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ABSTRACT

This article focuses on the field-to-image registration for
TV sports-related image processing through basic geomet-
rical reasoning. We propose a robust automatic line-based
method that can cope with imprecisions in the line detection
steps through a hypothesis generation/pruning paradigm whe-
re the number of hypotheses is reduced by using the vanish-
ing points. The results are satisfying and illustrated with
examples from sport.

1. INTRODUCTION

It has been several decades now that the TV industry has de-
veloped a major interest in sports and seeks cheap, simple
technology to rejuvenate broadcasting through augmented
reality or on-the-fly event detection, e.g., offside detection,
or distance measurement. As most of these operations re-

quire teams of people to track players or to mark lines through-

out the broadcast, substantial research has been done in the
last few years towards automated sports game analysis, some
of which is being used in commercial systems. One of the
keys for the computer to understand a game is to develop
algorithms to (1) track the players and (2) to maintain an
estimate of the geometry of the scene, continuously through
the game. We address aspects of the second point here.
The geometry of the problem is well known. The trans-
formation that maps points in the game field to points in the
image is a homography, i.e., a linear mapping from a 2D
projective space to another 2D projective space, whose es-
timation requires that matches be established between field
features and image features. Here, we propose a new al-
gorithm for estimating this mapping by matching line seg-
ments detected in the image to line segments in the model.
Most of the existing reports on image rectification in
sports sequences focus on the case of static cameras [1, 2],
where calibration may be done once by hand. The problem
we address involves moving cameras (translation, pan, tilt,
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zoom), so the challenge is to come up with a fast, robust, and
automatic approach. Related work has been done in the con-
text of ice hockey [3], where point features are detected and
tracked by a KLT process. Recently, homography-based
registration has been investigated in a scheme using assump-
tions regarding the camera model [4]. The contributions we
make here are (1) to rely on geometrical reasoning only and
to avoid any assumptions regarding the camera model, and
(2) arapid and robust system capable of coping with differ-
ent, imperfect line detectors. Section 2 describes the global
approach we propose for registration. Section 3 addresses
the generation of hypothetical model-to-image mappings.
Section 4 tackles the problem of validating these mappings.
Section 5 discusses results obtained with our new method.

2. OVERVIEW

2.1. Model-to-image registration

The first step to perform registration is to detect image fea-
tures to be matched to the model features. Since we fo-
cus on sport fields, we mainly use straight line segments
as features. Many methods exist for detecting straight line
segments, e.g., Hough methods [4] or edge segmentation
methods [5]. Note that, in our strategy, it is not critical that
the line detectors be perfect. Incomplete segments, missing
segments, and spurious segments will be taken care of by
the approach to robust segment matching described here.

In this paper, we specifically focus on the case where
all lines can be classified as belonging to at most two dis-
tinct vanishing points p, and py,. This is the case with most
markings on sports fields.

Following the extraction of the segments from the im-
age, we group the segments as corresponding to p, or pp
and we simultaneously compute p,, and py,, €.g., as described
in [5]. These two sets of segments are illustrated in Fig. 1,
where we use a specific gray level for each set.

The second step is to match these two sets of image seg-
ments to the segments in the model.



Figure 1: Example of line extraction, grouping, and im-
age/model point matches (shown in lower-right corner).

2.2. Matching image segments to model segments

A simple minded approach would be to use brute force match-
ing of all image segments (many) to all model segments
(generally fewer). With enough information to avoid ambi-
guity, we could even just match independently the segments
corresponding to each class. However the matching would
require information about the camera model [4].

Here, we consider all pairs of segments corresponding
to the Cartesian product of the segments in the set corre-
sponding to p, and in the set corresponding to py. We
find them both in the image (in real time, online) and in
the model (once, offline).

The support lines of the segments in each pair cross at
some point. Therefore, instead of matching pairs of line
segments, we match the corresponding intersection points,
taking into account their particular configuration. One can
show that, once p, and p;, are known, only two such point
matches are required to perform the registration. This is
illustrated in Fig.1 by the pairs of dots in the image and the
overlayed model. We use a hypothesis generation/pruning
paradigm to produce a set of reliable point matches. This is
explained in Sect. 3 and 4, respectively.

The vanishing points are generally not very precise, as
there are not a lot of lines in the type of scene we con-
sider, so the registration will be a rough one. However, it
is straightforward to refine this rough registration by locally
warping the backprojected features [5].

3. GENERATION OF HYPOTHESES

A hypothesis consists in the collection of a first pairing of an
intersection point p; in the image to an intersection point P;
in the model and a second, similar pairing of py to Ps. Itis
denoted by h = (p1, P1;p2, P2). Since it is out of question
to consider all pairs of line crossings present in the image,
we select a subset of them by using the relative positions of
line segments.

3.1. Characterization of pairs of image/model segments

We characterize each pair of image and model segments ac-
cording to the relation between the segments. We define 17
such relations, 3 of which are illustrated in Fig. 2. These
17 relations depend upon the relative positions of the seg-
ments with respect to (a) each other, (b) the intersection
of the support lines, and (c) the position of the vanishing
points. In Fig. 2, relations @), @2 and Q3 are differen-
tiated by the position of one segment w.r.t. the other. The
other 14 relations result from the characteristics of the inter-
section point (i.e., whether it belongs to none, one, or both
segments) and from the segments relative positions w.r.t the
vanishing points. The set of 17 relations is denoted by Q.

