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Abstract. This article proposes a global approach to the rectification
of sport sequences, to estimate the mapping from the video images to
the terrain in the ground plane without using position sensors on the TV
camera. Our strategy relies on three complementary techniques: (1) ini-
tial homography estimation using line-feature matching, (2) homography
estimation with line-feature tracking, and (3) incremental homography
estimation through point-feature tracking. Together, they allow contin-
uous homography estimation over time, even during periods where the
video does not contain sufficient line features to determine the homogra-
phy from scratch. We illustrate the complementarity of the 3 techniques
on a set of challenging examples.

1 Introduction

In the current era of mass entertainment, sport broadcasting has become an
indispensable ingredient. Given the interests at stake and the huge demand for
game analysis, much research has been done over the last decade for enhancing
the broadcast video data with meta-data of particular interest to sports fans or
coaches, such as player trajectories, off-side lines, etc. Ideally, these data should
be produced instantly to help to understand the game as it evolves. Of course,
computer vision is at the heart of this research effort, since it can provide the
needed automatic procedures, which are usually done in a labor-intensive way.
In terms of metric concepts, one needs to transform the relevant data defined
in the image coordinate system into a real-world coordinate system, in a frame
attached to the terrain field, a process generally referred to as “rectification”.

For planar scenes, the image-to-model mapping is a homography, or linear
mapping in P

2[1]. It depends on the current internal configuration of the cam-
era and its position with respect to the field. In particular, under camera mo-
tion, this transformation evolves. In the case of sport scenes observed by static
cameras, one may perform classical calibration beforehand, and then use the
computed homography[2]. Now, when the camera moves (as in most outdoor
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sports), one needs to estimate this transformation continuously, which makes the
pre-calibrated framework infeasible. Another key requirement of a scene analysis
system is the management of uncertainties, as it is important to evaluate the
precision of a given position or velocity, e.g. in multi-camera tracking applica-
tions. This article proposes a global approach to estimating the image-to-scene
homography and its uncertainty in most typical team-sports scenarios, without
camera motion sensor.

Most previous work do not fully exploit the temporal continuity of the im-
age sequence and rely on pattern recognition techniques based on line-feature
matching[3,4]. In some cases, we may try to calibrate the camera entirely by
using the geometric properties of the scene[5]. However, this is often unneces-
sary, unless the application intrinsically requires 3D information, e.g. for the
ball position[6]. In the case of ice hockey, an interesting approach was proposed
that involves tracking points within the video over time to estimate inter-image
homographies, and using line and circle features for fitting the field model[7].
However, such an approach is difficultly adaptable to soccer, as line features
are not always present. In the context of sports, inter-image homographies have
been used in mosaicking applications[8]; one of our ideas is to accumulate them
across frames to provide estimates of the image-to-model transformation.

The transformation between a plane and its projection is well known as a
homography. Here, the image-to-model homography maps points in the model
to points in the image through the 3 × 3 matrix H , that is, up to a scale factor,

HP ∼ p, (1)

where P = (X, Y, 1)T is a model point and p, image of the point P through the
TV camera, is denoted as (u, v, w)T . As an input to our system, we consider
a model (e.g., the soccer rules) composed of N line segments M = {Sk =
(P b

k , P e
k ), k = 1, . . . , NM}, where Sk is a line segment with vertices P b

k and P e
k

and support line Lk ∈ R
3, i.e. (Lk)T P = 0 if point P belongs to Lk.

An overview of our rectification approach is depicted in Fig. 1. Three modules
are used for initializing and maintaining the homographies. The line-detection
(LD) module allows for the initialization of the homographies from scratch, as
shown in light gray in Fig. 1. This module is based on the approach presented in
[4], which relies on a geometrically-motivated hypothesis generation-verification
scheme to match the set of detected lines (i.e., white markings on football fields)
to a known model. Although the vanishing points detection is not very precise,
we use the approximate results given by this algorithm as an input of the two
other modules. The line-tracking (LT) module, shown in medium gray, tracks
the lines whose positions can be currently estimated using classical registration
techniques. A module for ego-motion estimation, and thus called the visual-
odometry (VO) module, shown in dark gray, incrementally computes the motion
across images by tracking feature points from image to image. The LT and VO
modules are sucessively described in the next sections.
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Fig. 1. Overview of our approach

2 Line Tracking (LT): Updating of Homographies

When a sufficient number of line features are visible, efficient and precise line
tracking from image to image is critical for ensuring fast re-estimation of the
homography Ht, i.e. the image-to-model homography at time t, supposing we
have an estimation of Ht−1. This section briefly describes how line tracking is
performed and explains how its results are used to estimate Ht.

