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ABSTRACT

We describe a complete system for image rectification in sport
video sequences. Relying both on geometrical properties of the
field elements and on photogrammetric data, we compute an es-
timate of the field-to-image homography either incrementally –
by inter-image data processing – or “from scratch” when direct
image-model correspondences are possible. Examples are given
in a soccer context.

1. INTRODUCTION
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Soccer has become the most popular sport around the world.
Every four years, hundreds of millions of fans enjoy their
favourite sport thanks to television. The commercial as-
pect of sport TV broadcast is now enormous.
Broadcasters could take advantage of the latest techniques
in computer vision, such as sequence analysis, 3D analy-
sis, and uncalibrated vision. Indeed, extracting static (e.g.,
lengths) and dynamic (e.g., speed) metrics from single-
camera images and using this information for automated
sports analysis is essential for many applications. One ex-
ample is the use of motion models that allow better track-
ing of players and of the ball by operating directly in the
xy space of the field instead of in the image. Another ex-
ample is the smart overlay of 3D objects, e.g., to overlay
advertisements on the grass without obscuring players.
Sport broadcasters already use metrics extracted from single-
camera images. However, current commercial systems for
automatic tracking/analysis are very expensive. Indeed,
most current systems rely on sensors embedded in cam-
eras. They measure all camera parameters such as ori-
entation in space and zoom to deduce the field-to-camera
geometry. Some systems also use transmitters attached to
players [1].
In this paper, we propose a fundamental building block
that would be the heart of a future fully automated sports
analysis system. This subsystem allows us to maintain a
continuous estimate of the homographic mapping between
images and a model of the field without using any kind of
sensor on the cameras and the players [2].

This approach requires three critical elements: One for
computing the initial homography or periodically recom-
puting it from scratch, one for quickly computing it from
a reasonable guess and one for updating it from frame-to-
frame correspondences. Periodic recalculation is required
to initialize the system and to prevent drifts when incre-
mental updating is done. The second procedure allows to
attain real-time performance. Last, using frame-to-frame
correspondences is necessary when image-to-model matches
are not sufficient.
A similar idea has been proposed [3, 4], but is restricted to
relatively narrow zones, e.g., just around the goal zones.
This idea is also investigated in the case of hockey [5],
but the field is much smaller so that many features remain
visible for long periods of time, thereby making the task
much easier.
This article is organized as follows. In Section 2, we give
an overview of our system. Then, in Section 3, we briefly
review the notion of homography, give notation and high-
light important properties. Then, we give an overview of
our system. Section 4 discusses the direct estimation of
the homography based on feature correspondences. This
is done in two different cases. Section 5 describes our line
tracking algorithm. Section 6 shows experimental results
we obtained from real soccer sequences. The last section
draws conclusions and gives hints for future work.

2. OVERVIEW OF OUR SYSTEM

Figure 1 sums up the main elements of our system. Main-
taining a continuous estimate of the homography through-
out a whole sequence requires three main functionalities.
First, the system must cope with model-to-image (M2I)
correspondences. When a sufficient number of these cor-
respondences are available, the homography can be esti-
mated as described in the next section. This requires that
features be extracted from the images and matched to cor-
responding features of the model. Feature extraction in-
volves the development of a number of feature detectors,
either generic or specific to the applications (such as lines
and circles of a soccer field). Feature matching implies the
definition of feature characterization and metrics. Note
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Figure 1: Overview of our system.

that this operation is time-consuming.
Second, another component of the system is in charge
of tracking features from image to image (I2I). Tracking
by starting from the projected model allows to focus the
search of features in a much smaller area, close to the es-
timated features position, so that speed is increased.
Last, the system must be able to cope with the situations
where the correspondences in the tracking phase are not
sufficient in number. To overcome this problem, the idea
is to estimate the homography between two successive im-
ages. With such an approach, the model-to-image homog-
raphy is incrementally updated.
Let us suppose that that Hm

i0
is the model-to-image ho-

mography at a time i0. For i > i0, we propose to compute
the inter-image homography Hi0

i , so that:

Hm
i = Hi0

i Hm
i0 . (1)

Estimating Hi0
i is done by using line segments and feature

points. In this article, we focus only on the first two com-
ponents: (1) estimating the homography from line corre-
spondences and (2) tracking these correspondences along
sequences.

