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Abstract— Flexible production assistants of the future are
required to be skillful, universally applicable, safe and easy to
program. State of the art robot systems that are intended to
be used for human robot collaboration require in some cases
unintuitive text based programming, and remain, especially in
combination with peripheral hardware like external sensors or
machine vision algorithms, complicated. The FlexRoP project
tries to overcome current limitations by development and usage
of a flexible skill-based robot programming middleware and
improved user interface technologies. This paper introduces
usecases, the intended system architecture, methodology for
description and training of kinesthetic skills as well as first
application results and intentions for future developments.

I. INTRODUCTION

Medium to small batch size production often can’t be
automated with robots which require costly space and need
infrastructure (e.g. fences and fixtures for part allocation).
Uncertainty handling (e.g. objects that are not allocated in
a defined way or underlie a tolerance in type, shape or
color) is far from trivial. Additional sensors and algorithms
increase system complexity and require special engineering
knowledge. Flexibility for industry means universal applica-
bility and deployment to unmodified human workplaces as
far as tools or processes are concerned without complex re-
certification procedures or questioning legal security. Ramp
up of new and recommissioning of former applications is
required to be done fast and by non experts.

The FlexRoP project will carry out research to make
robots easier to program and thus more flexible. Project
goals comprise the definition of a universal skill repre-
sentation for assembly tasks, implementation of automatic
and semiautomatic skill acquisition techniques based on
observation learning and kinesthetic teaching, generalization
techniques and implementation of skill based action synthesis
algorithms.

This paper presents:

e Two selected real world usecases in the FlexRoP

project.

e The system architecture for the flexible robotic assem-
bly assistant providing workflow based programming.

« A methodology to describe and acquire kinesthetic skills
from kinesthetic demonstration.
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« Evaluation results from workflow based programming
with kinesthetic parameterization and kinesthetic skill
acquisition.

« Inferred intentions for future developments.

II. USECASES

Two real world production usecases from automotive pre-
assembly are considered. The usecases require screwing,
clip in and manipulation operations in a very broad range
of applications. In so called brownfield [1] environments
available (hand)tools have to be picked up by the robot
rather than spanning specialized robot tools to guarantee
deployability to any human workplace.

Usecase A targets the pre-assembly of a centerspeaker
assembly. A speaker has to be fixed with three screws to
a plastic carrier while a tweeter needs to be clipped in
(see Fig. 1). Handling of the non-rigid wires is omitted.
Process forces are low but the required pose precision for
screwing and clipping is very high (< 1mm). The complexity
of the entire process (which consists of 7 subprocesses -
see Table I) is extremely high. Three different objects are
presented in boxes and have to be manipulated as well as the
intermediate assemblies and the power screwdriver which has
to pick up, hold and manipulate the screw axially perfectly
aligned during transport and process. In order to be able
to guarantee product and process quality methodology for
quality assessment is required. This might be natural and
easy for a human but independent of the available data
(acoustic, FT-signal, optical) extremely challenging for any
technical system.

Fig. 1.

Usecase A - Center-speaker assembly

Usecase B considers the joint pre-assembly of an auto-
motive swivel-bearing assembly by human and robot. Han-



dling of components and assembly takes place close to the
robot’s load limits with high handling and process forces.
A human carries out processes unsuitable for the robot like
screw feeding and delicate ambidextrous assembly operations
(e.g. mounting of brackets and brake hose - 1 in Fig. 2).
Unergonomic handling of heavy objects is carried out by the
robot as well as the error prone screw tightening operation
for the assembly of wheel bearing to swivel bearing which
needs to be carried out in a specific order (2 in Fig. 2).

Fig. 2. Usecase B - Swivel bearing assembly

III. SYSTEM ARCHITECTURE
A. Hardware

The robot assistant (Fig. 3) consists of a passively mo-
bile platform with retractable wheels, an electric enclosure
containing robot and system controller as well as additional
10 and power supply components. The platform is equipped
with a KUKA LBR iiwa 14 R820 robot. The User Interface
(UI) consists of a touch screen monitor on the mobile
platform and the robot’s touch pneumatic media flange.
The robot is equipped with one universal tool for both
applications. The diversity of requirements with regard to
object shapes, payloads and processes result in a complex
tool design (see Fig. 4) with following components:

e Force Torque (FT) sensor for measuring process

wrench.

e A chassis for installation of various components.

« RGBD and 2D cameras for automatic position accuracy
compensation functionality.

e Two electric grippers in order to be able to manipulate
multiple objects or long objects.

e Automatic toolchanger for spanning additional process
tools (ordinary hand tools articulated by pneumatic
actuators).

Handling and manipulation of objects was intendend with
universal grippers and force closure. Tests disproved the
applicability of several universal grippers for accuracy and
process stability reasons so aluminium fingers with form
adjusted plastic inlays are used.

