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Abstract—Training using randomized simulations can be seen
as a model-based reinforcement learning method. By providing a
model, this training blends planning and reinforcement learning.

We propose the use of kinodynamic planning methods as part
of a domain-randomized, model-based reinforcement learning
method and to learn in an off-policy fashion from solved planning
instances.

In order for this to be an improvement, using the planning
method needs to have beneficial properties over pure reinforce-
ment learning. On a simple toy domain, we show an improved
state space coverage over PPO, while still also finding trajectories
with good returns.

Index Terms—kinodynamic planning, domain randomization,
reinforcement learning

I. INTRODUCTION

Human environments are less structured, more varied and
more quickly changing than typical automated manufacturing
environments. This presents challenges for robots and makes
learning robots an interesting and promising direction.

Learning and trying out actions directly on a real robot is
time-consuming and potentially dangerous to the environment
as well as to the robot. Physically-based simulation potentially
provides the benefit of faster, cheaper and safer ways for
robot learning. However, simulation has to model physical
phenomena which often requires approximations. Therefore
the experience in simulation and the real world will differ.
This difference is called the reality gap.

Domain randomization[16, 12, 4] is the concept of bridging
this gap, by using a distribution of simulation models with
varying properties. The idea is to make policies robust to the
differences within this distribution, thereby increasing robust-
ness against the difference between the training distribution
and the target domain.

II. METHOD

In preliminary experiments, not included in this paper,
performed on a simulated 7-DoF robot arm for a pushing (non-
prehensile manipulation) task, we found that D-RL algorithms
(DDPG[6], PPO[13], from [1]) were not able to learn the given
tasks. The algorithms were also not reaching relevant parts of
the state space. Plappert et al.[11] report similar problems on
the HalfCheetah environment where the algorithms converge
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to a local optimum corresponding to the cheetah wiggling
on its back. They alleviated this problem by a different
exploration scheme.

Consequently we assume that part of the problem of failing
to learn the tasks is related to insufficient exploration. Two po-
tential remedies could be taking larger samples while keeping
the exploration probability high, or using a more principled
exploration approach.

While domain randomization has shown promising results,
as shown by OpenAI[9], results such as these usually require
an even larger number of simulation samples. If we could
reduce the number of samples needed to reach relevant state
space areas, this reduction should also help when domain-
randomized training is used.

A sample-efficient type of model-based deep reinforcement
learning is guided policy search[5], where rollouts from a deep
neural network controller are optimised by an optimal control
method such as the iLQR[17, 15] method. However, guided
policy search is, depending on the task, usually initialized by
demonstrations since the exploration capabilities of the under-
lying optimization method (iLQR) are limited. Furthermore,
the optimization method requires an applicable cost function
which is able to guide the search procedure towards relevant
solutions.

Planning methods that seek to maximize state-space ex-
ploration, and thus are less dependant on shaped rewards,
are for example rapidly exploring random trees. AQR-RRT[2]
or LQR-RRT[10] are examples of RRT methods, which use
a dynamics-based cost metric to guide the tree extension,
making this methods able to deal with kinodynamic planning
problems. If planning methods are able to reach sufficiently
good solutions with fewer samples and explore the state space
in a more directed way, then these aspects could help reduce
the aforementioned problems in deep reinforcement learning
and domain-randomized training.

The drawback of these methods are their requirements
which make them unsuitable for direct application to the real
world. For example, RRT requires restarting from already-
visited points in state space, which is only possible by using a
model, and even if a model is given, may take too much time
to be applicable in the real world (although work is done to
alleviate this problem, e.g. [18]).

We propose to take advantage of the benefits the aforemen-
tioned methods provide while tackling the problem of speed
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Fig. 1. Coverage of the state space: calculated as the percentage of non-
empty uniformly shaped bins. The number of bins is equal along each state

space dimension and is set to
(

105

5

) 1
2 , i.e. such that, in the uniform case,

we expect five data points in each bin on average. The “uniform sampling”
curve is included to ease interpretation and shows the coverage function for
samples drawn uniformly from the state space.

by synthesizing the planning results into a policy. The use of
planning methods, such as LQR-RRT, is possible in domain-
randomized training, since, by the definition of domain ran-
domization, simulation models are available. This essentially
makes our method a model-based method[14] which employs
the domain-randomized simulation as a model. We will refer
to this method as planning for policy search.

In order for this approach to be meaningful, the exploration
and data generation properties have to compare favorably to
those of methods such as PPO which do not use models and
directed exploration.

III. EXPERIMENTS

In this experiment we compare the data generation prop-
erties of PPO[13, 3] against a kinodynamic search variant
of RRT based on the LQR distance metric proposed by[10].
For simplicity this evaluation is performed on a 1D double-
integrator environment. The environment’s goal is to maneuver
a point mass to a goal position by applying a (limited) force.
The reward is based on the squared distance to a goal point
position. Both algorithms are run for 105 environment steps.

Figure 1 shows the coverage of the visited state space.
Note how the RRT algorithm keeps increasing the state space
coverage while the PPO agent levels out. In the beginning the
PPO agent covers slightly more space than the RRT method,
we attribute this to properties of our RRT method which does
not yet use minimal length trajectories to reach to the RRT-
extension point, but a fixed-length trajectory controlled by
an infinite horizon LQR controller. When exploring starts are
used for the PPO agent (PPOx), the state space coverage of
PPOx follows the maximum expected coverage (i.e. of uniform
sampling) very closely.

Figure 2 shows the distribution of achieved returns of 100
steps long trajectories. Note that while the median return is
not high, the RRT method still finds good trajectories in the
−200 return area. This is an important indication that the
planning method is able to reach into high reward areas even
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Fig. 2. Distribution of achieved returns of 100 steps long trajectories: data
are collected over 100k (respectively 50k) environment steps. For RRT these
are the data stored in its tree. For PPO these data constitute the union of the
rollouts of the exploring PPO policies generated during their learning process.
PPOx denotes PPO with exploring starts. Note that the results for “50k” are
a subset of the results for “100k” steps.

though it maximizes exploration. This compares favorably to
the returns of PPOx which covers the search space in an
undirected way and thus fails to find trajectories with good
returns and subsequently is unable to learn a successful policy.
The data generated by PPO shows a shift (50k to 100k) in the
weight towards higher return trajectories, this indicates the
successful learning of the PPO policy.

IV. DISCUSSION

We conclude from this preliminary data, that RRT improves
state space coverage, while also generating more relevant data
than PPO with the exploring-starts setting. This presumably
is because RRT explores the state space from the initial point
also used for evaluation – a setting which is more similar to
typical robotic manipulation setups.

The environment used is deterministic and not yet random-
ized. Possible ways to includes randomization might be to treat
each instance of the domain-randomized model as a separate
model instance and combine the data gathered from these
separate models, or alternatively by using a probabilistic RRT
variant (e.g. particle RRT[7]).

While the solutions found by RRT in this experiment still
achieve good returns, the solutions are worse than the solutions
found by PPO (as expected). A potential solution to this
problem [8] uses model-based RL and then perform model-
free fine tuning to improve the policies.

Our next step is to learn a policy from the data generated
by the planning method.
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