
Interactive Selection of Visual Features
through Reinforcement Learning

Sébastien Jodogne∗

Montefiore Institute (B28), University of Liège
B-4000 Liège, Belgium
S.Jodogne@ULg.ac.be

Justus H. Piater
Montefiore Institute (B28), University of Liège

B-4000 Liège, Belgium
Justus.Piater@ULg.ac.be

Abstract

We introduce a new class of Reinforcement Learning algorithms designed
to operate in perceptual spaces containing images. They work by classi-
fying the percepts using a computer vision algorithm specialized in image
recognition, hence reducing the visual percepts to a symbolic class. This
approach has the advantage of overcoming to some extent the curse of
dimensionality by focusing the attention of the agent on distinctive and
robust visual features.

The visual classes are learned automatically in a process that only
relies on the reinforcement earned by the agent during its interaction with
the environment. In this sense, the visual classes are learned interactively
in a task-driven fashion, without an external supervisor. We also show
how our algorithms can be extended to perceptual spaces, large or even
continuous, upon which it is possible to define features.

1 Introduction

Reinforcement Learning (RL) is a general framework for modeling the behavior
of an agent that learns how to perform its task through its interactions with
the environment [2, 7, 22]. The agent is never told what action it should
take; rather, when it does a good or a bad action, it only receives a reward or
a punishment, the reinforcement . Schematically, RL lies between supervised
learning (where an external teacher gives the correct action to the agent) and
unsupervised learning (in which no clue about the goodness of the action is
given). RL has had spectacular applications, e.g. turning a computer into an
excellent backgammon player [23], or making a quadruped robot learn walking
progressively without any human intervention [6].

In RL, the agent operates by repeating the following sequence of operations:
at time t, (i) it senses its inputs in order to determine the current state st of the

∗Research Fellow of the Belgian National Fund for Scientific Research (FNRS).

��XL�7+%-�-RXIVREXMSREP�'SRJIVIRGI�SR�-RRSZEXMZI�8IGLRMUYIW�ERH�%TTPMGEXMSRW�SJ�%VXMÅGMEP�-RXIPPMKIRGI
6IWIEVGL�ERH�(IZIPSTQIRX�MR�-RXIPPMKIRX�7]WXIQW�<<-��7IWWMSR�����4EKIW��������
8LI�SVMKMREP�TYFPMGEXMSR�MW�EZEMPEFPI�EX�[[[�WTVMRKIVPMRO�GSQ��



environment, (ii) it selects an action at, (iii) it applies this action, which results
in sensing a new state st+1 while perceiving a numerical reinforcement rt+1 ∈ R,
and (iv) it possibly updates its control law using this new experiment. Initially,
since the agent knows nothing about what it should do, it acts randomly. After
some trial-and-error interactions, the agent begins to learn its task and performs
better and better. Two major challenges in RL are the exploration-versus-
exploitation dilemma (should the agent exploit its history or try new actions?)
and the delayed-reward problem (the pertinence of an action can appear a long
time after the interaction, for example in the game of chess).

In this article, we consider the applicability of RL when the agent is faced
with visual inputs. As an example, consider the task of grasping objects. It
has been shown that infants learn to pre-shape their hands using their vision
before they reach the object to grasp [10]. Once the contact is made, haptic
feedback is used to locally optimize the grasp. For this grasping procedure
to succeed, infants have to learn to distinguish between objects that require
different hand shapes. Thus, infants learn to recognize objects following the
needs of the grasping task. More generally, evidence shows that visual learn-
ing is task-driven [20]. Our long-term goal is to create an artificial system
that would acquire object recognition skills using only its interactions with the
environment [15]. RL is one plausible framework to model such a system.

Unfortunately, RL algorithms are subject to the curse of dimensionality,
i.e., they are very sensitive to the number of states and actions. Now, the size
of perceptual domains containing visual inputs are exponential in function of
the size of the images. On the other hand, since the number of interactions
an agent has at its disposal to learn its task is necessarily finite, generalization
abilities are necessary to face continuous input and/or output spaces: similar
perceptions are indeed expected to require similar actions. But, a robotic hand
learning to grasp objects has a continuous action space.