B. Software

The robot assistant is required to be programmable with-
out special training. A KUKA iiwa [2] may as a HRC-
capable device offer handguidance for parameterization but
needs to be programmed text based (in JAVA) as well as

Fig. 3.

Fig. 4. Flexible tool prototype (2nd gripper not installed)

machine vision algorithms or standard PLC code. Therefore
XRob™ [3] (see Fig. 6) is introduced as an abstraction layer
for all hardware (cameras, sensors, robots, etc.) and software
components (object pose recognition, path planning, etc.).
For kinesthetic skill learning a real time interface to the robot
and the FT sensor is required. Therefore ROS and the KUKA
fast research interface are used. Fig. 5 describes the selected
modular system architecture.
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IV. SKILL BASED WORKFLOW PROGRAMMING

Robot programming in industrial applications is done
mainly in proprietary text based programming languages.
Skills are treated as traditional, “unintelligent” robot mo-
tion programs (macros) that are augmented with pre and
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post-conditions to add situational knowledge. Macros are
supposed to work on objects in the workspace that are
recognized via some kind of sensing device (e.g. optical).
For example [4] presents a unifying terminology for task-
level programming of highly flexible mobile manipulators
in industrial environments, while [5] demonstrates the skills
which are needed for industrial kitting applications.

A. Skill Based Programming Framework

Task-level programming is based on lower level entities,
usually called robot skills. The description of processes can
be done at different levels of granularity. Tasks can be broken
into more or less complex subtasks ranging from sensory
and/or motor base skills to complex aggregate subtasks. A
skill is a primitive that allows the coordination, control and
supervision of a specific task. The primitives can incorporate
advanced task specifications, necessary control, and sensing
capabilities, which allows a skill to handle uncertainties
during execution. In contrast to the concept of skills, skill
primitives [6], [7], [8] are rather well defined in the robotics
community. This layered approach is reflected by the design
of the XRob™software framework (see Fig. 6) which can
aggregate basic functionality (e.g. data acquisition, image
processing, robot movements and macros, etc.) to more
complex aggregate subtasks that can easily be reused. After
graphical configuration of a workflow process points are
parameterized by bringing the tool center point to its des-
tination and adopting relevant data (e.g. the current position
or the current camera image) electronically. That allows
programming processes and movements between quasistatic
intermediate process points. If more complex trajectories are
required the system incorporates dynamic motion primitive
based skills.
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Fig. 6.

XROB Graphical User Interface

B. Dynamic Motion Primitive Based Skills

In [9] and [10] is given an overview on programming
by demonstration. Dynamic Motion Primitives (DMPs) have
been a very popular method for learning and generalization
of kinesthetically taught motions [10] with multiple exten-
sions [11], [12], [13]. They are motivated by the need to
derive a motion representation which is capable, not only to

reproduce complex trajectories but also to easily generalize
them. DMPs are a combination of two terms. A simple linear
dynamical system [(-), which is well defined and has stable
behavior and a nonlinear forcing term f(-) which makes the
reproduction and generalization of complex motions feasible

i =1Ug,9,9) + f(z,9). 1

In the case of discrete motions the linear system is a stable
attractor, usually a PID controller

Ug,y,9) = ay(By(g —y) — 9), 2

where y is the joints’ position of the robot, g is the target
states, and « and [ are gain terms of the PID controller which
draw the manipulator to the target state. Adding a forcing
term to the linear system allow to modify the trajectory:

i =0ay(By(g—y) —9) + f. 3)

The challenge in DMPs is to appropriately define the non-
linear forcing term f over time while ensuring stability of the
system and generalization. This is achieved by introducing
a canonical dynamical system denoted as x with simplistic
dynamics:

&= —agu. “

Thus the forcing term f depends on the value of the
canonical system as follows:

2{\;1¢iwi

flz,9) = SN

2(g — ¥o)- )

yo 1is the starting state of the system, and ; =
exp (717@ (x — ci)2) is a Gaussian kernel centered at c;.

Training of DMPs is achieved by optimizing its hyper-
parameters (w) with a given trajectory. While the desired
motion is demonstrated, the sensors’ values are recorded
and they are used to derive the hyper-parameters based on
Eqn. (3) which is written as:

U_ay(ﬂy(‘]_y)_y) = f(x). 6)

Thus, the forcing term is optimized to compensate the
error of the linear dynamical system — which are the training
targets of the learning rule — at each state of the canonical
system x which is the training input. This corresponds to
a regression problem which can be solved with a variety
of methods such as Locally Weighted Regression [14] or
Locally Weighted Projection Regression [15].

