwards in a graphical
interface [12]. Our system basically follows the top-down
approach, however, the user can add parts of the skill by
kinesthetic teaching. These parts can be refined by policy
reinforcement learning [13]–[15].

Similarly, Wächter et al. introduced the ArmarX frame-
work which is provides an abstract view on robot programs
following at a statechart concept. Just as our framework,
ArmarX also follows the idea of an integrated software suite
based on C++ in which skill hierarchies can be created.

All these works [7]–[9], [11], [12] use visual programming
for skills programming. The key distinction of our approach
is the integrated system for autonomous skill acquisition. In
our system, the user can provide simple basic behaviours
solving a task in on specific situation. The rest, i.e. general-
isation to different situations, is then learned autonomously
by robotic playing. Further, none of these systems provides
an integrated autonomous testing framework.

IV. A SKILL-BASED PROGRAMMING PARADIGM

In this section we sketch our skill acquisition paradigm
based on technology for developmental robotics. We provide

4http://www.ni.com/de-at/shop/labview.html

a formal definition of behaviours and skills by unifying prob-
lem formulations from previous work [1]–[3], c.f. section IV-
A, and give a high-level description of our framework, c.f.
section IV-C. Sections V and VI sketch concrete solutions
to the problem definitions given in this section.

A. Behaviours and skills

A behaviour b : S→ S, s 7→ s′ is a function that changes
the state s ∈ S of an environment to some other state s′ ∈ S.
The (partially unknown) states s, s′ consist of both, the
external state of the environment and the internal state of
the robot. Behaviours are basically everything a robot could
potentially do, from low-level behaviours such as simple
point to point movements to high-level behaviours such as
grasping. Behaviours do not come with a notion of a goal or
task-specific success. For this purpose we introduce a skill
σ = (bσ , Successσ ), which comes with a success predicate
Successσ (s). It defines whether or not the state s ∈ S is a
target state. A skill execution is successful, if the behaviour
bσ executed in state s ∈ S transforms the system such that

Successσ (bσ (s)) = true (1)

The set Dσ = {s |Successσ (bσ (s)) = true} is called the
domain of applicability (DoA) of the skill σ . In this paper,
the domain of applicability is increased by preparing the
environment such that the basic behaviour can be executed to
solve the task. This is done by executing behaviour sequences
of length k with the property

Successσ
(
bk ◦ . . .◦b1 ◦bσ (s′)

)
= true (2)

such that s′ ∈ S was not yet in the DoA of the skill with
s′ /∈ Dσ . The success predicate can either be given from the
outside, e.g. by a human teacher, or by training a sensor
model of successful executions.

B. Sensor data and function call profiles

An essential part of the proposed programming paradigm
is the storage of experience gathered throughout the lifetime
of the robot. Whenever a skill or behaviour is executed, two
matrices containing sensor data and function call profiles
are stored. The sensor data per execution of the skill σ with
duration T is given by

Mσ (s) =




m1(0) . . . m1(T ) sensor 1
m2(0) . . . m2(T ) sensor 2

...
. . .

... ↓
mM(0) . . . mM(T ) sensor M

t = 1 ∆t−→ t = T

(3)

The function call profile matrix stores information on how
many instances of all functions are active over the course of
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Fig. 1: System architecture illustrating the life-long learning scheme within our programming paradigm. It consists of three
major parts, i.e. the skill execution module, the self-diagnosis module and the skill learning module. The memory is another
core component of our system and stores data required by other components, e.g. sensor data or function call profiles.

the execution of a skill σ and is given by

Fσ (s) =




f c1(0) . . . f c1(T ) function 1
f c2(0) . . . f c2(T ) function 2

...
. . .

... ↓
f cF(0) . . . f cF(T ) function F

t = 1 ∆t−→ t = T

(4)

The database contains information on which skill requires
certain hardware configurations and both matrices are auto-
matically stored to a database when a skill is executed.

C. System architecture

This section describes the key ingredients and their inter-
play in the context of the proposed programming paradigm
and is independent of concrete methods. The system architec-
ture is shown in Fig. 1. Our life-long learning / programming
approach consists of three major parts, i.e. skill execution,
skill learning and self-diagnosis.

