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Abstract
This article presents a modular architecture for multi-
camera tracking in the context of sports broadcasting. For
each video stream, a geometrical module continuously per-
forms the image-to-model homography estimation. A local-
feature based tracking module tracks the players in each
view. A supervisor module collects, associates and fuses
the data provided by the tracking modules. The original-
ity of the proposed system is three-fold. First, it allows to
localize the targets on the ground with rotating and zoom-
ing cameras; second, it does not use background modeling
techniques; and third, the local tracking can cope with se-
vere occlusions. We present experimental results on raw
TV-camera footage of a soccer game.

1 Introduction
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Multi-view tracking systems have become major actors
in applications such as video surveillance or broadcasting,
mainly because they allow to overcome the occlusion prob-
lem which is one of the most important challenges faced by
tracking systems. In the case of sports broadcasting, multi-
view vision systems enable video annotation with data on
player motion (positions, velocities. . . ) without using dedi-
cated active sensors (such as RFIDs). This article describes
a framework for developing such an application.

Even if our final aim is the implementation of a multi-
camera tracking system for general situations (i.e. any
place, any kind of target), we focus here on the case where
the scene is partially known, e.g. some metric data. In this
family of systems, most of the approaches developed in the
past address three different problems: (1) how to establish
(once or regularly) the geometry of the multi-camera sys-
tem, (2) how to track targets in 2D video streams and (3)
how to fuse data coming from the different streams.

As for the geometrical problem, an initial calibration
phase is used in many systems under the assumptions that
cameras remain static and that the targets are moving on a

plane. In the closed world context [6], this calibration esti-
mates image-to-ground homographies [6, 13] from known
ground features. Some systems deal with rotating cameras
by using rotary encoders together with calibrated internal
camera parameters [9]. In the video-surveillance context,
some systems estimate for each view a homography to a ref-
erence view [1, 14], whereas others use stereo vision [10].

The tracking methods are very diverse in the literature,
and most of them are based on background models and on a
global characterization of targets, e.g. in terms of color dis-
tributions and/or shape models [10, 11]. The central prob-
lem lies in handling occlusions between overlapping targets,
so that using several views may reduce ambiguities. To this
end, in the absence of stereo measurements [10], one has
to rely on the assumption that the motion space is planar.
Then, the occlusion problem is either handled explicitly in
the image space with homographies [14] or in the ground
plane by recursive filtering [13, 9].

Our work is inspired by the latter paradigm and con-
tributes several original ideas. First, we do not limit our-
selves to fixed cameras: Our system architecture is designed
for rotating and zooming cameras. To do that, we maintain
for each camera an estimate of the homography, and update
it as frequently as possible.

This leads us to our second advantage: In contrast to
many systems that assume static cameras [13], our system
does not use background models but instead takes advan-
tage of a tracking method based on local features only. We
claim that such a choice of local appearance allows to cope
better with occlusions in the images than many classical ap-
proaches.

Furthermore, geometrical and image tracking modules
interact so that image-processing parameters can be adapted
according to geometry. An example is the automatic ad-
justment of the detection scale for local features, which is
inferred from homographies.

Finally, we heavily rely on a distributed, modular archi-
tecture that permits light-weight installations: All modules
can run in separate processes on different PCs. The data to
be transmitted over the network is restricted to target param-
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Figure 1: The distributed architecture for fusion of data
from different cameras: images are processed by Local
Trackers (LT); target parameters are rectified by Rectifica-
tion Modules (RM), combined by the Target Assignment
module (TA) and tracked by Ground Trackers (GT).

eters (positions and covariances) and status information.
Section 2 gives an overview of the architecture we pro-

pose. Then, Section 3 describes the algorithms running on
each video stream, whereas Section 4 presents the fusion
modules. Lastly, some results are presented in Section 5.

2 Overview
For a tracking system to work on several video streams, its
architecture has to be distributed and modular. Our system
is described in Fig.1. The components on the left address
the different autonomous subsystems dealing with single
video streams, and communicate with the supervisor com-
ponent shown on the right. The different components are:

Local image trackers (LT) In each video stream k, nk tar-
gets identified by the label tkj and with coordinates
tk
j = (uk

j , vk
j )T , j = 1, . . . , nk are tracked, where

(u, v) is the image coordinate system.