In order to deal with these two issues, some authors have recently tried to
take advantage of supervised learning techniques in the context of RL [4, 14].
Their main argument is that supervised learning comprises a large number of
powerful techniques tackling high-dimensional problems with excellent gener-
alization performances. Sketchily, these approaches reduce the RL problem to
a sequence of supervised regression problems, each approximating the value of
taking, in each state, any possible sequence of actions of a fixed length (the fur-
ther along in the regression sequence, the greater the considered length). Using
the terminology of Ernst et al. [4], we will refer to such techniques as Fitted Q
Iteration. It seems thus promising to use Fitted Q Iteration in RL problems
involving camera sensors by applying the regression algorithms directly to the
values of the raw pixels. To the best of our knowledge, no material has been
published on this topic yet.

Nevertheless, if Fitted Q Iteration is used on visual perceptual spaces, the
embedded supervised learning algorithm will necessarily have to distinguish
between visual inputs. In this sense, the learning algorithm will have to solve
simultaneously a computer vision problem (image classification) and a RL prob-



lem (construction of an optimal control law). Now, it is widely admitted that
vision problems are difficult to solve, and a large number of non-trivial, power-
ful techniques devoted to the visual recognition of objects have been developed
during the last decades.

Our basic idea is therefore to facilitate the RL process by taking advan-
tage of specialized image classification algorithms, while letting the supervised
learning algorithm focus on the control law computation. Obviously, we ex-
pect that replacing the visual input by a symbolic input (i.e., the class number
corresponding to the image) will drastically reduce the size of the perceptual
space, and will break to some extent the curse of dimensionality.

It is clear that the idea of using vision algorithms to make RL easier is not
limited to Fitted Q Iteration: actually, any RL algorithm could benefit from
visual recognition. Therefore, our technique should remain general enough not
to rely on a particular RL algorithm.

2 Reinforcement Learning

2.1 Markov Decision Processes

Reinforcement Learning problems are most often defined in the Markov Deci-
sion Processes (MDP) framework. This basically amounts to saying that, after
doing some action at in some state st of the environment, the next state st+1

does not depend on the entire history of the system, but only on st and at.
This also implies that the environment obeys a discrete-time dynamics.

According to the conventions of Kaelbling et al. [7], a MDP is a tuple
〈S, A, r, T 〉, where S is the finite set of possible states in the environment; A is
the finite set of possible actions; r : S × A 7→ R is the reinforcement function
giving for each state-action pair the immediate reinforcement for doing this
action in this state; and T : S×A×S 7→ [0, 1] is the transition function giving
the probability of reaching one state after doing some action in some state.
Formally:

T (s, a, s′) = P {st+1 = s′ | st = s, at = a} .

2.2 Optimal Policies and Q-functions

A stationary Markovian control policy (for shortness, a policy) is a probabilistic
mapping from the states to the actions. A policy governs the behavior of the
agent by specifying what action it should take in each state. RL is concerned
with the construction of an optimal policy, in a sense that remains to be defined.

The goal of the agent is not to maximize its immediate reinforcements (the
sequence of rt), but its rewards over time. This leads to the definition of the
discounted return. Given an infinite sequence of interactions, the discounted
return at time t is defined by:

Rt =
∞∑

i=0

γirt+i+1, (1)



where γ ∈ [0, 1] is the discount factor that gives the current value of the future
reinforcements1. This means that a reward perceived k units of time later is
only worth γk of its current value.

Let us call the Q function of a policy π, the function giving for each state
s ∈ S and each action a ∈ A, the expected discounted return obtained by start-
ing from the state s, taking the action a, and thereafter following the policy
π: Qπ(s, a) = Eπ {Rt | st = s, at = a}, where Eπ denotes the expected value
given that the agent follows the policy π. Dynamic Programming theory [1]
shows that all the optimal policies for a given MDP share the same Q func-
tion, denoted Q∗, that always exists and that satisfies the so-called Bellman’s
optimality equation:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

T (s, a, s′)max
a′∈A

Q∗(s′, a′), (2)

for all s ∈ S and a ∈ A. When the Q∗ function is known, for example by
solving the non-linear system of Equations (2), an optimal deterministic policy
π∗ is easily derived by letting π∗(s) = argmaxa∈A Q∗(s, a) for each s ∈ S.