1) Skill execution module: The skill execution module is
responsible for executing well-trained skills. The robot is
confronted with a task and a decision on whether or not
the task can be solved with the available skill repertoire is
made. If a task cannot be solved, the skill learning module
is called, which involves external input from a programmer
or teacher, c.f. section IV-C.2. If the task is solvable, the
appropriate skill is selected and executed by performing a
behaviour sequence bk ◦ . . . ◦ b1 ◦ bσ (s) in the current state
s ∈ S which solves the task. The execution is rewarded and
the models are refined if the execution scheme supports this.

During the execution of skills all experiences, i.e. sensor data
and function call profiles, are stored in the memory of the
robot in order to use it for learning and self-diagnosis.

2) Skill learning module: The skill learning module can
either be invoked out of idleness of the robot or if a presented
challenge cannot be solved by the robot. The goal is to
acquire a novel skill σ with a large DoA. In our setting,
this requires two parts, i.e. teaching of the basic behaviour
bσ and identification of state dependent behaviour sequences
bk ◦ . . . ◦ b1 ◦ bσ (s) which enlarge the DoA. In this work,
basic behaviours can be implemented by visual programming
(section VII-E), by kinesthetic teaching or a mixture of both.
In order to enlarge the DoA of the novel skill we propose to
use autonomous playing, c.f. section V.

3) Self-diagnosis module: We emphasise the need of a
way to autonomously identify bugs in the software as part
of the programming paradigm. The self-diagnosis module is
called if the robot is idle or if typically successful skills start
to fail. Due to the life-long programming approach, the robot
has access to a large database of experiences, i.e. sensor data
and function call profiles. Skills are executed as test cases
in order to identify functions and behaviours which cause a
problem that was not present before certain code changes.
The system returns a distribution pblame( f = fi) defining the
probability of the function fi causing the problem. In this
paper we use the testing approach described in section VI.

4) Memory: The memory is a core component of our
architecture following the philosophy of storing all available
experiences made over the life-time of the robot. Previous
work has demonstrated a way on how to store sensor data



Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Execute skill σ

Sensing se1 Sensing . . . Sensing seH

e1
1

. . . e1
I1 Perceptual states of . . . Perceptual states of seH

Behaviour b1 Behaviour b2 Behaviour . . . Behaviour bJ Behaviour bvoid

Basic behaviour bσ

(a) Schema of the episodic and compositional memory (ECM) for a certain skill σ .
Skills are executed by performing a random walk through the ECM according to
the probabilities that are assigned to the transitions. A skill execution consists of the
sequence sensing action → perceptual state estimation → environment preparation
→ basic behaviour execution. Skills are trained by using projective simulation.

Skill σ failed
Estimate tfail by

using the MOM

Compare function calls

until tfail with FPF

Bug in running functions

more likely

Bayesian update of

pblame( f = fi)

Optimise expected

information gain

argmaxσ ′ I(σ ′, pblame)

Execute skill σ ′Failed?

Bug in running

functions less likely
no

yes

(b) Flow diagram of the used autonomous self-diagnosis
approach. A measurement observation model (MOM) for
sensor data and a functional profiling fingerprint (FPF)
for function call profiles is trained for each skill from
observations during successful executions.

Fig. 2: Conceptual design on the used implementations for the skill execution module (Fig. 2a) and the skill learning module
(Fig. 2b). The overall architecture is shown in Fig. 1.

to the non-SQL database MongoDB based on listening on
ROS topics and using this information for fault analysis [16].
We chose a different track in which hardware interfaces are
provided within our software that require developers of the
control classes to provide a SQL schema and store functions
for storing a current snapshot of the sensor data. For all
hardware used for the execution of a skill, the store function
is called regularly. Further, for all framework functions the
start and end time of the execution is stored in the database.

V. SKILL ACQUISITION BY AUTONOMOUS PLAYING

The previous sections are agnostic of the concrete skill
acquisition and self-diagnosis method. In this section we
provide a brief description of the skill learning method used
in our prototype. The reader may refer to previous work for
more in-depth treatment [1], [2]. The idea is teach a novel
skill σ by providing a basic behaviour bσ and to extend the
DoA by learning how to prepare a situation in which the
basic behaviour can be applied without changes. The robot
tries out different combinations of preparatory behaviours in
different situations. We refer to this as autonomous playing.
The playing consists of two stages - in the first stage so-
called perceptual states e ∈ Ese are trained from interacting
with the object by using sensing actions se ∈ SE. Perceptual
states are discrete concepts derived from continuous sensor
observations and capture the task-relevant information. This
might require different sensing actions for different tasks, e.g.
poking on top of a box can be used to identify whether or not
a box is open, whereas sliding along the surface can be used
to determine the orientation of a book. Different situations
are prepared either by the robot or by a human teacher and
the robot creates a haptic database of sensor data observed in
different perceptual states. A SVM is trained from the sensor
data for perceptual state classification.

