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How does the type of exploration-noise affect returns and exploration
on Reinforcement Learning benchmarks?

Jakob Hollenstein1 Matteo Saveriano1 Sayantan Auddy1 Erwan Renaudo1 Justus Piater1

Abstract— Deep Reinforcement Learning has shown promis-
ing results but remains sensitive to many parameters. Depend-
ing on the environment some algorithms work better than
others. Each algorithm defaults to a specific type of exploration
noise. We investigate whether continuous-control environments
react differently to different types of noise. We show that
for rollouts of purely random policies, sampling actions from
different types of noise, Gaussian and Ornstein-Uhlenbeck,
the type of noise has a strong impact on both the achieved
episode returns and the exploration, measured in terms of
state space coverage. Our experiments show that there is no
uniquely preferable exploration noise and that in one type of
environments exploration and returns are positively correlated,
while in the other type more exploration reduces the achieved
returns. We also find that similar exploration can be achieved
by different types of noise, but that the cost can be highly
different. Our results also support claims that the choice of
exploration measure matters.

I. INTRODUCTION
In recent years Deep-Reinforcement Learning (D-RL) has

seen astonishing success as well as startling failures: results
are noisy and often sensitive to many parameters [11]. Often
the benefit of one algorithm over another varies, amongst
other things, depending on the task — the environment.

One important aspect influencing the performance of a
D-RL algorithm on a specific environment is its ability
to choose actions that help gather the necessary informa-
tion. That is, to choose actions that allow for sufficient
exploration. The way actions are chosen are particularly
important for continuous-control, continuous-action space,
tasks because enumeration of actions is not possible. Since
many robotics tasks also feature continuous-action spaces,
this is important for D-RL in the context of robotics.

Many D-RL algorithms employ undirected exploration-
noise to discover useful actions—for example by adding
exploration-noise on top of the actions chosen by the pol-
icy [6], [10] or by employing stochastic policies and sam-
pling from those policies [3], [8], [13].

The most common types of noise are Gaussian noise
or noise from a temporally-correlated Ornstein-Uhlenbeck
process: some algorithms typically use Gaussian noise
(TD3 [10]) or samples from a parameterized-Gaussian
(SAC [13]), while other algorithms default to Ornstein-
Uhlenbeck noise (DDPG [6]). If one of these algorithms
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performs better than another on a specific environment, could
the choice of noise and the parameters of the noise generating
process – the noise configuration – have a relevant impact on
the performance? Do different environments require the same
type of noise or do we need different noise configurations
for different environments?

At the beginning of a D-RL learning process data is
usually collected in a purely random fashion and until more
rewarding action sequences are collected, the algorithm has
to rely on purely random exploration.

One possible way noise could affect the learning process
is by increasing or decreasing the exploration. In this work,
we measure exploration by the diversity of the interaction
data an agent collects.

Since purely random policies are similar to the initial
stages of a D-RL learning process, we investigate the impact
of such purely random policies driven by different types of
noise, on different environments and compare their achieved
returns and exploration. This allows us to focus on the
exploration noise without having to control for the learning
aspect of each algorithm. We measure the exploration as
the diversity of collected interaction and show that on all
environments the noise configuration does have an impor-
tant impact. We found that on some environments higher
exploration is positively correlated with higher returns of the
random policies, while on other environments it is negatively
correlated. Furthermore, while different types of noise can
lead to similar exploration, we found that the return can be
quite different if the return is related to the expended effort.

II. METHOD

We use two types of noise, Gaussian and Ornstein-
Uhlenbeck, described below and measure the exploration by
the diversity of the collected interactions or more precisely
by the coverage of the state space.