2.3 Overview of RL Algorithms

RL algorithms can be roughly divided in two categories: incremental and batch.
In incremental RL, the agent starts with an initial policy, which is continuously
updated after each interaction with the environment until convergence to an
optimal policy. The popular Q-learning algorithm [24] belongs to this category,
as well as Sarsa [22].

On the contrary, in batch RL, the learning process is split in two parts:
(i) collection of a database of interactions, and (ii) computation of an optimal
policy. The database simply contains the tuples 〈st, at, rt+1, st+1〉 encountered
during the interactions, which summarize the entire history of the system (in-
deed, the time information t does not matter because of the Markovian nature
of the environment). Value Iteration and Policy Iteration [1] are batch RL
algorithms, as well as Fitted Q Iteration (cf. Introduction). Batch RL is an
interesting method when the cost of the experiments is expensive, which is the
case in many robotic applications, for example grasping. It is indeed sufficient
to collect once and for all a representative set of interactions.

2.4 Perceptual Aliasing

So far, we have implicitly supposed that the agent is able to distinguish between
the states of the environment using only its sensors. If this is the case, the
perceptual space is said fully observable, and the right decisions can always be
made on the basis of the percepts. If it is not the case (i.e., if the perceptual
space is only partially observable), the agent cannot distinguish between any
pair of states and thus will possibly not be able to take systematically the

1In practice, γ is often supposed to be less than 1 to ensure the convergence of the sum.



right decision. This phenomenon is known as the perceptual aliasing (or hidden
state) problem, and is closely related to ours, as it will soon become clear.

Two solutions to this general problem have been proposed in the literature:
either the agent identifies and then avoids states where perceptual aliasing
occurs [25], or it tries to build a short-term memory that will allow it to remove
the ambiguities on its percepts [3, 9].

In this paper, we will only consider fully observable perceptual spaces. How-
ever, until the agent has learned the visual classes required to complete its task,
visual percepts needing different reactions may be mapped to the same class,
thus introducing perceptual aliasing. Nevertheless, the previous approaches
are irrelevant in our context, since these ambiguities can be removed by further
refining the image classifier. Actually, previous techniques tackle a lack of in-
formation inherent to the used sensors, whereas our goal is to handle a surplus
of information related to the high redundancy of visual representations.

3 Image Classification using Visual Features

Besides RL, image classification is the other tool required by our algorithms.
The goal of image classification is to map an image to a class of objects. Re-

cent successes in visual object recognition are due to the use of local-appearance
approaches [8, 15, 18]. Such approaches first locate highly informative patterns
in the image and in a picture of the object to be recognized, using interest point
detectors [19], then match these interest points using a local description of their
neighborhood, called a visual feature2 [11]. If there are enough matches, the
image is taken as belonging to the object class. As visual features are vectors
of real numbers, there exists an unbounded number of features.

Local-appearance methods can deal with partial occlusions and are very
flexible, since they do not need a 3D model of the objects that is frequently hard
to obtain, especially for non-rigid objects. Furthermore, they take advantage
of more and more powerful interesting point detectors and local descriptors.

4 Reinforcement Learning of Visual Classes

4.1 Description of our Learning System

As discussed in the Introduction, we propose to introduce an image classifier
before the RL algorithm itself. The resulting architecture will be referred to
as Reinforcement Learning of Visual Classes, and is schematically depicted at
the right of Figure 1. This two-level hierarchy can be thought of as a way to
raise the abstraction level on which the RL algorithm is applied: the classifier
translates a low-level information (the raw values of the pixels) into a high-level
information (an image class) that will itself feed the RL algorithm.

The key idea in RL of Visual Classes is to focus the attention of the agent on
a small number of very distinctive visual features that allow the agent to reason

2The terminology “visual feature” is used here as a synonym for “local descriptor”.



percepts

Reinforcement Learning

reinforcements

actions

percepts

Image Classifier Reinforcement Learning
detected classes

reinforcements

classes to refine

actions

Figure 1: Comparison of information flows between “classical” Reinforcement
Learning (left) and Reinforcement Learning of Visual Classes (right).

upon visual classes rather than raw pixels, and that enhance its generalization
capabilities [15]. Initially, the system knows only about one class, so that
all the percepts are mapped to this class. Of course, this introduces a kind
of perceptual aliasing, though the perceptual space is fully observable. The
challenging problem is therefore to refine a visual class dynamically when the
agent identifies inconsistencies in the earned discounted returns when faced
with that class. For instance, if the same action leads sometimes to a reward,
and other times to a punishment, there is strong evidence that the agent is
“missing something” in the percepts corresponding to the class. This explains
the presence of a right-to-left arrow in Figure 1: the RL algorithm has to inform
the image classifier when the learning of a new visual class is required.