Rectification modules (RM) For each camera, one of
these modules maintains the local homography to the
ground plane. They transform image coordinates tk

j

into ground-plane coordinates Tk
j = (Xk

j , Y k
j )T , j =

1, . . . , nk, where (X, Y ) is the ground coordinate sys-
tem.

A target assignment module (TA) It maintains a global
view of the scene as it is in charge of handling the cor-
respondences between locally tracked targets tkj and
ground targets T .

Ground trackers (GT) They track the N targets identified
on the basis of correspondences among the local tar-
gets tkj . These global targets are identified by the label
Tn, for 1 ≤ n ≤ N .

All these components are described in detail in the next
sections.

3 Local modules
Each local video stream is processed by two separate mod-
ules, 2D (image-space) tracking and image rectification.
The former tracks 2D targets in the video, whereas the latter
transforms the targets image coordinates into model ground
coordinates.

3.1 2D tracking

To allow the use of moving cameras, we avoid background
models for motion detection. Furthermore, global charac-
terizations of targets such as color distributions or contours
are not recommended because of their limited robustness to
partial occlusions. We prefer to employ local descriptors.
On each target, we extract interest points that are described
by their position and local appearance. By learning the spa-
tial relationships between these points from a short training
sequence, we are able to construct Point Distribution Mod-
els (PDMs) that permits soccer players to be tracked across
mutual occlusions, even if they belong to the same team.

An object is tracked by matching the points of its PDM to
currently extracted image points and by adapting the model
parameters accordingly, including position, scale, orienta-
tion and shape. This kind of approach is able to handle
camera translation, rotation and zoom. All model points are
not required to match to current image points in order to
constrain the model. This property makes the tracker ro-
bust to partial occlusions, which is particularly interesting
for sports applications where there are many interacting tar-
gets. However, a limitation of our current algorithm is that
we use only 2D models that do not handle major out-of-
plane rotations of the players.

The tracking example from Fig. 2 illustrates how mul-
tiple targets are robustly tracked across severe mutual oc-
clusions, even without filtering on the model parameters.
Although the three players are from the same team, their
identities are correctly preserved, because their poses are
different at the moment of the crossing. A paper describing
the modeling and tracking algorithms has been submitted
elsewhere [8].

3.2 Image rectification

Image rectification is an essential task for the system to be
able to merge data from different video streams, as, after
rectification, all the tracking data are expressed in a com-
mon reference frame, i.e. the ground frame.

As we want to cope with typical TV broadcasting setups,
the system cannot be calibrated in advance. operators move
the camera, zoom onto interesting areas, etc. Moreover, we
do not want to rely on motion sensors embedded in cameras
[9]. Thus, the homography matrix that maps image points
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Figure 2: Tracking multiple players across mutual occlusions. White points indicate the currently extracted image points
whereas red points indicate the model points. These four keyframes are 40 frames apart1.

(a) (b)

Figure 3: We combine a feature-based approach and visual odometry to estimate image-to-ground homographies. The left
panel (a) shows a reprojection of the model (note that radial distortion is taken into account). The estimated geometrical data
are used to adapt the parameters of the tracking algorithm: In the right panel (b), the different scales used for Harris point
detection inside each target ROI are illustrated by bright discs whose radius is proportional to σh.

to ground points has to be updated at each moment of the
sequence based on image information only.

The approach we proposed recently [5] consists of two
parts: (1) a line-based technique that assigns detected lines
to a model and tracks these lines in order to update the ho-
mography and (2) a point-based technique that allows to
estimate increments of homographies whenever no line fea-
tures are visible. By definition, the latter accumulates inter-
image homographies, so that a drift in the final estimate is
unavoidable. However, occasional calls of the former suf-
fice to eliminate this drift.

Figure 3(a) gives an example of line-based model repro-
jected onto the image under the estimated homography. The
only assumptions we use in this step are that we know the
model of the ground and that the cameras are only rotat-
ing and zooming (i.e., all points in successive images are
transformed by the same incremental homography). Note
that merely a partial knowledge the geometry of the line is
required; the rest are estimated from distance cross ratios
[5].

In this way, each camera k updates an estimate Hk of its
image-to-ground homography. It transforms the 2D tracked

targets positions tk
j into 2D ground estimates Tk

j ,(
Tk

j

1

)
∼ Hk

(
tk
j

1

)
.