An intuitive way to measure state space coverage would
be to use histogram based approaches, such as the Bin-
Count [2], [16] which divides the state-space into equally
many bins along each dimension and measures the ratio of
non-empty bins to the total number of bins. Since the number
of bins, as the product of divisions along each dimension,
grows exponentially with the dimensionality, the required
number of data points required to fill each bin with at
least one point, becomes prohibitively large very quickly.
Therefore, we do not report results using a histogram based
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Fig. 1: Default action noises for algorithms include Gaussian
noise (TD3) and Ornstein-Uhlenbeck noise (DDPG). This
figure shows an example rollout for each of these noise types.

measure, but focus on measures that work with fewer points
and higher dimensional spaces.

A. Measures

Following the naming in [16] we use three different
measures XBBM, XNN and XUrel to assess the exploration:

(i) XBBM measures the spread of the data. The bounding
box mean [14] creates a d dimensional bounding box
around the collected data D = {. . . ,sss( j), . . .} and mea-
sures the mean of the side-lengths of this bounding box:

XBBM =
1
d

d

∑
i

[
max

j
s( j)

i −min
j

s( j)
i

]
(ii) XNN, the nuclear norm [14] estimates the covariance

matrix C of the data and measures data spread by
the trace, the sum of the eigenvalues of the estimated
covariance:

XNN(D) := trace
(
C(D)

)
(iii) XUrel(D), the Uniform-relative-entropy [16], assesses

the uniformity of the collected data, by measuring
the exploration as the symmetric divergence between
a uniform prior over the state space U and the data
distribution QD:

XUrel(D) =−DKL
(
U ||QD

)
−DKL

(
QD||U

)
(1)

since QD is only available through estimation, DKL is
estimated using the nearest-neighbor-ratio-estimator [7].

We investigate the exploration using the XUrel, XBBM and
XNN measures. In some environments, the state space limits
are not properly provided, i.e. s ∈ (−∞,∞); in these cases
we use the empirical limits observed across all experiments
on the respective environment.

B. Noise types

Ornstein-Uhlenbeck action noise is created by the follow-
ing temporal process, with each action dimension calculated
independently of the other dimensions:

at = at−1 +θ(µ−at−1) ·dt +σ
√

(dt) · εt

a0 = 000 εt ∼N (000, III)

In widely used RL-algorithm implementations [12] the de-
fault parameters are θ = 0.15, dt = 0.01, µ = 0 ·111, σ = 0.1 ·III.

The Gaussian noise is temporally uncorrelated and is typ-
ically applied on symmetric action spaces with commonly-
used values [12], [15] of µ = 0 and σ = 0.1 with Σ = III ·σ .
Actions at are sampled according to

at ∼N (µ,Σ)

The noise generation assumes valid actions in the interval
[−1,1]. These actions are then scaled and clipped according
to the actual action limits of the environment.

The difference between these two types of noise is il-
lustrated in Fig. 1. A temporal correlation of the Ornstein-
Uhlenbeck noise and the high amplitudes and wide variation
between time steps of the Gaussian noise are clearly visible.
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Fig. 2: Each plot shows one rollout trace using Gaussian
noise (top) or Ornstein-Uhlenbeck noise (bottom) on our
RandomWalk2d-v1 environment. The environment consists
of a 2D state space within the limits −5 to 5. The agent
can move in x and y direction. The line plots indicate
the sequence of visited states—positions—starting from an
initial position close to the center. (left–right) different noise
parameters σ .

We evaluate the impact of these two types of
noise on several common reinforcement learning environ-
ments: InvertedPendulumSwingupPyBulletEnv−v0 [5], [9],
MountainCarContinuous−v0 [4], HopperPyBulletEnv−v0
[5], [9] and our own RandomWalk2d−v1 (see Appendix
V-D). The latter is a simple environment to showcase the
behavior of these random policies on 2D navigation in
a limited area. Example rollouts on this 2D navigation
environment are shown in Fig. 2. The σ parameters are used
as described above.