Since there is no external supervisor telling the agent when a refinement
is needed, our algorithm can only rely on statistical analysis involving the
reinforcements earned by the agent. The agent will consequently learn vi-
sual classes only through interactions, which is the central property of this
system. Intuitively speaking, the role of the agent is to identify functionally-
distinguishable percepts: it should distinguish between percepts that involve
different discounted returns when it chooses the same reactions.

In the sequel, we will discuss the two major elements that are required in
order to turn this learning structure into a working algorithm, namely: (i) a
robust criterion able to decide when the classification is not fine enough, that
will be called the aliasing criterion, and (ii) an image classifier able to refine a
class on request by learning a new distinctive visual feature. To conclude this
general description, note that the visual features should be powerful enough to
distinguish any functionally-distinguishable percept. We will suppose that this
weak requirement is met in the rest of the paper.

4.2 Detailed Description

4.2.1 Core of the Algorithm

The previous section has introduced the paradigm of Reinforcement Learning
of Visual Classes. We are now ready to give an in-depth view of our algorithm,
which operates in batch mode, since it relies on a statistical analysis of the



discounted return observed during the interactions. Here is its core:

1. Begin with step count k := 0 and a percept classifier Ck that maps all the
percepts to a single class, i.e., such that Ck(s) = 1 for all the percepts s;

2. Collect a database of interactions 〈st, at, rt+1, st+1, et〉, where st are the
raw percepts3 furnished by the sensors, and et is a Boolean tag indicating
whether the action at has been chosen by randomization or by determin-
istic exploitation of the knowledge of the agent from the previous steps;

3. After N interactions have been collected:

(a) Use the aliasing criterion to decide if a class needs to be refined,

(b) While there exist aliased classes, refine the classifier Ck by learning
new distinctive visual features, which leads to a new classifier Ck+1,

(c) Let k := k + 1. If k is below some threshold value, go to Step 2.

4. Use a RL algorithm to control the system through the last classifier Ck.

The way the interactions are acquired at the second step is unimportant. For
example, a simple ε-greedy policy can be used in order to collect the database.
Nevertheless, the database has to satisfy the following requirement, the reason
of which will be explained in the next section: at a given step k, whenever
the agent chooses to deterministically exploit its knowledge at some time t, it
should do so for at least the next k interactions, i.e., up to time t + k.

4.2.2 Aliasing Criterion

The only information available to the aliasing criterion is given by the rein-
forcement values present in the database of interactions. Since the database is
necessarily finite, our criterion can only rely on an approximation of the dis-
counted returns (see Equation (1)) observed in the database over some finite
time horizon. This leads to the following definition:

Definition 1 The truncated discounted return at some time t for a time hori-
zon H is defined as R̂H

t =
∑H

i=0 γirt+i+1, where rt+i+1 are the reinforcements
present in the database. It is left undefined if t is greater than N −H.

Let us now suppose that the environment is deterministic, i.e., the transition
function T of the underlying MDP is deterministic. In this context, it is clear
that executing the same sequence of actions starting from a given state will
always lead to the same truncated discounted return. Therefore, two states can
be distinguished using only the reinforcements if there exists some sequence of
actions such that executing this sequence in those two states leads to different
truncated discounted returns. Of course, we cannot try every possible sequence
of actions, so we restrict ourselves to the sequences present in the database.

3Here, st denotes at the same time a percept and a state. This syntax is justified since
the perceptual space is fully observable: there is a mapping from the percepts to the states.



Now, there could be random variations in the truncated discounted returns
just because of the non-deterministic nature of the exploration policy. Such
variations should obviously not be taken into account in the aliasing criterion.
This explains the requirement on the database of interactions introduced at the
end of Section 4.2.1: by considering only the sequences of actions starting in
states marked as obtained from deterministic exploitation of the system history,
which can be determined by testing the flag et, we ensure the uniqueness of the
considered sequences of actions.

