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Abstract. While most current research in the classification domain still
focuses on standard ”flat” classification, there is an increasing interest for
a particular type of structured classification called hierarchical classifica-
tion. Incorporating knowledge about class hierarchy should be beneficial
to computer vision systems as suggested by the fact that humans seem
to organize objects into hierarchical structures based on visual geomet-
ric similarities. In this paper, we analyze whether hierarchical classifica-
tion provides better performances than flat classification by comparing
three structured classification methods – Structured K-Nearest Neigh-
bors, Structured Support Machines and Maximum Margin Regression –
with their flat counterparts on two very different computer vision tasks:
facial expression recognition – for which we emphasize the underlying
hierarchical structure – and 3D shape classification.

1 Introduction

Most current efforts in the classification domain involve multiclass or binary clas-
sification, also known as flat classification [14]. In these types of classification
a bee, an ant and a hammer are considered to be different to the same degree:
they belong to different classes in a flat sense because all classes are defined at
the same semantical level. However ants and bees are in the same superclass of
insects, while hammers belong to another superclass about tools. In the context
of classification based on visual features, exploiting geometrical and part similar-
ities in a hierarchical fashion seems to reflect the natural way in which humans
recognize the objects they see.

Accordingly, it is only logical to believe that current computer vision systems
can benefit from classifiers that are able to exploit geometrical similarities using
a pre-established taxonomy in a similar way the human visual system does. A re-
cent survey paper [14] reports that – after analyzing dozens of articles published
over the past decade – the hierarchical approach to classification outperforms the
flat approach for various tasks, though mostly non visual ones. One could how-
ever wonder how well methods built upon the hierarchical perspective compare
to flat ones in a broader analysis.



In this paper, we examine the potential of the hierarchical classification ap-
proach for solving two inherently hierarchical computer vision problems. The first
problem of interest is the recognition of the facial expressions, seen as a com-
bination of Action Units (AUs) as defined in the Facial Action Coding System
(FACS) [4]. The second problem of interest is that of 3D shape classification, for
which we take five popular 3D shape descriptors into consideration. In practice
there are various ways of implementing the concept of hierarchical classification.
In this work, we are interested in global hierarchical classification methods as op-
posed to local ones. Global exploration means that one single classifier is trained
and used by considering the entire class hierarchy at once. For both problems of
interest, results obtained with Maximum Margin Regression [1] (MMR), Struc-
tured Support Vector Machines [16] (SSVM) and a structured output version of
the standard K-Nearest Neighbor algorithm (which we call SkNN) are compared.
All three methods implement the global approach to hierarchical classification
which makes them especially suited to such a comparison. We compare as well
with their flat counterparts, which are MMR not using structured information,
a multiclass kernel-based SVM, and the standard kNN. In order to get a mean-
ingful evaluation of the hierarchical approach potentiality, we take care of using
appropriately designed evaluation measures.

Our starting hypothesis is that, through the use of an out-of-the-box differ-
ent implementation of a face expression recognition method, and five popular 3D
descriptors, hierarchical classification can improve performances over flat clas-
sification and that it is the case independently of the classifier used and the
task to which it is applied. We would like to stress here that our aim is not
to outperform previous facial expression recognition methods in our first set of
experiments, or to show which descriptor of the ones used here is better in our
second set of experiments.

The remainder of this paper is organized as follows. Section 2 describes the
framework and terminology we adopt for defining our hierarchical classification
problems and methods, then provides the details of the hierarchical methods
used in this work. Section 3 presents our experimental results for the computer
vision problems we take into consideration. Those results are further discussed
in section 4 and conclusions are drawn in section 5.

2 Materials and methods

2.1 Framework and terminology

Recently a necessary effort to unify the hierarchical classification framework has
been made by [14]. We follow on their terminology which is summarized next.

A class taxonomy C is a finite set of nodes {ci | i = 1 . . . n} enumerating
all classes and superclasses, which can be organized as a tree or as a Directed
Acyclic Graph (DAG). A hierarchical classification problem and its correspond-
ing hierarchical classification algorithm deals with either multiple or single la-
beled path(s), i.e. whether or not a single data instance can be labeled with



more than one path, and either full or partial depth labeling, i.e. whether or
not any labeled path must cover all hierarchy levels. In all our applications, we
use tree taxonomies with full depth labeling. For facial expression recognition,
we have multiple labeled paths per instance (see section 3.1) and for 3D shape
classification we have a single labeled path for each instance (see section 3.2).
In the context of hierarchical classification, we assume a vectorial representation
for a label y ∈ Y, more specifically a Boolean category vector – or indicator
vector – representation, i.e. Y := {0, 1}n, where the ith component of y takes
value 1 if the sample belongs to the (super)class – i.e. hierarchy node – ci ∈ C,
and 0 otherwise.