After this first playing phase a so-called episodic and
compositional memory (ECM) of the form shown in Fig. 2a

is constructed. The ECM is the basis of projective simulation
[17] and consists of clips that are connected by transitions
with certain transition probabilities. A skill is executed by a
random walk through the ECM and by executing the actions
along the path. The transition probabilities along a rewarded
path are increased, i.e. if the success predicate of the skill σ

is fulfilled. This forces the robot to learn (i) which sensing
action provides the best perceptual states; (ii) how to prepare
the environment correctly in a certain perceptual state. When
a skill is well-trained, i.e. the average success rate during
playing is high, it can be used as preparatory behaviour for
other skills to train in the future. This enables to robot to
create skill hierarchies and to learn how to solve increasingly
complex problems. The described basic version was extended
by creative planning and active learning mechanisms in
followup work [1]. While playing, a simple environment
model is trained which is used to suggest potentially useful
preparatory behaviours to the model-free playing system. An
in-depth treatment is provided in previous work [1], [2].

VI. AUTONOMOUS SKILL-CENTRIC TESTING

For self-diagnosis module we use a method for au-
tonomous testing developed in previous work [3]. During a
skill execution, an observation o = (Mσ (s), Fσ (s)) is made.
From the matrices Mσ (s) (sensor data) and Fσ (s) (function
call profiles) described in section IV-B the measurement
observation model (MOM) pσ (succ |M, t) and the functional
profiling fingerprint (FPF) p f

σ ( f c |M, t, succ = true) for each
software function f are trained. The variables s ∈ S, succ, t
and f c denote the environment state, the execution success,
the time step and the number of running instances of the
function f respectively. The MOM and the FPF are trained
by an encoder / decoder neural network and by a simple
multivariate Gaussian model respectively. A sketch of the
testing scheme is shown in Fig. 2b. If a skill σ failed, the
MOM is used to identify the time tfail at which the error



occurred. All functions that were running until this point
are at least suspicious proportional to the time distance to
tfail, and even more so if the matrix Fσ (s) for a certain
function strongly deviates from the trained FPF. If a function
is running during a successful execution, it becomes less
likely that this function has a problem. From this information
the likelihood function pσ (o | f = fi) is computed, and a
Bayesian belief update is performed with

pblame( f |o1:T ,o,σ1:T ,σ)∝ pσ (o | f )pblame( f |o1:T ,σ1:T ) (5)

In a further step, our system selects the next skill σ ′

to execute by maximising the expected information gain
E[I(σ ′)] about which function causes problems. The result-
ing distribution pblame( f = fi) is estimated autonomously.
The developer can then either fix the bug if the knowledge
is available or report it to the responsible designer of the
respective components.

VII. SYSTEM INTEGRATION

In following section we describe practical considerations
on essential key components in order to achieve two major
goals: the integration of skill acquisition and the autonomous
testing and the design of the visual programming framework.

A. The kukadu framework

All the described methods are implemented in kukadu - a
framework for autonomous robotics. kukadu provides several
modules required in robotics:
• Hardware control: Provides interfaces for hardware

components like arms or depth-image cameras. Imple-
mentations for certain hardware are included.

• Path planning: Provides interfaces for path planning
(joint space and Cartesian space) and kinematics.
Bridges to path planning frameworks such as MoveIt5

or Komo [18] are available.
• Control policies: Provides interfaces for parametrised

control policies and standard methods such as DMPs
(joint space [19] and Cartesian space [20]) are imple-
mented. Policies can be trained by Kinesthetic teaching.

• Machine learning: Different standard machine learning
techniques such as linear regression, Gaussian process
regression, Support vector machines [21], unsupervised
clustering are available. Certain policy reinforcement
learning approaches like PI2 [15] or PoWER [14] and
gradient descent methods are available. The algorithms
are connected to the control policy interfaces.