At some step k of our algorithm, this uniqueness is only ensured for se-
quences of actions of length less than k. The aliasing criterion is thus based
upon an incremental construction: at the step k of our algorithm, we only
try to distinguish states that are aliased by considering sequences of actions of
length k present in the database, i.e., that are k-aliased. More formally:

Definition 2 Two states st and st′ belonging to the same visual class (i.e.,
such that Ck(st) = Ck(st′)) and encountered respectively at times t and t′, are k-
aliased if they have both been tagged as obtained from deterministic exploitation,
and if R̂k

t 6= R̂k
t′ .

Of course, the more interactions are collected, the more fine-grained distinctions
between states can be discovered. Note that the number of iterations of our
algorithm corresponds to the maximum time horizon to consider.

4.2.3 Class Refinement

The class refining operation has to discover a new visual feature that best
explains the variation in the truncated discounted returns for some visual class
at some time horizon k. This is a classification problem, for which we propose
a variation of the standard splitting rule used when building decision trees [12].

Firstly, we sort the observed truncated discounted returns obtained starting
from the considered class. Each cutpoint in the obtained sequence induces
a binary partition of the visual percepts mapped to this class: the percepts
such that the corresponding truncated returns are above the cutpoint, and the
others. Then, for each possible cutpoint, we extract the visual feature that
maximizes some information-theoretic score for this partition into two buckets
of visual percepts. This is done by iterating over all the visual features present
around the interest points in the considered percepts, that are in finite number,
and evaluating the split induced by each one of those features. We finally keep
only the visual feature that has the maximal score among all the extracted
visual features.

4.2.4 Non-deterministic Environments

We have supposed since Section 4.2.2 that the environment behaves determin-
istically. Of course, this might not be the case. So, a hypothesis test using
the χ2-statistic is applied after each class refining attempt in order to decide if
the selected visual feature induces a genuine split that is significantly different
from a random split. This approach is inspired from decision tree pruning [17].



4.3 Using Decision Trees as Classifiers

The concrete classifier used in our implementation has not been discussed yet.
In this work, we have been working with binary decision trees: the visual classes
correspond to the leaves of the tree, and the internal nodes are labeled by the
visual feature, the presence of which is to be tested in that node. The classi-
fication of a percept consists in starting from the root node, then progressing
in the tree structure according to the presence or the absence of each visual
feature found during the descent, until reaching a leaf.

To refine a visual class using a visual feature, it is sufficient to replace the
leaf corresponding to this class by an internal node testing the presence or the
absence of this feature, and leading to two new leaves.

5 Reinforcement Learning of Classes

The approach we have just presented is actually not limited to visual inputs.
It could indeed be useful in any perceptual domain (possibly continuous) that
supports classification as a way to reduce its size. In this context, the “visual
features” would become “features”, i.e., properties that can be displayed or
not by the raw percepts. For example, a feature could be the value of a bit in
the case of percepts containing binary numbers. Our technique could also be
applied for agents having noisy sensors: the use of distinctive features would
allow the agents to get rid of noise by examining only pertinent and robust
parts of their percepts.

All the previous algorithms can readily be adapted to perceptual spaces
upon which the following three elements can be defined:

Features: A feature is any property a raw percept can exhibit or not. There
can possibly be an infinite number of features.

Feature Detector: It is a function that tells whether or not a given raw
percept exhibits a given feature.

Refining Oracle: It is an oracle that, given two sets of raw percepts, returns
the most informative feature explaining this partition into two subsets.
It is introduced as an oracle since it is allowed to use some context-
dependent information to direct the search of the best feature: the oracle
is not obliged to exhaustively consider every feature, which makes a par-
ticular sense when there is an infinite number of features.

We will call such a generalization Reinforcement Learning of Classes.

6 Experiments

We have investigated the behavior of Reinforcement Learning of (Visual) Clas-
ses in the context of a simple navigation problem, namely escaping from a
discrete 2D maze constituted of empty cells and walls. The goal of the agent



*

bits :

irrelevant (random) information

150 4 18

x position (0−10) y position (0−7)

Figure 2: On the left, Sutton’s Gridworld [21]. Filled squares are walls, and
the exit is indicated by an asterisk. On the right, a diagram describing the
percepts of the agent, that are binary numbers of 18 bits.

is to reach as fast as possible the exit of the maze. In each cell, the agent has
four possible actions: go up, right, down, or left. When a move would take the
agent into a wall, the location is not changed. When a move takes it into the
exit, the agent is randomly teleported elsewhere in the maze. The agent earns
a reward of 100 whenever the exit is reached, and a penalty of −1 for any other
move. Note that the agent is faced with the delayed-reward problem.