Evaluation measures used in classical flat classification may not be appropri-
ate when comparing hierarchical algorithms to each other, or flat algorithms to
hierarchical ones. Those measures do not penalize structural errors and do not
consider that misclassification at different levels of the class hierarchy should be
treated in different ways. We will adopt the following metrics [6], also recom-
mended by [14]: hierarchical precision (hP), hierarchical recall (hR) and hier-
archical f-measure (hF ). These metrics are extensions of the classical precision,
recall and F-score measures and reduce to them as special cases if applied to a
flat classification problem.

hP =

∑
i |P̂i ∩ T̂i|∑

i |P̂i|
, hR =

∑
i |P̂i ∩ T̂i|∑

i |T̂i|
, hF =

2 ∗ hP ∗ hR
hP + hR

, (1)

where P̂i is the set of the most specific class(es) predicted for a test example
i and all its (their) ancestor classes, and T̂i is the set of the true most specific
class(es) of a test example i and all its (their) ancestor classes.

2.2 Structured hierarchical classifiers

We modified the classical kNN classification method to make it able to cope with
a structured vectorial output, that is, vectorial outputs which are guaranteed to
respect a pre-defined class taxonomy. We call the resulting classification method
Structured output K-Nearest Neighbors (SkNN). We train the SkNN classifier
in the same way as the standard kNN classifier, i.e. projecting the training data
instances into the feature space. The choice of the feature map φ is left to the
user, as well as the metric ρ used for finding the neighbors and the number k of
neighbors to consider. Let D ⊂ X×Y be the training set of a hierarchical classifi-
cation problem. Given the k nearest neighbors N = {(xi,yi) | i ∈ {1 . . . k}} ⊂ D
to a test data instance x ∈ X , the classification rule for SkNN is as follows:

ŷ(x;N ) = argmax
y∈Y

〈 k∑
i=1

wi
yi

||yi||
,

y

||y||
〉
, (2)

where wi are the weights attributed to the neighbors, about which different
strategies exist; they can for example reflect the distances of the neighbors to



the test instance, i.e. wi = ρ(φ(xi), φ(x))−1, or they can be the same for all
neighbors, i.e. wi = 1/k, or any other weighting strategy the user would find
suitable.

Our second hierarchical classification method is the Structured output Sup-
port Vector Machine (SSVM) [16], which extends classical SVM to handle ar-
bitrary output spaces with non-trivial structure. SSVM defines the relation be-
tween an input data point x ∈ X and its prediction ŷ ∈ Y on the basis of a joint
score maximization:

ŷ(x; w) = argmax
y∈Y

〈
w, ψ(x,y)

〉
, (3)

where ψ is a user-defined joint feature map ψ : X × Y → Rd which projects
any couple (x,y) to its real-valued vectorial representation in a joint feature
space. We define the joint feature map for our custom SSVM framework to be
as follows:

ψ : X × Y → Rd, (x,y) 7→ φ(x)⊗ y

||y||
(4)

For our third structured output classification method, we apply a Maximum
Margin based Regression (MMR) technique, see for example in [1], which is also
an extension of the classical SVM but having several differences with the SSVM
method that makes it much faster to train. MMR relies on the fact that the
normal vector of the separating hyperplane in the SVM can be interpreted as a
linear operator mapping the feature vectors of input items into the space of the
feature vectors of the outputs. Inference with MMR is done in the same way as
with SSVM (Eq. (3)) with the same joint feature map definition (Eq. (4)).

For each proposed method, the inference argmax problem can be done by
exhaustively searching the set Y, which is efficient enough in most applications.
In any case, the optimum must belong to the set of valid structured labels, which
guarantees that the class taxonomy is respected at all times.