C. Motion Assessment Primitive

The motion assessment primitive is responsible for provid-
ing an evaluation of the performed motion, thus it evaluates
the DMP’s performance. This is achieved by a two-tier
process which exploits the trajectory recorded through kines-
thetic teaching. Those recordings include both the joints’
states and the exerted force/torques on the end-effector.
This makes the derivation of the motion’s contact dynamics
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model through machine learning techniques feasible which
maps joint states to exerted forces/torques. Thus the system
“learns” which forces and torques to expect at specific joint
states. Therefore, a ground-truth model is created from the
end-user demonstration and a comparison model is created
from the recording of the autonomous DMP’s movement re-
production. The difference of those two models is measured
and fed to the second tier which classifies the motion as
successful or not.

Gaussian processes (GPs) are employed for learning the
wrench model of the executed task. GPs are a powerful
non-parametric machine learning approach. Contrary to other
methods that infer a set of function parameters, GP infers
the function f directly and therefore can be anticipated as
probability distribution over functions. A GP is defined by
a mean m(x) and a kernel (covariance function) K(x,x)
as illustrated in Eqn. (7). Typical choices are a squared
exponential kernel and a zero mean

[(@) ~ GP(m(x), K(x,x)). @)

GP, employ the Bayes rule for the derivation of the
posterior distribution over functions -see Eqn. (8), where t is
the vector of target values, the force/torques in this case. In
regression problems the latent function f is continuous and
therefore an appropriate likelihood is the normal distribution
N(flm(x),K(x,x)) and the GP prior is also a Gaussian
process p (f|X) ~ GP (0, K(x,x)).

The posterior distribution which represents the learned
wrench model given the recorded data .

p(f1X, 1) = MU lm<x>;(<t(\:3x>>p(f\xx

The term of interest in the case of motion assessment
primitive is the marginal likelihood p(t|x) because the
optimal parameters of the kernel are derived by optimizing
it. Thus, the contact dynamics model derives by minimizing
the logarithm in Eqn. (9) which can be achieved by using any
gradient-based optimization method such as gradient descent

(3)

log(t]X) = —%tTK_lt - %log]K\ - glog%r. ©)

The assessment primitive creates six ground-truth models,
one for each wrench degree of freedom and other six models
from the autonomous execution of the DMP. Those proba-
bilistic models are then compared using Hellinger distance -
Eqn. (10) - which yields a similarity measurement h for each
k wrench component. Those measurements are fed to the
second tier of the primitive, a Naive Bayes classifier which
classifies the similarity measures as success or failure

Ve
1 v = F

Sl 4 K|

hy (GPE™, GPYe) = (10)

In the second stage of the primitive the set of similarity
measurements h are fed to a Naive Bayes classifier which

applies the Bayes rule - Eqn. (11) - for the derivation of
p(Cj|s*), where p(C;) = N;/N is the prior probability of
the class j, p(h*|C;) is the likelihood that the sample h*
belongs to the class j and p(h*) is a scaling term independent
from the class and therefore can be omitted

p(C)p(s*|C))
p(s)
The likelihood derives based on the assumption that the
similarity measurements are independent and identically dis-
tributed and is calculated as:

p(Cyls*) = an

D
p(0*Cy) = ] p(silCy), (12)
d=1
where K is the dimensionality of the similarity measure-
ments. It is assumed that their values are distributed accord-
ing to a Gaussian distribution N (], 07, ) with mean pj,
the mean value of similarity measurement d which belongs
to class j and its corresponding variance o.. Thus Eqn. (11)

can be written as:

D
p(Cjls7) o p(Cy) [T N (sitliely, o),

d=1

(13)

where the parameters of the Gaussian distribution derive by
maximum likelihood estimation.

D. Intermediate Results

1) Skill Based Workflow Programming: FlexRoP identi-
fied macros for screwing operations as well as the clip-in
operation that can be considered as robotic skills themselves
and serve as baseline for performance comparison with the
kinesthetic skills developed by the project.

The screwing macro considers the basic parameters: start
pose, screw length and process force. The clipping macro
considers in a similar way start pose, end pose and process
force. Together with parameterizeable macros for other op-
erations (robotic movements,etc.) screwing and clipping are
accessible through XRob™.,

Fig. 7. Overview - Usecase A

Usecase A was split into several suboperations and pro-
gram templates were created accordingly. Parameterization
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of the templates was done by moving the robot to a specific
process point and recording relevant data (e.g. cartesian
positions, reference images, gripper opening,...). For usability
reasons movement of the robot was planned to be done by
hand guidance. Tool parameters (inertia, mass) are tuned and
the robot flange is intended to be used in zero gravity mode.
Total parameterization time of existing workflows sums up
to 285min (see Table I), which is high (compared to a
target time of 30min which is derived from a productivity
calculation) and was caused by high accuracy demands to be
able to achieve process stability. Tight clearances of carrier
plate and fixtures as well as required positioning accuracy
for screws ins screw-holes and components to be assembled
require precise teach in which cannot be achieved in gravity
compensation mode. For perfect vertical tool alignment and
fine positioning of the tool it was, due to not available inter-
faces required to use the robot teach pendant which required
several stop and start operations of the XRob™driver on
the robot controller as well as operation mode changes from
automatic to hand mode and vice versa in order to be able to
use the robot teach pendants integrated positioning utilities.
A detailed analysis of subprocess 1 (see Fig. 8) reveals that
operation mode changes as well as interaction with the GUI
of the robot (which is required to select correct coordinate
frames to travel in for fine positioning or selection of speed)
in addition with finepositioning itself is accountable for
almost two thirds of the reparameterization time. Interaction
with the XRob™(HTML-)GUI and adjustment of the finger
positions in comparison requires less time.