3.3 Adaptation of local detection scale
One of the main problems of the point-based tracking algo-
rithm lies in the scale variation of interests points along a
video sequence. Indeed, as the camera moves or zooms,
the integration/derivation scale of Harris interest points
evolves. The same problem exists for the line features that
are tracked for maintaining the homography as explained in
Section 3.2.

Let us assume that we know the initial scale s(p0) of a
local feature p0 detected at frame 0. We want to update this
scale without having to use the costly methods commonly
used to compute it [7]. To this end, we define a scale func-
tion

σh(H, P ) = max
Q∈∂B(P )

‖H−1P −H−1Q‖,

1We used color figures to improve readability. For the final version, we
will make sure they reproduce well in grayscale.
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where H is an image-to-ground homography matrix (the
camera superscript is abandoned here for clarity), P and Q
are points on the reference plane and ∂B(P ) denotes the set
of vertices of a reference square centered at P . This func-
tion σh is a rough approximation of s that does not take into
account any 3D motions of the targets. Then the scale of the
tracked point p0 can be updated at time τ as

s(pτ ) = s(p0)
σh(Hτ ,Hτpτ )
σh(H0,H0p0)

.

This scale is then used to detect Harris points in the next
frame. In our current implementation, the points associated
with a given target are all detected at the same scale, so that
the scale update is computed once per target. Figure 3(b)
gives an illustration of σh values.

3.4 Propagation of uncertainty
Data fusion requires well-defined uncertainty measures Rk

j

on Tk
j . These uncertainties stem from two principal inde-

pendent sources that include the uncertainty in the locations
of the features used to compute/update the scene geometry
(a 9× 9 uncertainty matrix Vk on Hk) and the uncertainty
in the locations of the tracked points (a 2 × 2 uncertainty
matrix Wk

j on tk
j ).

The matrix Wk
j is assumed to be constant. As for Vk,

we use the framework proposed elsewhere for the estima-
tion of the uncertainty in vectors computed by SVD based
on perturbation theory [3]. As a result, we obtain the fol-
lowing uncertainties on Tk

j :

Rk
j = JV VkJT

V + JW Wk
j J

T
W

where JV (resp. JW ) is the Jacobian of the ground-to-
image mapping with respect to the homography (resp. im-
age points).

4 Target assignment and ground
trackers

The supervisor module has to (1) gather and synchronize the
target coordinates provided by the local trackers, (2) asso-
ciate the coordinates (3) and fuse the coordinates in order to
determine a global estimate of the target positions in world
coordinates.

4.1 Data synchronization
For such a framework to handle information coming from
physically distinct sources, data synchronization is a fun-
damental problem. The scheme we employ is depicted in

Stream 1

Stream 2

Stream 3

Expectation

τ0 τ0 + δτ

time τ

Figure 4: Data from different streams are stored in a tem-
poral buffer where a delay δτ is applied before considering
all the data corresponding to an instant τ0.

Fig. 4. All target data are time-stamped by the local track-
ers. Temporally corresponding data from different sources
may arrive at the supervisor at different times due to dif-
ferences in processing time, network delays, etc. The su-
pervisor program receives the data coming from the various
sources in a fixed-size buffer. Thus, all data time-stamped
τ0 are awaited during a fixed interval δτ after which the
available data are processed by the assignment and fusion
modules. Any data arriving late are discarded.

4.2 Target assignment (Data association)

The purpose of the assignment module is to establish the
correspondence between the local targets tkj in each video
stream k and the target Tn in the physical world. As
did Snidaro et al. [12], we adopt the Kalman filter frame-
work to solve the problem. Measurements coming from
the local trackers are used to update the state vector xn =
(X, Y, Ẋ, Ẏ )T of target Tn, comprising its position and ve-
locity.

The module takes as input a series of lists of ground co-
ordinates, each list coming from a local tracker analyzing
one stream, and composed of ground coordinates of the tar-
gets detected in this stream. Thus for stream k we have
the list of coordinates Tk

1 , . . . ,Tk
nk

with Tk
j = (Xk

j , Y k
j )T

and the associated covariances Rk
1 , . . . ,Rk

nk
, k = 1, . . . ,K

where K is the number of video streams (the time subscript
is omitted for clarity). The computation of the Rk

j has been
described in Section 3.4.