3 Experimental evaluation

3.1 Facial expression recognition

The problem. We define an expression using the Facial Action Coding System
(FACS) [4] which gives a very detailed description of the human facial movements
in terms of Action Units (AUs). AUs represent atomic facial actions which can be
performed independently (though not always spontaneously) by a person. They
are associated with the action of a muscle or a group of muscles. The FACS
describes more than a hundred AUs; a valid code in this system can be for
instance 1+2+5+26, where we have the presence of AU1 (inner eyebrow raiser),
AU2 (outer eyebrow raiser), AU5 (upper lid raiser) and AU26 (jaw drop). AUs
can be taxonomized according to the region of the face where the action occurs
and the type of local deformation the action applies on the face. We therefore



propose the tree taxonomy in Figure 1 for the face expression, inspired by how
AUs are usually grouped when presented in the literature [4]. As their names
suggest, up-down actions, horizontal actions and oblique actions gather AUs for
which the deformation movement in the frontal face is mostly vertical (e.g. AU26:
jaw drop), horizontal (e.g. AU20: lip stretcher) or oblique (e.g. AU12 lip corner
puller) respectively. Orbital actions group AUs for which the deformation seems
to be radial with respect to a fixed point (e.g. AU24: lip pressor, which closes
the mouth and puckers the lips, seemingly bringing them closer to the centroid
point of the mouth region).

Fig. 1: Facial expression taxonomy. Leaves correspond to Action Units.

The Extended Cohn-Kanade Dataset (CK+). The CK+ dataset [8] con-
sists of 123 subjects between the age of 18 to 50 years, of which 69% are female,
81% Euro-American, 13% Afro-American, and 6% other groups. Subjects were
instructed to perform a series of 23 facial displays. In total, 593 sequences of 10
to 60 frames were recorded and annotated with an expression label in the form of
a FACS code. All sequences start with an onset neutral expression and end with
the peak of the expression that the subject was asked to display. Additionally,
landmark annotations are provided for all frames of all sequences: 68 fiducial
points have been marked on the face, sketching the most salient parts of the face
shape.

Face features. We use face features very similar to the similarity-normalized
shape (SPTS) and canonical normalized appearance (CAPP) features used in
[8]. On the CK+ dataset, they consist of a 636-dimensional real-valued vector
for each video sequence. 136 elements are encoding information about the face
shape, while 500 elements encode information about the face appearance. We
chose to subtract the onset frame data from the peak frame data, like it was
done [8], in order to avoid mixing our expression recognition problem with an
unwanted identity component embodying static morphological differences. For
that reason, the face features we use can be called ”identity-normalized”.



Results. The three hierarchical classification methods of interest – SkNN,
SSVM and MMR – are compared to their flat counterparts – kNN, Multiclass
Kernel based Vector Machines (MKSVM [3]) and “flat setup” MMR, i.e. MMR
not exploiting the hierarchical information. For each tested method, there exists
a main parameter whose tuning can have a large influence on the results. For
SkNN and kNN, this parameter is the number of neighbors to consider during
the test phase. For SSVM and MKSVM, the core parameter is the training “C”
parameter, which – in the soft-margin approach – tells the SSVM optimization
training process the allowed misclassification rate on each training sample. For
MMR, the core parameter is the degree of the polynomial kernel used in the
method. Fig. 2 shows the hierarchical F-measure (hF ) curves obtained for the
facial expression recognition task. We can observe that, globally, hierarchical
classification does not outperform flat classification with either method on the
proposed range of parameter values, and that it even performs less well than flat
classification in the case of MMR. Having a closer look at the best – i.e. highest
- hF points on each of those performance curves, one can see that the best clas-
sification results are not always in favor of hierarchical classification (Table 1).
Surprisingly, they suggest that there is no improvement in the recognition rate
when bringing high-level hierarchical information within the classification task
of the face features. It can even be said that this additional information seems
to bring confusion in the case of MMR.
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Fig. 2: Facial expression recognition results. Blue – resp. red – curves show hF
for hierarchical – resp. flat – classification against (a) the number of neighbors
for SkNN vs. kNN (b) the “C” parameter for SSVM vs. MKSVM (c) the degree
of the polynomial kernel for MMR (hierarchical vs. flat setup).

3.2 3D shape classification



Measure SkNN kNN SSVM MKSVM MMR hier MMR flat

hP
hR
hF

83.63% 83.12% 85.22% 85.68% 85.84% 86.46%
88.00% 87.98% 87.87% 87.54% 87.76% 88.07%
85.76% 85.48% 86.52% 86.60% 86.79% 87.26%

Table 1: Best hF performances from Fig. 2 along with corresponding hP and hR
performances obtained for the facial expression recognition task.

The problem. Given a tree taxonomy of 3D objects such as the one at Fig. 3,
the task is to determine to which class (and ancestor classes) a new object
instance belongs based on its 3D shape information.
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Fig. 3: Princeton Shape Benchmark dataset. Two superclasses are presented
(Furniture, Animal), which show how they are hierarchically organized as well
as some examples of each of the leaf classes.