Since the support lines of the pairs of segments of in-
terest intersect, we denote these pairs of segments by their
points of intersection, say p; (in the image) and P; (in the
model). The relation associated with each pair is denoted
by g(z), where x is either p; or P;.
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Figure 2: Qualifying a line crossing by using the vanishing
points: a few examples of elements of Q.

The similarity measure v(p;, P;) between p; and P; is
then defined in terms of ¢(p;) and g(F;), i.e.,

v(pi, Pj) = cla(pi), q(P)).

The function c is defined empirically to penalize topo-
logically incorrect correspondences. This is illustrated in
the following table for the 3 relations shown in Fig. 2. Of
course, in actuality, we work with a 17 x 17 table:

Q1 | Q2 | Q3
O [ 1 05 -1
0, (05 1 | =1
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3.2. Generation of hypotheses

Point matches are denoted by (pg, Px). A naive idea would
be to generate hypotheses from all pairs of matches such
that y(pr, Px) > 0. However, the combinatorial burden
could be significant. To alleviate it, we proceed as follows.

First, we build two lists. The first, [T, includes all can-
didate point matches (pg, Px) such that v(p, Px) = 1 (i.e.,



the best topological similarity). The second, [~, consists of
the matches satisfying y(py, Px) > 0 (note that [T C 7).
Second, we build the list of hypotheses (px, Px;pi, P)
from all pairwise combination in [™ x [~, without degener-
ate cases (i.e., the same support line can only appear once).

4. PRUNING OF POINT MATCHES HYPOTHESES

Let us consider the hypothesis h = (p1, P1; p2, P2) gener-
ated as described above.

4.1. Fast projection of a model point onto the image

Assuming the vanishing points p, and p;, are known, we
consider the geometrical setup of Fig. 3, i.e., the points
Py5, P>1, Vi and V5 (in Fig. 3(a)) and their projections (in
Fig. 3(b)). We want to express the projection p onto the im-
age of any model point P given the hypothesis h. Therefore,
we want to find the relation ITj, such that p = II, (P).

(a) Setup for model

(b) Setup for image

Figure 3: Geometrical setup for fast reprojection.

To determine I, we avoid a full homography estima-
tion, which requires inverting matrices. Instead, we use the
fact that cross-ratios remain invariant under perspective pro-
jection. To derive an expression for the position vector v,
corresponding to point vy, which is the projection of point
V1 obtained as shown in Fig. 3, we first write
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where [a,b, ¢, d] = %, I, being the abscissa of
point p, measured on the straight line defined by points a, b, ¢
and d w.r.t. any reference point on this line. X is the ab-
scissa of point P in the model frame as indicated in Fig. 3.
Points P, and P,, with respective coordinates (X7,Y7)”
and (X2, Y2)T define the hypothesis under consideration.
Equation 1 can be rewritten as
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Then, we easily find
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We now explain how this result is used to evaluate each
point match hypothesis h = (p1, P1; p2, P2).

4.2. Evaluation of a hypothesis

Evaluating a hypothesis means quantifying to what extent
it explains the current observations, i.e., the detected lines.
We consider the set {p;} of “intersections” p; in the image,
and the set { P;} of “intersections” P; in the model. A hy-
pothesis h = (p1, P1; p2, P») is evaluated by comparing the
set {p;} with the set {II;,(P;)}.

To this end, we compute the quantity
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where the sum is taken over the model points whose pro-
jections lie in the image. B(p,¢) is the circle centered at p
and with radius e (chosen as a tolerance on the position er-
ror). We calculate s(h) for all hypotheses h generated. The
hypothesis corresponding to the maximum value S,,4, Of
s(h) is retained provided ;4. is above a given threshold.
Otherwise, no hypothesis is considered satisfactory.

We can then use the retained hypothesis (if any) for pro-
jecting any model point onto the image.

5. RESULTS

Our method has been tested on various sports video se-
quences. Each row in Fig. 4 gives some results for one of
these videos. The first column shows the lines that have
been detected and correctly associated with their vanish-
ing points. The second column presents the resulting point
matches, where the points forming the selected hypothesis
are shown as black dots and the point matches consistent
with this hypothesis are shown as white dots. The last col-
umn shows the backprojection of the model after the map-
ping has been refined. Note that for the second video, we ap-
plied a radial distortion compensation to all detected lines.



(a) Detected segments

(b) Matches

(c) Reprojected, warped segment

Figure 4: Results examples: each row corresponds to a different video sequence.

The system can cope with poorly segmented lines or
false positives in the line detection process (see the first im-
age, in particular). This demonstrates its overall robustness.
Of course, a sufficient number of segments of reasonable
quality must be extractable from the images for the registra-
tion system to work. The geometrical framework reduces
the number of hypotheses to be tested to a reasonable value,
which makes this approach suitable for video-rate model-
to-image registration. For example, in our experiments on
soccer video sequences with a Centrino 1.6 MHz proces-
sor, without taking into account line detection and vanishing
point determination, matching is performed in about 10ms
in typical situations and in at most 50/ms in the most com-
plex situations, i.e., with a substantial number of spurious
segments.

6. CONCLUSION

We have proposed a novel method for performing image
registration in sports video sequences in the specific cases
where a set of segments of a planar model have to be matched
to detected segments in an image. The originality of the
approach is that we rely almost exclusively on geometrical
reasoning to search for a best match and that our hypothesis
generation/pruning scheme simplifies the pruning step by
avoiding the explicit computation of the homography thanks
to the use of the scene vanishing points. The method is fast

and performs reliably, even if line detection is erratic. This
makes it suitable for online, i.e., real-time, (re)initialization
of homographies in soccer game analysis.
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