3. COMPUTING THE HOMOGRAPHY FROM
MODEL-TO-IMAGE CORRESPONDENCES

To explain more clearly the need for computing a field-to-
image mapping, we can refer to Fig. 2. The left side shows
an image taken from a soccer video sequence. The right
side presents the result of the application of the computed
field-to-image homography to the first image. The homo-
graphic transformation is such that Fig. 2(b) is indepen-
dent of all camera parameters, as it compensates camera
position, attitude, and internal parameters.

(a) (b)

Figure 2: Illustration of the role of a homographic trans-
formation. (a) Selected image in video stream. (b) Same
image after rectification by homography.
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Figure 3: The soccer field: Our conventions.

3.1. Notation

We represent all 2D points via homogenous coordinates.
We use (u, v, 1)T for points p (lowercase) in each image
and (X, Y, 1)T for points P (uppercase) in the 2D model,
e.g., a 2D map of a soccer field. Matrices are written
with bold characters to distinguish them from vectors and
scalars.
The xy frame corresponding to the field model is shown
in Fig. 3.
The model-to-image homography is represented by a 3×3
transformation matrix denoted by Hm

i , where “i” stands
for the sequence image we are dealing with and “m” for
the model. It can be shown in that Hm

i is related to the
rigid transformation (R, t) linking the camera frame and
the xy frame by [2] :

Hm
i ∼ K[r1r2t], (2)

where the vectors r1 and r2 are the first two columns of
the 3 × 3 matrix R and t is the column vector represent-
ing translation. Matrix K contains the camera internal pa-
rameters. We recall that “∼” means “equals up to a scale
factor”.
The 3 × 3 matrix Hm

i will often be represented by an
equivalent 9 × 1 vector denoted by hm

i . It is obtained by
stacking the successive rows of Hm

i on top of each other.



3.2. Determining Hm
i from point correspondences

The homography matrix Hm
i has 8 degrees of freedom

(9 − 1 because of the scaling factor). Therefore, as each
correspondence contributes 2 equations, a minimum of 4
point – or, equivalently, line – correspondences are nec-
essary to estimate Hm

i . It is significant that the required
correspondences can come from a wide variety of features
extracted from the imagery, e.g., points, lines, circles.
Let us assume we have extracted K correspondences
(Pk, pk), k = 1, . . . ,K, where Pk = (xk, yk, 1)T and
pk = (uk, vk, 1). This is mathematically expressed as:

Hm
i P1 = p1

Hm
i P2 = p2

...
Hm

i PK = pK .

These equations can also be written in terms of the 9 × 1
vector hm

i as:

Ahm
i = 0, (3)

where A is the 2K×9 matrix including all the correspon-
dences

A =

0BBBB@
x1 y1 1 0 0 0 −u1x1 −u1y1 −u1
0 0 0 x1 y1 1 −v1x1 −v1y1 −v1

. . .
xK yK 1 0 0 0 −uK xK −uK yK −uK
0 0 0 xK yK K −vK xK −vK yK −vK

1CCCCA.

The overdetermined system of homogeneous linear Eq. 3
is easily solved in the least-squares sense, expressed as:

min ‖Ahm
i ‖2, (4)

by SVD decomposition of matrix AT A. The least-squares
solution hm

i is then given by the singular vector of A cor-
responding to the smallest singular value. The homogra-
phy is usually normalized by setting (Hm

i )33 = 1.

3.3. Second-order constraints

Second-order constraints arise from simplifying hypothe-
ses made with respect to camera motion and camera in-
trinsic parameters. Here, the camera roll angle is assumed
to be zero. In other words, the vanishing line correspond-
ing to the horizontal lines in the 3D world is horizontal in
the image.
Expressing the fact that the two vanishing points have the
same u coordinate amounts to writing:

(Hm
i )11(Hm

i )32 = (Hm
i )12(Hm

i )31. (5)

To add this constraint, we rewrite the fundamental Equa-
tion 4 as:

{
min ‖Ahm

i ‖2
(hm

i )T Bhm
i = 0,

(6)

where B is a symmetric matrix easily deduced from Eq. 4.
This is a minimization problem under constraints, which
can be solved by any standard method.