The Princeton Shape Benchmark (PSB). The PSB dataset (Fig. 3) [13] is
one of the largest and most heterogeneous dataset of 3D objects: 1814 3D models
corresponding to a wide variety of natural and man-made objects are grouped
into 161 classes. These models encode the polygonal geometry of the object they
describe. The grouping was done hierarchically and corresponds to how humans
see the similarities between objects (e.g., an ant and a bee belong to the same
superclass of insects).

3D shape descriptors. Each object instance is encoded into a point cloud
which is sampled from its original mesh file: 5000 points from the triangulated
surface, where the probability of a point being selected from a triangle is related
to the area of the triangle that contains it. From this sampling, we calculate
five 3D descriptors for each object: Ensemble of Shape Functions (ESF) [19],



Viewpoint Feature Histogram (VFH) [11], Intrinsic Spin Images (SI) [17], Sig-
nature of Histograms of Orientations (SHOT) [15] and Unique Shape Contexts
(USC) [2]). The reason for choosing those are (1) Uniqueness (preference to het-
erogeneity of algorithms) (2) Accessibility (The methods used are available from
the Point Cloud Library [10]). Our aim here is not to show which descriptor is
the best, since some will work better under some conditions than others, but
to show that independently of the background of the descriptor - as well as the
classifier - there is a benefit in performing a hierarchical classification over a flat
classification.

Results. 3D shape classification using five different descriptors – ESF, VFH,
SI, SHOT and USC – is performed using each one of the three hierarchical clas-
sification methods of interest – SkNN, SSVM and MMR – as well as their flat
counterparts – kNN, MKSVM [3] and “flat setup” MMR, i.e. MMR not ex-
ploiting the hierarchical information. Again, we make vary the most influencial
parameter for each method in our tests; those are the number of neighbors for
SkNN and kNN, the “C” parameter for SSVM and MKSVM (controlling the
misclassification rate during training) and the degree of the polynomial kernel
for MMR. All other parameters of the methods we consider remain fixed. Fig. 4
shows the hierarchical F-measure (hF ) curves obtained for all test cases. There
seems to be, for some of the five descriptors, a consistent yet very slight trend
showing some performance improvement when using hierarchical classification.
Indeed, the VFH and ESF descriptors seem to benefit a little from hierarchical
information in all three methods, as it is further illustrated in Table 2 which gives
details about the best hF values obtained. For SI, SHOT and USC descriptors,
results are mixed: either hierarchical or flat classification performs slightly bet-
ter, depending on the method. Again, hierarchical classification does not clearly
appear to give better results than flat classification but for a few cases. We
discuss and comment further on these results in the next section.

4 Discussion

Object recognition and face analysis are very challenging problems for a com-
puter, as indicated by the fact that for fifty years thousands of scientists have
been working towards improved solutions. Some of those scientists have resorted
to trying to model the human visual system, and many models have appeared,
[12, 18, 9] to name a few. We think it is not enough to model neurons through
mathematical approximations, we must also follow human strategies in order
to improve our computer vision systems. One such strategy can be information
transfer, which is currently being explored in the machine learning literature
[5, 7].

Can a computer vision system benefit from classifying objects in a hierarchi-
cal fashion? This was the starting point of this study. We have selected two very
different tasks; the first one was about recognizing facial expressions seen as com-
plex hierarchical combinations of Action Units which, as atomical components
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Fig. 4: 3D shape classification results. Blue – resp. red – curves show hF for
hierarchical – resp. flat – classification against the number of neighbors for SkNN
– resp. kNN – in the first row, the “C” parameter for SSVM – resp. MKSVM
– in the second row and the degree of the polynomial kernel for hierarchical –
resp. flat – setup MMR for the third row. Each column corresponds to the use
of a particular descriptor: ESF, VFH, SI, SHOT and USC.

of the expression, define not only a multiclass but also a leaf-level multilabel
hierarchical classification problem. The expression taxonomy we proposed and
the face features we used in this work were inspired and supported by the expert
literature. The second task involved the classification of a very large number
of classes and objects. We have chosen one of the most heterogeneous datasets
where there are objects as different in shape and meaning as a house, an ant,
a tree or a plane. However the main reason for selecting this dataset was its
similarity to how humans classify objects, which is related to our main hypothe-
sis. Additionally we have used five different descriptors for this second task, and
three different classifiers were compared for both tasks.