Suppose that we have estimated Ht−1 at time t−1. Then, all the line segments
that form the field model M = {Sk = (P b

k , P e
k ), k = 1..NM} can be reprojected

onto the image in a set {sk = (pb
k, pe

k), k = 1..nM}, where nM ≤ NM . Each
of these segments sk is warped at regular samples along the direction that is
orthogonal to the line. We use for that a traditional correlation technique on
color profiles [9], i.e., at every point πk,l, we look for a point π∗

k,l such that the
correlation with a reference color profile is maximum in the search direction.

These maxima are used as candidate points for the estimation of the new
line parameters for the corrected version s∗k of sk through a robust RANSAC
procedure on the set of {π∗

k,l}. It allows to get rid of outliers due to spurious
local warpings, e.g. coming from players. The result of this process is a set of
line segments s∗k together with the corresponding inliers π∗

k,l.
If a sufficient number of matches are available between the current image and

the field model, then we can use them to estimate the homography H .
In the classical approach, one would use line correspondences between s∗k

(in the image) and their counterpart in the model, the line segments S∗
k . Two

constraints on the homography H would be established for each correspondence;
however, the line parameters do not constitute very reliable measures, as a first
estimation of them is needed. By contrast, we use the points π∗

k,l that have been
successively warped to express contraints on the homography H :

LT
k (Hπ∗

k,l) = 0. (2)

This equation is asymmetric and differs from traditionnal approaches that use
direct correspondences (points-to-points or lines-to-lines). Here, each of the ns

warped point gives rise to one linear equation (instead of two) in the homography,
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so that we obtain a linear equation in the 9×1 vector h containing the elements
of the matrix H , i.e. h = (H11, H12, H13, . . . , H33)T .

The complete system has the form Sh = 0, where S is a ns × 9 matrix. Each
row si of the matrix S is given by

si =
(
sinαι(i)ui sinαι(i)vi sinαι(i) cos αι(i)ui cos αι(i)vi cos αι(i)ui cι(i)ui cι(i)vi cι(i))

)

where (ui, vi) are the coordinates of one of the warped point, and Lk =(
sinαk cosαk ck

)T are the k − th line parameters. We denote by ι(i) the map-
ping that associates an index among the rows of matrix S with an index among
the set of lines, i.e., ι(i) = ι(j) when the equations coming from rows i and j arise
from points belonging to the same line. The solution of this system is clearly the
right singular vector of matrix S associated to the smallest singular value. Note
that, since the points have been filtered through local RANSAC on each warped
line, there is no need for a robust strategy here; just one linear system is solved.

Moreover, to improve the precision of the linear rectification method presented
above, we perform a few iterations of non-linear optimization in a Levenberg-
Marquardt scheme. The geometric criterion C we minimize is the sum of the
squared distances between warped points and the projection of their correspond-
ing line in the model, i.e.

C =
∑

k,l

(n(HtT Lk).π∗
k,l)

2

where n(l) = 1√
l21+l22

(l1, l2, l3)T for l ∈ R
3, (l1, l2) �= (0, 0). Figure 2 shows

examples where the optimization of C in R
9 improves the estimation of H .

Fig. 2. Effects of non-linear refinement: grey lines are projected using the estimate of
H computed by the linear method; white lines are projected using the refined estimate.
The white circles are the inlier warped points π∗

k,l.

3 Visual Odometry (VO): Incremental Updating

The VO module aims essentially at helping in those situations where, knowing
an estimate H , there are not enough known line features visible in the image.
To handle this situation, we permanently track a set of locally salient features
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in the image, and, when needed, we use frame-to-frame matches to determine
ΔH , which is the homography from image t − 1 to image t, i.e. ΔHtpt−1 ∼ pt

for all points pt−1 in the image t − 1 with counterparts pt at time t.
These points are detected through a Harris detector and tracked by the KLT

tracker. One of the main problems here is to modify the Harris detector so that
the points are spatially spread over the largest extent possible. For this purpose,
we use an adaptive algorithm for point selection[10].