4. ESTABLISHING CORRESPONDENCES IN
THE SPORT CONTEXT

In the case of soccer, we can “recalibrate” the homography
whenever we have enough features to match. This should
happen when the camera focuses on one of three zones of
the game field, namely the two goal areas and the central
area. However, the features that are used are very different
for each of these types of areas: (1) lines only in the goal
areas; (2) a circle and two lines in the central area.

4.1. Case 1: Sets of orthogonal lines

The features of interest are straight lines. To make the
matching process easier, we have chosen to strongly rely
on vanishing point information. This means that we try
to segment all lines found in the image into 3 groups: 2
groups corresponding to the line segments in the “hori-
zontal” directions (of the field plane) and one group for
those that do not fall into either of these. Fig. 4 illustrates
the notion of vanishing points.

v
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h

Figure 4: Concept of vanishing points with conventions
and notation. Heavy lines correspond to hypothetical
lines on the ball field.

4.1.1. Extraction of straight line segments

Our approach to line segment extration is based on a tra-
ditional method. The image gradient is computed with
Canny’s edge detector: The result is a binary image from
which we extract contour chains. A polygonal approxi-
mation of each chain is then recursively computed. This
completes the segmentation into straight line segments.
Significant improvements of the results are observed when
color information is used for keeping or reject segments.
Exprimental results are shown in Fig 5. We see that most
white straight lines in the goal area are correctly extracted.
However, there are a few artifacts as well.



Figure 5: Result of line-extraction process. Extracted
lines are overlaid in yellow.

4.1.2. Determination of vanishing points

It is well-known that straight-line grouping is essential for
the efficient detection of vanishing points [6]. Grouping
speeds up the processing of finding the vanishing points
by reducing the search to a much smaller area of the pa-
rameter space.
Figure 4 illustrates the concept of vanishing point and shows
our conventions and notation. As indicated earlier, since
the roll angle is null in the case of TV cameras, the vanish-
ing line is horizontal. Therefore, the two vanishing points
p1

h = (uh, v1
h, 1) and p2

h = (uh, v2
h, 1) corresponding to

the main orthogonal (horizontal) directions of the game
field plane must lie on a horizontal line u = uh. In ad-
dition, we suppose that the camera tilt and zoom are not
varying too much, i.e. we have a rough knowledge of uh,
so that uh obeys a constraint of the form:

umin < uh < 0.

We typically choose umin equal to −2du, where du is the
height of the image in pixels.
Our strategy for grouping the extracted line segments re-
lies on assuming a very rough approximation of the van-
ishing line and on using this approximation to perform a
selection among the edge segments. For all segments sk

detected in the image, we compute the intersection with
the rough vanishing line l̂k, as in Fig. 6. Each intersection
is characterized by a single scalar, i.e., angle θk, as defined
in Fig. 6.
Then, we attempt to identify 2 clusters of angles in the
θk histogram, that hopefully correspond to the main di-
rections. Such clusters are illustrated in Fig. 7; they are
clearly visible in the histogram. The third peak is linked
to vertical directions, i.e., orthogonal to the field (e.g., goal

l̂h

lh

sk

Image

θk

p1
h

p2
h

Figure 6: Strategy for grouping segments

posts).
Last, among each segmented group, a RANSAC [7] tech-
nique is applied to determine more precisely and more ro-
bustly the position of the vanishing points.
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Figure 7: Segment grouping: an example

4.1.3. Matching segments lines to the model

Once vanishing points have been determined, the problem
of identifying lines belonging to the model becomes much
simpler as a segment either belongs to the pencil vanishing
at p1

h or to the pencil vanishing at p2
h.

We can state the problem as follows: Given two sets of
ordered K (resp. L) lines passing through p1

h (resp. p2
h),

match the two sets to the corresponding sets in the model.
The order is set on the basis of the order of the lines to-
wards their respective vanishing points.
To solve this problem, we divide it into smaller subprob-
lems: We first search for the column with the maximum
number of characterizable intersections. Suppose this is
column k̂.
Our algorithm uses a local measure δ between points (in
the model and in the image) to match sequences of cross-
ings within columns. A column similarity measure is com-
puted and is minimized over model columns. This mea-
sure is made robust to outliers (when a segment is missing
or when there is false detection as in Fig. 8) by tolerating
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Figure 8: Recognition of the lines pattern

up to one consecutive differences in the sequences. In our
case, δ is basically a discrete matching test between the
forms of the line crossings (“T” or “+” crossings).
The model column which is the most “similar” to this one
is selected to produce the first correspondences. Then the
other columns are matched incrementally starting from
the first matched column and using the point-to-point con-
straints generated in previous columns.