While we expected an improvement when using hierarchical classification this
has not been the case for any of the two tasks. Even though a small number of
combinations of descriptors-classifier benefited from it in the second task, the



Measure ESF VFH SI SHOT USC

SkNN

hP 32.23% 20.38% 27.24% 34.36% 40.26%
hR 34.40% 23.07% 29.07% 34.95% 41.08%
hF 33.28% 21.64% 28.12% 34.65% 40.67%

kNN

hP 32.00% 19.60% 26.42% 33.99% 40.78%
hR 34.22% 21.42% 27.79% 35.48% 41.18%
hF 33.07% 20.47% 27.09% 34.72% 40.98%

SSVM

hP 49.72% 23.47% 31.15% 33.43% 37.58%
hR 49.92% 23.62% 33.58% 36.35% 40.88%
hF 49.82% 23.55% 32.32% 34.83% 39.16%

MKSVM

hP 47.78% 21.84% 31.01% 35.79% 37.56%
hR 47.45% 21.84% 32.23% 36.67% 39.41%
hF 47.61% 21.84% 31.61% 36.22% 38.46%

MMR
(hier.
setup)

hP 45.56% 24.70% 26.07% 30.35% 28.40%
hR 44.93% 24.44% 26.57% 31.86% 30.53%
hF 45.24% 24.57% 26.32% 31.09% 29.43%

MMR
(flat
setup)

hP 44.72% 23.63% 26.05% 28.98% 29.96%
hR 45.02% 23.62% 26.62% 30.03% 31.70%
hF 44.87% 23.62% 26.33% 29.50% 30.81%

Table 2: Best hF performances from Fig. 4 along with corresponding hP and
hR performances obtained for the 3D shape classification task using the shape
descriptors ESF, VFH, SI, SHOT and USC.

improvement was marginal, and in most cases the performances were similar
for flat and for hierarchical classification. We would like to mention that we
also tested many variations of the presented experiments. Those included PCA
feature reduction, face features focusing more or only on the shape component,
different ways to normalize the features, different weighting strategies during
training and inference, different loss functions among which one based on the
Hamming distance and another one on the hierarchical F-measure, etc. In all
test cases the results obtained were very similar to the ones reported here.

At this point we may ask ourselves why this is the case, since in many other
fields hierarchical classification boosts results over flat classification (protein
function prediction, music genre classification, text categorization, etc.) even in
some areas of computer vision – where it has been much less explored, though.
Our hypothesis is that these computer vision methods based on structured clas-
sifiers fail to exploit the structure of the hierarchy because the features and
descriptors commonly used carry no information about parts. Humans classify
objects in terms of their geometric and parts similarities: a dog and a rabbit
are quadruped animals, but there is no real representation for a quadruped ani-
mal when using current descriptors and geometric similarities are exploited to a
very small extent due to the way these descriptors are created (section 3.2). In
this sense, it is worth to mention that under some classification strategies, some
descriptors seem to take advantage - even if minimal - of this geometric simi-



larity thanks to the inclusion of some local shape information. Our experiments
also show that SSVM seems to be the best at this specific task although at the
expense of much more computationally intensive training (training the SSVM
classifier on half of the PSB dataset typically took between 30 and 50 hours,
depending on which descriptor was used).

We strongly believe that computer vision systems have to follow the strate-
gies of parts representations. As we have commented before, we mean not to
criticize face descriptors or 3D shape descriptors which are very well suited for
the environments for which they were developed. On the other hand we believe
that there is still much room for improvement at the representation level in com-
puter vision systems. Our study shows that structured classifiers cannot exploit
hierarchical information for better, more efficient classification considering the
current status of 3D shape representation and expression analysis. We propose
that richer and more abstract representations are needed in order to advanta-
geously emulate human strategies for better computer vision systems. This also
echoes one of the conclusions from [14] stating that even though most researchers
think that classes at different hierarchy levels are better discriminated by fea-
tures of a different nature, not much attention has been given to how efficient
feature selection for hierarchical classification should be performed, in particular
in the global approach.

5 Conclusions

The starting hypothesis that led us to design this work was that computer vision
systems – similarly to the human visual system – may benefit from structured
class hierarchies by using classifiers that can exploit those structures and thus
provide better classification results. Without disproving this hypothesis in gen-
eral, our experimental work shows that there is still work to do in computer
vision systems at the representation level, before structured machine learning
methods can take full advantage of the information present in the hierarchical
organization of objects or facial expressions.
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