III. RESULTS

Fig. 3 shows the results for environment interaction data
collected by random policies consisting either of Gaus-
sian noise (G) or Ornstein-Uhlenbeck noise (OU) in terms of
the mean returns and exploration measured by XUrel, XBBM
and XNN. For each environment, noise type and σ setting,
50 independent experiments with respectively different seeds
were conducted. In each experiment data were collected for
100000 steps, resulting in multiple episodes. The returns
were calculated as the sum of rewards per episode. Then
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Fig. 3: Each plot shows evaluations for random policies consisting either of Gaussian noise (G) and Ornstein-Uhlenbeck
noise (OU). The x-axis indicates the types and the used σ parameters. The same σ parameter is used for a pair of (G) and
(OU) evaluations. (Left to Right) different environments used for evaluation. Top to bottom: (first row) mean returns on the
y-axis, (second row) exploration in terms of XUrel on the y-axis, measuring the divergence between a uniform prior over
the state space and the collected data, (third row) exploration measured by XBBM on the y-axis, measuring the bounding-
box-side-length of the collected data. This measure has a tendency to saturate when data points reach the state space limits.
(fourth row) exploration measured by XNN on the y-axis, measuring the spread of the data. XNN overestimates exploration
when data points are concentrated around the limits.



D
ra

ft

the mean of these episode returns over all episodes in the
100000 steps was returned. The 50 independent runs yield
50 mean-return values which are summarized by one box-
plot.

A. Discussion

1) (Fig. 3, left) InvertedPendulumSwingupPyBulletEnv-v0
[9] shows a positive correlation between the exploration
(second–fourth row) and the returns (top). Both the
returns and the exploration are higher for the Ornstein-
Uhlenbeck noise than for the Gaussian noise and both
the exploration and return increase with larger σ param-
eters. The better performance of the Ornstein-Uhlenbeck
noise in this setting is expected, since the system
needs to build up energy. Subsequent actions sampled
from uncorrelated noise are more likely to undo energy
buildup. In this environment the exploration measures
XBBM, XNN, and XUrel agree with each other.

2) (Fig. 3, 2nd from left) MountainCarContinuous-v0
[4] shows a very slight preference for the Ornstein-
Uhlenbeck noise in terms of exploration (third–fourth
row). Similar to the InvertedPendulumSwingup-task, the
system has to build up energy. Interestingly the σ

parameter appears to be even more important in terms of
exploration than the type of noise. In this environment,
the expended energy (action amplitude) is penalized and
only reaching the high point of the mountain yields
positive reward. While changes in the σ parameter ac-
count for the exploration, the returns (first row) are quite
different: the Gaussian noise expends a lot more effort
to achieve similar exploration when compared to the
Ornstein-Uhlenbeck noise and subsequently yields more
negative returns. In this environment the exploration
measures XBBM, XNN, and XUrel (second–fourth row)
also roughly agree with each other, although we can
see a saturation for XBBM (third row) in high exploration
cases, and presumably a preference of XNN (fourth row)
for extreme points as noted by [16].

3) (Fig. 3, 2nd from right) HopperPyBulletEnv-v0 [9]
shows a negative correlation between the exploration
(second–fourth row) and the achieved return (first
row). Presumably this indicates an easier to explore
state space— when compared to the under actuated
dynamics of the InvertedPendulumSwingup and the
MountainCar—in such a case, the noise function could
easily reach a large part of the state space and collect
interactions far away from reward-yielding regions. This
interpretation is supported by the reward structure of
the Hopper environment which also contains an energy-
cost-term.

4) (Fig. 3, right) RandomWalk2d-v1 (see Appendix V-D)
shows a large difference in exploration XUrel (second
row) between the Gaussian and Ornstein-Uhlenbeck
noise, in line with the rollouts illustrated in Fig. 2.
Here the Gaussian noise is preferable, as the Ornstein-
Uhlenbeck noise is likely to get the agent stuck in the
state space limits. In line with [16] the XBBM (third row)

saturates when the state space limits are reached. XNN
(fourth row) prefers extreme points and shows a pref-
erence for Ornstein-Uhlenbeck noise, even though from
Fig. 2 the problematic behavior of Ornstein-Uhlenbeck
noise is clearly visible. In this environment we penalize
actions by aT a, as such the Gaussian noise incurs more
negative reward (first row) than the Ornstein-Uhlenbeck
noise.