4.2. Case 2: Circular areas

∆mP2OP1

R

∆s

L

Figure 9: Configuration of the central area (in the model).

To keep our system as generic as possible, we make only
one assumption regarding circular areas: it consists of a
circle with a straight line ∆m passing through its center
O (see Fig. 9). We also suppose that another line (∆s) of
the model, orthogonal to ∆m, is visible. This is the case
in soccer and in handball.
The intersections of the circle with ∆m are denoted by P1

and P2, whereas L is the intersection between ∆m and
∆s. The projections in the image of O, L, P1, and P2 are
points o, l, p1, and p2. The scalar R is the circle radius, so
that the circle equation is

PT EP = 0, (7)

where

E =

 1 0 0
0 1 0
0 0 −R2

 .

4.2.1. Ellipse detection and fitting

Most common approaches are based on accumulation in
the parameter space, e.g., via the Generalized Hough Trans-
form [8]. However, this method may be time-consuming.

As a result, we exploit the particularities of our problem,
i.e., color information and geometrical configuration (as in
Fig. 9). Furthermore, we favor a RANSAC-like approach
as opposed to an accumulation-based approach.

∆m

∆s

Figure 10: A RANSAC-like approach for ellipse fitting.

The idea is to detect the middle line ∆m and lateral line
∆s. Then we select on ∆m one (or more, by sampling
∆m) rough estimate(s) of a point inside the circle projec-
tion from a priori knowledge on the scene. Then we cast
rays from this point and locate pixels where color profiles
are close to those of a white line on a green background.
This is the same approach as for tracking, as described in
Section 5. The ellipse is then found among those correla-
tion maximum points.

The algorithm we use is as follows:
detect middle line ∆m;
detect lateral line ∆s;
choose a rough estimate of ellipse center o;
S ← ∅
for all sampled rays around o do

S ← points along rays with color transition;
endFor
while error superior to a treshold do

randomly choose n points in S;
error← error in fitting ellipse to these points

end
refine ellipse equation with additional points;

Algorithm 1: Ellipse detection

A method for fitting an ellipse to a set of potentially inter-
esting points is described elsewhere [9]. It is basically a
total least-square approach on the conic parameters, under
the constraint that these parameters are those of an ellipse.
However, it is not robust to outliers: that is why we devel-
opped Algorithm 1, illustrated by Fig. 10. Our RANSAC
approach is robust to interferences such as those due to
players (as in Fig. 11) and inherits the precision of the
ellipse fitting algorithm; it consists basically in choosing
randomly a quorum of n of the initial points (e.g., 50%)
to fit an ellipse.



Figure 11: Ellipse detection and fitting.

4.2.2. Computing the homography from an ellipse

We describe how to recover the homography Hm
i from the

knowledge of the image configuration described in Fig. 9.
Let e be the matrix describing the image ellipse, such that
pT ep = 0 is the equation of this ellipse. The projection
of the circle center is found in o according to a cross-ratio
criterion.
Indeed, we suppose that cross-ratio {l, p1, o, p2} is known,
so that the position of o is easily recovered. We recall that
the cross-ratio of four aligned, ordered points a, b, c, d is
a projective invariant, that can be chosen as:

{a, b, c, d} =
xd − xa

xd − xb

xc − xb

xc − xa
,

where xp is the coordinate of some point p along the straight
line the points a, b, c, and d all belong to. In our case,
{l, p1, o, p2} (computed from the image) must be equal to
{L,P1, O, P2} (computed from the model). Once l, p1

and p2 are known from the previous step (ellipse detec-
tion), we have immediate access to o along line (p1p2).
This approach is very precise: the errors between our es-
timate of the ellipse center o and the true center when it is
visible in the image were found to be less than 1 pixel.
Let us denote the successive columns of Hm

i by h1, h2,
and h3. Below, we successively find useful expressions
for the vectors h1, h2, and h3.
To find h3, we exploit the fact that point O (Fig. 9) is taken
at the center of the reference frame, so that we can easily
write:

h3 = Hm
i

 0
0
1

 = λo. (8)

Let us choose λ so that e = (Hm
i )T EHm

i . Based on
Eq. 7, we have OT O = R2, so we must satisfy hT

3 eh3 =
R2. This leads to λ = R√

oT eo
and solves Eq. 8.