(a) (b)

(c) (d)

Fig. 3. Motion estimation (VO module): tracked points and frame projection into
mosaic. Inlier and outlier points are respectively in white and black in the first row.
Highlighted rectangular areas are areas where new feature points are searched.

Figure 3 illustrates the process involved in the VO module. It shows motion
estimation and the corresponding mosaicking over 150 frames of a short sequence
with fast camera rotation. In Fig.3(a) and 3(b), the tracked points are displayed,
in white if they correspond to inliers of the ΔHt estimation process, in black
otherwise. Note that the number of outliers may be very large in proportion
(as in Fig.3(b)), especially under strong blurring situation, so that establishing
the correspondences through KLT is meaningful. Figures 3(c) and 3(c) show the
corresponding mosaics. Note that whenever the image blur becomes too large, a
failure is possible, which is the main limit of this module.
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4 Using Multiple Homography-Estimation Modules

This section describes the process of combining the homography estimates we
obtain from the techniques we described previously.

4.1 Estimating the Covariance on Estimated Homographies

A key to the success of any application that seeks to recover geometric informa-
tion is a proper evaluation of the error associated with the estimated results. We
model all the noisy quantities we use (feature positions, estimated objects. . . )
as zero-mean Gaussian random processes. In the computer vision area, there
have been two seminal contributions to evaluation and propagation of the co-
variance matrices, all relying on perturbation theory, i.e. a generic, second-order
method[11], and first-order methods that apply to all linear, overdetermined
optimization problems solved through matrix spectral decomposition [12,13].

Our procedure is adapted from the aforementioned works, but the nature of
the equations is quite different. We propagate uncertainties on points detected
in image and uncertainties on model line features (straight lines Li) up to the
homography H . Let us consider that the variance on point π∗

k,l is isotropic with
value σ2. The covariance on the parameters h is denoted as Λh. Starting from
the Jacobian expressions [13], we get

Λh = JT (
ns∑

l=1

ns∑

m=1

(hT E(δsT
l δsm)h)ele

T
m)J = JT ΛJ (3)

where the ns × 9 matrix J is given by Jij = −
9∑

l=2

UilVjl

λl
, U , V and {λl} being

the result of the singular value decomposition of S (left, right singular vectors
and corresponding singular values). Vectors el are such that el(i) = δli, where
δlm is the Kronecker symbol. Assuming noise variances σ2

α and σ2
c on the angle,

constant line parameters (assumed uncorrelated), and noise variance σ2 on image
points coordinates, we finally obtain

Λ(i, j) = hT (δijAij + δι(i)ι(j)Bij)h (4)

where ι maps row indices in S onto indices in the set of warped lines. The
matrices Aij and Bij only depend on the line parameters, point coordinates and
their respective uncertainties; they are not detailed here for lack of space.

4.2 Propagating Uncertainty Through Rectification Algorithms

Once the covariance Λh has been computed, we can use it to evaluate errors on
transformed points. As transformed coordinates of a point P = (X, Y ) in the
model frame are derived from a multiplication between H and an image point
p = (u, v, 1)T , uncertainties on P naturally combines two terms:

ΛP = JW (HΛpH
T + JHΛhJT

H)JT
W (5)
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(a) (b)

Fig. 4. Image rectification: (a) projection of the model lines with estimated h (in
white); (b) evolution of the uncertainty volume (determinant of the uncertainty matrix
ΛP ) for the image of a given point with respect to the number of warped lines.

where matrices JW and JH are Jacobian matrices[12] and matrix Λp is the
covariance on image points. Typically, this could be the output of a tracking
algorithm (uncertainty on the location of the target in the image).

As an illustration, Fig. 5(e) shows the result of error propagation around
a homography computed from Fig. 5(a). Red lines in Fig. 5(a) indicate the
reprojected model from which the homography has been computed. In Fig. 5(e),
at each point from a regular grid, the covariances are represented by a 3σ ellipse.

Finally, as expected, the average error decreases with the number of warped
lines, as illustrated in Fig. 4(b). A given point was chosen in the image (the
center) and the plot shows how a given uncertainty volume in the image domain
is transformed in the model domain throughout a given video sequence (where
the viewpoint does not change too much). The more warped lines we have, the
smaller uncertainties are, on average over several hundreds of frames.