• Computer vision: Interfaces for object localisation and
pose estimation are defined. Elementary object localisa-
tion, integrated with the depth-image interfaces, based
on fitting boxes to segmented point clouds is provided.

• Autonomous robotics: The approaches described in sec-
tions V and VI are implemented and connected to the
available hardware interfaces. The methods are based
on a skill interface which provides automatic controller
generation or automatic storage of sensor snapshots.

5http://moveit.ros.org/

We further provide a visual programming interface for unex-
perienced developers and programmers without C++ knowl-
edge. The following sections explain key concepts on an
abstract level that make this possible inside kukadu. Detailed
information can be found in the framework documentation.

B. SQL-based robot memory

Many ROS-based applications use the integrated Mon-
goDB in order to store data. This approach avoids the need
for designing an SQL schema for robotics applications. We
chose a different approach by designing an extensible SQL
schema, considering typical data provided by hardware that
is interfaced in the framework. Certain hardware provides
more information, e.g. new robotic arms might provide
more or different sensor data, which is why implementations
of hardware interfaces can provide their own additional
schema in form of SQL files, which are installed on program
startup. Similar concepts hold for skill controllers, which are
installed automatically, e.g. storing the required hardware
configurations. More involved skill controllers can further
install custom SQL schema and store additional information.

C. Factories

In order to provide easy drag and drop functionality for
end-users, it must be easy to instantiate hardware control and
skill objects without having to deal with constructors. This is
ensured by hardware and skill factories, which query the code
on how to generate instances from a code database provided
by the respective developers of the interfaces. Custom code
for loading required properties from the database can also
be defined. Hardware can be created by providing a concrete
instance name, e.g. left arm. Skills can be created by defining
the skill name and the desired hardware configuration, e.g.
the simple grasping skill in Fig. 3a requires a hardware
configuration consisting of left arm, camera and left hand.
Further, the factory makes sure that only one controller
instance exists at the same time per hardware component.

D. Skill interface and data acquisition

A skill is generated by implementing an abstract skill
controller class. An instance of the respective controller is
created by the skill factory using the information stored in
the database. If a skill is executed, pre-implemented func-
tions query all the required hardware. A monitor regularly
requests the used hardware to store snapshots of the available
sensor data to the database. This is especially important
for the generation of the skill-specific FPF and MOM, c.f.
sections IV-B and VI. The sensor data is connected to the
respective starting and end times of concrete executions and
to the success information.

E. Visual robot programming

The visual programming tool enables the user to create
simple robot programs based on drag and drop. We base our
implementation on the cake framework6, which generates
C++ code from the graphic input. In principle arbitrarily

6https://github.com/cra16/cake-core



complex programs can be generated and typical language
constructs like loops or functions are available out of the box.
We further added custom blocks for robotic programming,
namely skill blocks and hardware blocks. The programmer
can drop multiple hardware components onto the canvas and
the interface suggests skills that are available for a certain
hardware setting, e.g. by using the arm, the hand and the
camera the grasping skill can be used.

We provide an initial set of different simple skills ranging
from simple point to point movement (Ptp) skills to more
high-level skills like pushing. Some skills require additional
input which can be defined as well, e.g. the JointPtp skill
needs the desired goal position. kukadu is implemented in
C++ which does not come with a sophisticated reflection API
such as Java7. Therefore, the supported properties of certain
skills are extracted by generating an XML-based represen-
tation of all member functions of the skill implementation
classes by using Doxygen8.

1) Skill implementation: The developer can generate the
code for a novel skill controller and test it automatically on
the robot. We support an interactive programming paradigm
in which programming can be done directly in a certain
environment by a mix of visual programming and kinesthetic
teaching. In the task of placing a book to a shelf the
developer can use the book grasping skill to grasp the book.
The book placement skill can be tested up until this point
which leaves the robot in a state where the book is in the
robot’s hand. The user can continue by showing how to place
the book in the shelf by kinesthetic teaching. This will work
only if the book in the correct pose, c.f. section V. Instead
of asking the user to consider even more cases, one can
create a basic behaviour out of the visual program and call
the module for autonomous playing. The correct treatment
of different book orientations, i.e. the extension of the DoA
of the book placement skill will then be learned by the robot.