This task is directly inspired by Sutton’s so-called “Gridworld” [21], with
the major exception that our agent does not have a direct access to its (x, y)
position in the maze. Rather, the position is implicitly encoded in the percepts:
in a first experiment, the percepts will be binary numbers that contain the
binary values of x and y; in a second experiment, a different object will be
buried in each cell under a transparent glass, and the sensors of the agent will
return a picture of the object underneath.

6.1 The “Binary” Gridworld

In this first experiment, we have used the original Gridworld topology, which
is depicted at the left of Figure 2. The sensors of the agent return a binary
number, the structure of which is shown on the right of the same figure. In
this experiment, features are defined as the bits of the binary numbers, so RL
of Classes has been applied. Here, the feature detector tests if a given bit is
set or not, and the refining oracle seeks the most informative bit explaining the
partition into two subsets of binary numbers.

To achieve its task, the agent has to focus its attention on the bits encoding
x and y, since the other bits are random, and thus irrelevant to its task. We
have noticed that this is indeed the case: the built classifier only uses the bits
0, 1, 2, 3, 15, 16 and 17. The obtained classification is shown in Figure 3, as
well as the optimal policy it involves. It can easily be seen that the built policy
is optimal. After k has reached the value 15, which roughly corresponds to the
diameter of the maze, no further split was produced. Note however that this
value can vary depending on the database of interactions collected.

It is important to notice that the classification rule is obtained without
pre-treatment, nor human intervention. The agent is initially not aware of



*
2
4

37 40 34 41 28 27 27
19 44 38 35 36 29
19 42 39 22 30 8
43 33 26 25 18 14 10 7
20 17 15 16 12 1 9
32 31 21 24 23 11 13 5 6

3

*

Figure 3: On the left, the classification using bits obtained at the end of our
algorithm. On the right, the policy built using the last classifier.

which bits are important. Moreover, the interest of using features is clear in
this application: a direct tabular representation of the Q function would have
218 × 4 cells (one for each possible pair of a binary number and an action).

6.2 The “Tiled” Gridworld

The goal of this second experiment is to illustrate RL of Visual Classes on the
toy example depicted in Figure 4. The navigation rules are identical to the Bi-
nary Gridworld, but there are fewer cells in order to better interpret the results.
The percepts are color images of objects taken from the COIL-100 database [13].
Each cell is identified by a different object. The used visual features are color
differential invariants detected at Harris color points of interest [5].

Figures 4 and 5 depict the obtained results. The algorithm succeeds at
distinguishing between visual inputs requiring different reactions. Once k has
reached the value 3, no further refinement has taken place. It is interesting to
notice that the hamburger and the wooden toy (class 4), as well as the duck and
the boat (class 5), have not been distinguished. This is a desirable property
since these states require the same action, i.e. to go right.

7 Conclusions

We have introduced algorithms that succeed in learning distinctive features in
an interactive context, using only a reinforcement feedback. Our approach is
quite general, and is applicable to many perceptual domains (large, continuous
and/or noisy). In particular, these algorithms can be applied in RL problems
with image inputs. The only restrictions on the perceptual space are that
it must be fully observable, and that it must be possible to define features
in it. To achieve this goal, techniques similar to those used in supervised
decision tree construction are exploited (evaluation of splits using information-
theoretic measures, and reduction of overfitting through hypothesis testing).
The architecture of our system is independent of the underlying RL algorithm.



*
4 5

4 5

3
2

1

Figure 4: On the left, the Tiled Gridworld. The objects under each cell are
marked with their interest points circled. The exit is labeled by an asterisk.
On the right, the learned classification.

Figure 5: The resulting decision tree. The visual features tested in each internal
node are circled.



Its two-level hierarchy with top-down and bottom-up information flows enables
to raise the abstraction level upon with the embedded RL algorithm is applied.