The problem of target assignment can be stated as fol-
lows. Given a target Tn (n = 1, . . . , N ), find in each stream
k the indices λk

n such that Tk
λk

n
corresponds to Tn. The as-

signment is solved by constructing a cost matrix A = (ajn)
in which each entry ajn is the Mahalanobis distance be-
tween Tk

j and the predicted position of target Tn. The cost
matrix is expanded to take into account invisible objects and
spurious detections. A legal assignment specifies only a sin-
gle correspondence in any row or column of the matrix, and
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the assignment cost is simply the sum of the costs of these
elements. Finding the best assignment is then a matter of
finding the assignment that minimizes this sum, which can
be solved efficiently by combinatorial optimization[2].

4.3 Data fusion
Once the correspondence is found, the coordinates Tk

λk
n

measured by different cameras can be fused. For each target
Tn, fusion is done using

zn =

(∑
k

(Rk
λk

n
)−1

)−1∑
k

(Rk
λk

n
)−1Tk

λk
n

in order to obtain a fused measurement zn [4], which is
then used in a standard Kalman filter to update the state
xn of target Tn. To derive this equation, it is assumed that
the noise on the ground coordinates coming from different
video streams is independent.

5 Results
For our experiments, we have used real soccer TV footage
consisting of a full game seen by four cameras. In practice,
in most of game situations, no more than two or three views
overlap. Figure 5 illustrates a case of overlapping views
with three cameras, namely A, B and M , one located at the
opposite goal and the two others on the side of the field.

The three pictures of Fig. 5 show the tracking perfor-
mance at frame 128 of a 400-frame corner sequence. The
scene is difficult to track since many targets of similar ap-
pearance overlap in the images. In Fig. 5, the yellow dots
show the tracks over the previous frames as detected by the
local trackers. Moreover, the cameras move, so that homog-
raphy updates are critical. In these images, these updates are
illustrated by the red lines, which are the back-projection of
the line features of the ground model.

Data association for the same frame (128) is shown in
Fig. 6. Note that this particular frame presents multiple
sources of ambiguity: players from the same team are close
to each other, some measurements have large uncertainties.
Nevertheless, target assignment is correct in all cases.

Figure 7 represents the trajectories of the tracked play-
ers. Each color represents a different target, identified by a
number. These trajectories are also back-projected into the
original images, indicated by the white curves in Fig. 5. The
global behavior is satisfactory even under severe occlusions
in camera A, but all trajectories are as expected, including
those of the partially occluded players 2, 5, 6 and 1.

Presently, one of the main limitations is that the projec-
tion to the ground plane of the image-space target coor-
dinates is taken to be the bottom of the region of interest

surrounding the tracked model. This results in high uncer-
tainties in the ground-plane position, and can lead to bad
associations in some cases, where the system creates new
targets where it should not. Two solutions are currently be-
ing investigated: the use of contours to delimit the targets,
and an exploitation of the PDM.

One point not addressed here is the initialization of the
targets. In the example we give, this is done by hand. How-
ever, automatic initialization of PDMs is currently investi-
gated through clustering of points with similar motion.

Videos illustrating the individual performances of both
modules as well as overall system behavior can be found at
https://biprossix.montefiore.ulg.ac.be/trictrac/videos.php.

6 Concluding remarks

In this paper, we have presented an original and efficient
framework for multi-camera tracking. It can cope with ro-
tating and zooming cameras by continuously maintaining
an image-to-model rectification for each video stream. It
uses a novel approach for tracking in image space based
on local features grouped as Point Distribution Models.
Our system takes advantage of geometrical data as, for in-
stance, local scales can be computed and updated from ho-
mographies. We limited our first experiments to soccer TV
footage with occlusion situations, for which very promising
results have been presented.

A principal goal for future work is that the trackers main-
tain the identity of the individual targets for as long as possi-
ble. One immediate improvement is to introduce trajectory-
based reasoning to the data-association step in addition of
the current point-based stochastic reasoning. Moreover,
rectification can be improved to work on longer runs by
adding accidental point features to the ground model. We
will apply this framework in various types of applications,
in particular in video-surveillance scenarios.
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