If the user is happy with the result the novel skill can
be installed and used for the implementation of other skills
as well. This way more and more complex skills can be
implemented and skill hierarchies can be created.

2) Skill testing: During training and the usage of skills
a large amount of sensor data is automatically stored in
the database. If code is changed this could influence the
implemented skills, e.g. if the skill for moving the arm in
Cartesian space starts using a different planner. Such errors
can be identified by the skill testing module [3] which is
integrated as a separate tool. The information on potentially
problematic functions can be used by the developer to consult
experts on the respective components or to change used
parameters. This strongly reduces the need for the user to
be familiar with certain components in detail.

VIII. EVALUATION

The separate components of our approach to robot pro-
gramming, namely the autonomous playing [1], [2] and the

7https://docs.oracle.com/javase/tutorial/reflect/
8http://www.stack.nl/˜dimitri/doxygen/

skill centric testing [3], were evaluated in their respective
publications. In this paper we investigate the applicability
of the complete and integrated system based on our novel
robot programming paradigm. We demonstrate that a wide
variety of skills can be implemented with our framework
for visual robot programming. In order to evaluate the skill
acquisition, we implemented basic behaviours for different
skills by visual programming. The DoA is then extended by
autonomous playing.

Name Description Type Visual

Sliding Slides along the object’s
surface

Se Yes

Poking Pokes on top of the object Se Yes

Pressing Presses the object between
the hands

Se Yes

Joint move-
ment

Moves joints to specified
position B No

Cartesian
movement

Moves end-effector to
Cartesian position B No

Move home Move to initial position B Yes

Close hand Close the hand B Yes

Open hand Open the hand B Yes

Change stiff-
ness

Change impedance set-
tings of the arm B No

Push to body Push an object towards the
body B Yes

Push from
body

Push object away from the
body B Yes

Push to posi-
tion

Push object to a certain
position B Yes

Push to ori-
entation

Rotate the object to a cer-
tain orientation

B No

Simple grasp
Place end-effector on top
of an object and close the
hand

B Yes

Pick and
place

Grasp an object and place
it in a box

B Yes

Press button
Presses a button at a fixed
position B Yes

Book grasp-
ing

Grasp a book from a rigid
table

Sk Yes

Shelf place-
ment

Place an object in a shelf Sk Yes

Tower disas-
sembly

Disassembles a tower of
boxes

Sk Yes

Localise ob-
ject

Searches for a defined ob-
ject on the table B No

TABLE I: List of the implemented skills and behaviours by
using the kukadu framework. The Visual column indicates
whether or not the corresponding controller was implemented
by visual programming. The Type corresponds to the con-
troller type (Se ≡ sensing action, B ≡ behaviour, Sk ≡ skill
trained with autonomous playing).

A. Robot setting
The used robot setting is shown in Fig. 4. It consists of

two KUKA LWR 4+ robotic arms mounted on a metal pillar.
A Schunk SDH gripper is mounted to each one of the robot’s
arms. A Kinect camera is mounted above the robot for object
recognition and localisation. In order to develop and test
the implemented skills several objects from the YCB dataset



(a) Visual program of a simple grasping skill. The robot moves to its’ home position, detects
some object on the table, moves the end-effector to that position and closes the hand.

(b) Visual program of a pick and place skill which reuses
the simple grasping skill in Fig. 3a.

Fig. 3: Exemplary visual programs of a simple grasping skill and a pick and place skill. The creation of skill hierarchies,
e.g. the pick and place skill uses the grasping skill, is demonstrated.

Fig. 4: The robot setting (2 KUKA LWR 4+ with attached
Schunk SDH grippers) and the used objects.

were used [22]. We further used other objects such as books
of different sizes and Ikea furniture and boxes.

B. Implemented skills

We demonstrate the generality of our approach by imple-
menting a wide range of different skills and behaviours by
visual programming and autonomous playing. A list of these
skills including a short description can be found in Table I.

1) Conventional behaviour programming: Fig. 3a shows a
simple grasping skill in which the object is localised and the
end-effector is moved on top of it. The hand is closed and the
object is lifted. The skill can directly be tested and installed if
the user is satisfied with the result. It is immediately available
for further use, e.g. with the pick and place skill shown in
Fig. 3b. This way skill hierarchies can be created.