4.3 Integrating Uncertain Inter-image Homographies

Our policy takes line-based rectification as the first choice. In particular, to save
time, inter-image homographies are not computed as long as enough lines are
tracked. However, points are detected all over the image at each t. This allows,
when the LT module fails for any reason at time t, to compute an estimate ΔHt

and to update Ht through Ht = Ht−1ΔHt.
In a similar way as in 4.1, uncertainties on ΔHt are computed through Eq. 4

by propagating uncertainties on the matched points, which leads to an estimate
of the uncertainty on Ht. As an illustration, the images of points from the first
frame of Fig. 3 (left) into the current frame (right) have accumulated uncertain-
ties that are shown in white in the mosaic image.

Note that when the VO module is used, this uncertainty will tend to grow,
as we accumulate errors on relative measures. At some moment, this leads to
ambiguities while reprojecting the model (one line taken for another one), so
that we switch to the LD module whenever the uncertainty level corresponding
to the projection of the center of the image point becomes too large.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Sequence 1 : after 500 frames of line-based rectification (a), the system switches
to motion estimation because lighting changes render line warping unsuccessful (b). The
inlier points (in white) allow motion estimation for more than 400 frames (b,c), until
light conditions become normal and the LT module can restart.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Sequence 2 : line-based rectification is lost at frame 193 (a), motion estimation
is done under fast zooming and rotation (b-c), and lines are recovered a frame 300 (d)
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5 Results

This section presents results of our rectification system for different situations,
where the complementarity of the 3 modules we described plays a key role in
the success of the continuous, automatic estimation of H .

A first example in Fig. 5 illustrates the benefits of using a point-based method
to estimate increments of homographies, as the VO module (that projects the
model onto black lines) helps to maintain an estimate H while the LT module
(that projects the model onto white lines) fails. Indeed, after hundreds of frames
rectified by the LT module, sudden, strong lighting changes occur. Starting from
frame 529 (Fig. 5(b)), many line segments are strongly reduced in contrast, and

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Fig. 7. Sequence 3: after staying for a while near the goal area, the camera performs
an abrupt motion towards the center, where LT is not possible (c). After unzooming
(frame 467, f), goal areas are visible again. Motion estimation has accumulated a lot
of uncertainty (e-f-i), but LT is successful on frame 471.
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the local warpings are unsucessful. However, point tracking remains sufficiently
reliable for approximately another 400 frames. Even though uncertainties con-
tinue to grow during this period, as seen in Figs. 5(f) and 5(g), line tracking
resumes without problems in frame 988 (Fig. 5(d)).

Complementarity also appears in Fig. 6 and Fig. 7. These examples show that
even under fast motion and strong zooming, when white lines are lost (Fig. 6(b)),
it remains possible to rely on motion estimation to recover after a while. However,
this motion has to remain local and short, in order to avoid accumulating errors
in motion estimation. For example, in Fig. 7, the motion is fast and its amplitude
is large and so are the accumulated errors and corresponding uncertainties (see
Fig. 7(e), 7(f), 7(i)). This last example is an extreme case : the VO module
should have been stopped long before for switching to the LD module but has
been let running on purpose to illustrate its limits.

Our implementation runs at about 3Hz on a 3.2GHz Bi-Xeon machine, which
is a bit slow, even for 720 × 576 images. Most of the time is spent on point
detection and tracking, so our current optimization efforts are focused on it.

6 Conclusion and Future Work

We have presented an approach to estimate the image-to-field homography and
its uncertainty continuously over sport sequences : after automatic rectification
on a single frame, it tracks line features and re-estimates the homography with
the constraints induced by image points warped locally onto the correspond-
ing line feature. Finally, it estimates the incremental homography between two
frames when line-based rectification is not possible. By way of several challenging
examples, we have demonstrated the added benefit of the two techniques.

Our system still needs to be improved to cope with very long sequences. Very
fast camera motion causes our system to lose track until sufficient lines come
available to allow reinitialization by the first method. Our current work seeks
to improve several aspects of the system. First, we would like to perform better
filtering of homography estimates in a lower-dimensional parameter space, which
implies on-line determination of internal parameters of the camera. Second, as
shown in the experimental results, motion estimation through visual odometry
accumulates uncertainty and necessarily leads to drift. Currently, we simply
switch to LD module when uncertainty becomes too large, but a better answer
to this problem would be to identify particularly salient points of the planar
scene and incorporate them into the scene model as landmarks.
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