Our work can be seen as a generalization of the visual feature learning
system that has been applied by Piater to grasp objects [15]. Indeed, this
system can only be applied in interactive tasks with no delayed reward (i.e.,
where γ = 0) and with binary reinforcements (i.e., only two reinforcements are
possible: either good or bad action). Moreover, our work is to be distinguished
from the tree-based discretization technique of Pyeatt and Howe [16], since the
latter is specific to Q-learning, and since its discretization of the perceptual
space relies on the perceptual values rather than on higher-level features.

Future research should try to adapt RL of (Visual) Classes to problems
with continuous perceptual and/or action spaces, for example grasping. On the
other hand, techniques to remove learned features that are subsequently proved
to be useless could be developed. To evaluate the performance of different
classifiers (e.g., naive Bayes), and to use more powerful visual features (e.g.,
affine-invariant features, or features taking semi-local constraints into account),
are other interesting research topics.

References

[1] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[2] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[3] L. Chrisman. Reinforcement learning with perceptual aliasing: The per-
ceptual distinctions approach. In National Conference on Artificial Intel-
ligence, pages 183–188, 1992.

[4] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforce-
ment learning, 2004. Submitted for publication.

[5] V. Gouet and N. Boujemaa. Object-based queries using color points of
interest. In IEEE Workshop on Content-Based Access of Image and Video
Libraries, pages 30–36, Kauai, Hawaii, USA, 2001.

[6] M. Huber and R. Grupen. A control structure for learning locomotion
gaits. In 7th Int. Symposium on Robotics and Applications, Anchorage,
AK, May 1998. TSI Press.

[7] L.P. Kaelbling, M.L. Littman, and A. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[8] T.K. Leung, M.C. Burl, and P. Perona. Finding faces in cluttered scenes
using random labeled graph matching. In Proc. of the Fifth International
Conference on Computer Vision, page 637. IEEE Computer Society, 1995.

[9] R.A. McCallum. Reinforcement learning with selective perception and Hid-
den State. PhD thesis, University of Rochestor, Rochestor, NewYork, 1996.



[10] M. McCarty, R. Clifton, D. Ashmead, P. Lee, and N. Goubet. How infants
use vision for grasping objects. Child Development, 72:973–987, 2001.

[11] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 257–263, Madison, Wisconsin, June 2003.

[12] T.M. Mitchell. Machine Learning. McGraw Hill, 1997.

[13] S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library
(COIL-100). Technical Report CUCS-006-96, Columbia University, New
York, NY, February 1996.

[14] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine
learning, 49(2-3):161–178, 2002.

[15] J.H. Piater. Visual Feature Learning. PhD thesis, Computer Science De-
partment, University of Massachusetts, Amherst, MA, February 2001.

[16] L.D. Pyeatt and A.E. Howe. Decision tree function approximation in re-
inforcement learning. In Proc. of the Third International Symposium on
Adaptive Systems, pages 70–77, Havana, Cuba, March 2001.

[17] J.R. Quinlan. The effect of noise on concept learning. In Machine Learning:
An Artificial Intelligence Approach: Volume II, pages 149–166. Kaufmann,
Los Altos, CA, 1986.

[18] C. Schmid and R. Mohr. Local greyvalue invariants for image re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(5):530–535, 1997.

[19] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point
detectors. International Journal of Computer Vision, 37(2):151–172, 2000.

[20] P.G. Schyns and L. Rodet. Categorization creates functional features.
Journal of Experimental Psychology: Learning, Memory and Cognition,
23(3):681–696, 1997.

[21] R.S. Sutton. Integrated architectures for learning, planning and react-
ing based on approximating dynamic programming. In Proc. of 7th Int.
Conference on Machine Learning, pages 216–224, San Mateo, CA, 1990.

[22] R.S. Sutton and A.G. Barto. Reinforcement Learning, an Introduction.
MIT Press, 1998.

[23] G. Tesauro. Temporal difference learning and TD-Gammon. Communica-
tions of the ACM, 38(3):58–68, March 1995.

[24] C. Watkins and P. Dayan. Q−learning. Machine learning, 8:279–292, 1992.

[25] S.D. Whitehead and D.H. Ballard. Learning to perceive and act by trial
and error. Machine Learning, 7:45–83, 1991.