We further implemented a push to position behaviour
which demonstrates how more complex control structures
such as loops can be used. The end-effector follows a

Cartesian path from the object’s current position to the
desired position. The path is planned in Cartesian space in
a loop with intermediate milestone positions.

2) Implementation of skills by autonomous playing:
Up until now none of the described behaviours required
autonomous playing. We implemented a book grasping skill
and a tower disassembly skill. The basic behaviour for book
grasping is programmed according to the description in
section V, c.f. video9. The book is localised by using the
localise object behaviour and is pushed to a position in
front of the robot with the push to position behaviour. The
basic behaviour can be executed up until this point and
the user can use kinesthetic teaching in order to push the
book towards the robot until it is squeezed between both
hands. The system automatically learns a DMP out of the
demonstrated trajectory and makes it available for further
use during visual programming. The user can then continue
to implement the rest of the basic behaviour.

This approach only works if the book is rotated correctly
such that it can be lifted at the spine. The robot learned
how to deal with different rotations by autonomous playing.
It automatically identified that the sliding behaviour is best
suited to estimate the book’s orientation and that pushing the
book to the correct rotation yields success.

The skill of disassembling a tower of boxes skill shows
that the basic behaviour can even be left empty, c.f. video10.
This way the robot learns how to coordinate already existing
behaviours and figures out that the tower can be disassembled
by performing h consecutive pick and place actions, where
h is the height of the tower. The height can be estimated by
poking on top of the tower.

Some skills were not programmable with visual program-
ming due to the restrictions in order to provide a simple

9https://iis.uibk.ac.at/public/shangl/iros2016/
iros.mpg

10https://iis.uibk.ac.at/public/shangl/iros2016/
iros.mpg



programming framework. This can be the case if complex
sensor data processing or hardware functions are required.
An example is the rotation by pushing skill which requires
fine-grained direct control of the shape of the trajectory.
Another example is the change stiffness skill which changes
the stiffness settings of the robot’s impedance mode. In such
cases the skills can be implemented by experts and can be
made available to unexperienced programmers for usage.

C. Testing
The testing functionality can be called as a separate tool

in case the robot either keeps failing on a skill that was well-
trained before or if the user triggers it manually. The testing
framework is especially helpful in case the user changes
the implementation of a skill or behaviour, e.g. if properties
of used behaviours are changed or if the structure of the
implemented behaviour is changed completely. An example
could be that the used planner for executing a Cartesian plan
was switched. Suggestions of functions that may have caused
the problem are then made. These can be fixed by the user
or forwarded to experts in the respective fields. In prior work
we showed that such errors can be found autonomously [3].

IX. CONCLUSION AND OUTLOOK

In this work we presented a novel paradigm for robot
programming which adopts technology developed for de-
velopmental robotics in order to ease the task for robot
programmers. The programmer only has to implement a
basic behaviour that solves a task for only one situation
by interactive programming with visual programming and
kinesthetic teaching. The robot then uses this program as a
starting point in order to extend the domain of applicability.

Further, the robot gathers a lot of sensor data during the
execution of skills which can then be used to identify bugs
in the software if a skill stops working.

We evaluated our approach by implementing several be-
haviours and skills with our new tool for visual programming
and extended the DoA by autonomous playing.

There are many ways along which our approach can be
extended. If one looks at the generated programs, many of
the commands can be represented as a simple sentence with a
subject, e.g. camera, a predicate, e.g. localise, and an object,
e.g. book. This could be exploited to implement a verbal
interface which could be used in combination with visual
programming. Further, we plan to extend our developmental
approaches in order to enable the robot to learn the extension
of the DoA more efficiently, e.g. by transferring knowledge
between skills. Another interesting direction is to transfer
skills between different robots, which in general would
enable robot programmers to implement skills which can
easily be shared with other robot owners.

REFERENCES

[1] S. Hangl, V. Dunjko, H. J. Briegel, and J. Piater, “Skill learning by
autonomous robotic playing using active learning and creativity,” e-
Print arXiv:1706.08560, 2017.

[2] S. Hangl, E. Ugur, S. Szedmak, and J. Piater, “Robotic playing
for hierarchical complex skill learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016.

[3] S. Hangl, S. Stabinger, and J. Piater, “Autonomous Skill-centric
Testing using Deep Learning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2017.
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