To find h1, let us express it as:

h1 = Hm
i

 1
0
0

 =
1
R

Hm
i

 R
0
1

− 1
R

Hm
i

 0
0
1


We find:

h1 =
1
R

(µp1 − h3), (9)

where µ is an unknown scalar factor.
From Eq. 7, we have hT

1 eh3 = 0, which implies via Equa-
tion 9,

µ = R

√
oT eo

oT ep1
. (10)

Finally, to find h2, we make use of the following facts.
First, from Eq. 7, we can immediately write

hT
1 eh2 = hT

3 eh2 = 0.

Second, from the fact that l is a line in the direction of
(0, 1, 0)T , we have lT h2 = 0.
These equations give us a linear system in the components
of h2, which can be immediately solved. Given that we
have found h1, h2, and h3, we have the desired Hm

i ma-
trix.

5. HOMOGRAPHY FROM IMAGE-TO-IMAGE
MOTION

Image-to-image motion refers to the apparent motion of
features from frame to frame. Our goal is to track these
features along sequences of images. The features we con-
sider here are lines.
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Figure 12: Tracking lines from control points.

Line tracking relies on the use of control points on each
of the predicted segments from the model. Such an ap-
proach has proved successful in edge-based tracking [10].
Figure 12 illustrates the algorithm. Starting from an es-
timated prediction of a line segment [pa, pb], a set of ne
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Figure 13: (a) Line color model. (b) Color pixel cross-
correlation.

control points pk is built by regularly sampling this seg-
ment.
Then, at each pk, along the normal to [pa, pb], the edge
point corresponding to the white-line is searched by cor-
relation with a “typical” white line profile. Figure 13(a)
shows the profile we use and typical correlation scores re-
sults are presented in Fig. 13(b).
Fig. 14 shows how the above algorithm performs on real
images from a TV soccer sequence of approximately 700
frames. White points indicate the positions of the correla-
tion maxima, and white lines the reconstructed segments
after RANSAC. In this example, lines are lost only when
they disappear from the image.
Finally, the tracked lines may be used in at least two ways.
If at least four lines are being tracked, the model-to-image
homography can be directly updated with Eq. 3. Other-
wise, more features (typically points) are required to com-
pute an image-to-image homography and update Hm

i ac-
cording to Eq. 1.

6. RESULTS AND DISCUSSION

Experimental results of rectification are illustrated in Fig. 15.
They are obtained by assembling the results of single rec-
tifications in each of the goal zones and in the central area.

The fact that all 12 reprojections of the center circle and
center line are almost perfectly aligned indicates that the
algorithm performs well. Another indication is the fact
that right angles are preserved in each of the goal areas.
Our experimental results indicate that our system gives a
maximum error of about 5 pixels, which translate into lo-
calization errors on the order of a few tens of centimeters.
These errors are doubtlessly the results of radial distortion,
which are not taken into account for the moment, i.e., we
suppose that our perspective model is perfect. Their ef-
fects on “rectified” images is clearly visible on top of the
images.

7. CONCLUSIONS

This article presents some preliminary results of a full
system we are developing to compute the homography
(i.e., a matrix) between TV images of soccer games and
a model of the soccer field. A significant feature of our
approach is that it is fully autonomous. In other words,
there is no need to install position and orientation sensors
on TV cameras or position sensors on the players and the
ball. This new technology shows great promise for “aug-
mented” TV broadcasting.
Our current work is two-fold. On one hand, we want to
design algorithms to take radial distortion into account si-
multaneously with homography estimation [11], as wide-
angle cameras induce stronger distortion. On the other
hand, we focus on strategies to achieve frame-rate per-
formance, which requires improved point tracking algo-
rithms.
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Figure 15: Rectification of the soccer field.
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