IV. CONCLUSION / SUMMARY AND OUTLOOK

In this work we evaluated the impact of the type of
exploration noise on the exploration, as state space coverage,
with respect to different environments and the relation to
returns achievable with the respective noise. We found that
the type of noise in fact has a strong impact in terms of
exploration and return. This could be part of the reason why
some D-RL algorithms work better on some environments
and worse on others (e.g. [11]).

We found that the relation between exploration and returns
depends on the environment: depending on the environment
the correlation between exploration and return can be posi-
tive, or negative and as such a unique selection of the noise
to maximize exploration would not yield the highest returns.

We further found that also the amplitude (σ ) of the noise
generating function has a very important impact that can be
even larger than the impact of the type of noise.

Lastly, we found that, depending on the environment
similar exploration can yield very different returns. For
example, in MountainCar experiment, Ornstein-Uhlenbeck
and Gaussian noise yield similar exploration, but the returns
are far better for Ornstein-Uhlenbeck policies.

Our results provide some indication that in underactuated,
hard-to-explore environments selecting the exploration noise
to maximize exploration is beneficial. While in environments
that are more easily explored, less diverse exploration is
required. We believe that this should be helpful in finding
good starting points for hyperparameter optimization in D-
RL.

While we can see a strong impact of the noise
configuration—type and σ—on both exploration and return
of random policies, it is less clear whether this immediately
also applies to the D-RL learning process. This question is
subject of our ongoing research.

V. APPENDIX

(a) (b) (c)

Fig. 4: Illustrations of the used environments: (a) Mountain-
CarContinuous-v0, (b) InvertedPendulumSwingupPyBullet-
Env-v0, (c) HopperPyBulletEnv-v0
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A. InvertedPendulumSwingupPyBulletEnv-v0

In the inverted pendulum swing up a pendulum mounted
on a cart or linear actuator has to be swung up as illustrated
in Fig. 4b. A commonly used implementation is provided
by [4], requiring a license for the employed physics engine.
The PyBullet physics engine [5] provides a free and open
source alternative. PyBullet also includes alternative imple-
mentations for common environments from [4]. In particular
we use the implementation by [9]. State space: 5d, action
space: 1d.

B. MountainCarContinuous-v0

In the Mountain Car environment [1] an under powered
car has to be driven up a hill, reaching a resting position
on top. We use the implementation by [4]. State space: 2d,
action space: 1d.

C. HopperPyBulletEnv-v0

The Hopper is a simple locomotion task, illustrated in Fig.
4c. Similar to above the implementation by [5], [9] is used,
attempting to replicate the environments defined by [4]. State
space: 15d, action space: 3d.

D. RandomWalk2d-v1

For RandomWalk2d-v1 illustrations of rollout traces are
shown in Fig. 2. The environment can be viewed as a
two-dimensional navigation task in a spatially constrained
environment. Movement is velocity controlled in x and y
direction. State space: 2d, action space: 2d.

Since RandomWalk2d-v1 is a custom environment we
defined for this paper, we briefly describe its mechanics here:

The states are s ∈ R2 and have the limits si ∈ [−5,5], the
actions a ∈ R2 and ai ∈ [−0.25,0.25], the integration delta
time dt = 1.0. The states are integrated over time t as:

s(t+1) = s(t)+a(t) ·dt subject to the limits si ∈ [−5,5]

The initial states s(0) are sampled

s(0) ∼N (000, III ·1.0)
and rewards r(t) are calculated as

r(t) =−∑
i

a(t)i
2
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