TABLE I
AVERAGE PARAMETERIZATION TIME - 3 TRIALS

subprocess description parameterization
time
1 Move carrier from rack to as- | 30min
sembly fixture
2 Move speaker from rack to as- | 60min
sembly fixture (via rotation ta-
ble)

3 Pick-up of power tool from pod 15min
4 Screw-pick-up & screwing oper- | 45min
ation (three target positions)

5 Deposit of power tool to pod 15min
6 Reorientation of assembly 60min
7 Move tweeter from rack to clip | 60min
in position and clipping opera-

tion

2) Dynamic Motion Primitive Based Skills: In order to
evaluate the performance of both the motion and assessment
primitives a mock-up which imitates the project’s clip-in
process was designed (see Fig. 9). For the evaluation a
KUKA iiwa equipped with an ATI force/torque sensor and
a simplistic suction cup was used. The primitives were
trained on recorded data from one single kinesthetic demon-
stration and their generalization ability is tested by varying
the start pose of the manipulator. The motion primitive
managed successfully to execute 17 out of 44 trials resulting
in a 39% success rate. An illustration of a successful snap

HROS-GL
operation

Fig. 9. The snap-fit used for performing evaluation of the motion and
assessment primitives.

is presented in Fig. 10. The motion assessment primitive
was evaluated off-line on datasets collected from 31 motions
using a cross validation method for training and evaluating
the Naive Bayes classifier. In this evaluation method, the data
is partitioned in training and testing datasets. The former are
used for optimizing the hyper-parameters of the Naive Bayes
classifier while the later for evaluating its performance. In
detail, a leave-one-out cross validation is performed where
the classifier is trained with all the datasets except one which
is used for testing. This iterative procedure finishes when all
the datasets have been used for testing.

V. CONCLUSIONS & FUTURE WORK

Two immediate directions for further improvements were
identified.

A. Skill Based Workflow Programming

Experiments Showed that workflow based programming
is still complicated for untrained users. Programming in the
worker’s domain without kinesthetic manipulation of the
robot itself remains desirable. A novel instrumented power
tool as UI for teach in operations is planned. A worker
will not have to specify numeric values on a GUI in order
to parameterize process workflows. The instrumented power
tool will record trajectories in 6DOF as well as time series
of process forces and torques as well as the actuation of
the tool. Startposition, process forces and screw lengths will

Fig. 10.

KUKA iiwa performs a successful snap-fit using DMPs
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be derived from the analysis of the data. In comparison to
kinesthetic teach in the so called embodiment problem has
to be solved since the robot has different reach and multiple
kinematic configurations that can be used to position a tool.
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Fig. 11. Instrumented tool concept

B. Dynamic Motion Primitive Based Skills

The future work on DMPs will be focused on the issue of
the low success rate. A reason for the low performance could
be that DMPs create a single model for each degree of free-
dom. Valuable information regarding the correlations which
exists between the joints’ states an the exerted forces/torques
my be lost. This can be dealt with using multi-modal motion
representations which couple the joint state with the exerted
forces/torques and thus create a single model using all the
sensory inputs.

Furthermore, motion assessment is currently performed
after the completion of the motion. A possible expansion is
to assess the motion during runtime. This would significantly
decrease the chance of damage for both the robot and the
manipulated object. A minor issue is the high computational
complexity of GPs which affects the time needed for assess-
ment, especially on long motions. Therefore, it is planned to
investigate the applicability of other, more computationally
efficient models.

Finally, the main focus of the future work will be given
on the development of a motion optimization primitive. This
would optimize the hyper-parameters of the DMPs in such a
way that the probability of a successful motion is maximized
and thus will close the loop between motion and assessment
primitives. The machine learning approach which will be
used belongs to the class of reinforcement learning. In detail,
the contact dynamics model could be exploited and so the
DMPs will be optimized based on simulations of the learned
model instead of the real system. Such an approach belongs
to the class of model-based reinforcement [16] learning
which has advantages such as minimal optimization time
and also minimal risk of damage for both the robot and
the manipulated objects which makes it appropriate for
manufacturing tasks.
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