
REINFORCEMENT LEARNING OF PERCEPTUAL CLASSES
USING Q LEARNING UPDATES

Sébastien Jodogne∗

Montefiore Institute (B28)
University of Liège

B-4000 Lìege, Belgium
email: S.Jodogne@ULg.ac.be

Justus H. Piater
Montefiore Institute (B28)

University of Liège
B-4000 Lìege, Belgium

email: Justus.Piater@ULg.ac.be

ABSTRACT
We introduce a new Reinforcement Learning algorithm de-
signed to operate in perceptual spaces upon which it is pos-
sible to define features, such as visual spaces. It incremen-
tally constructs a classifier that maps the percepts to a per-
ceptual class by testing the presence or absence of highly
informative features. This approach has the advantage of
enhancing the generalization abilities of the autonomous
agent, while reducing the influence of noise, as well as the
size of the perceptual domain.

The perceptual classes are iteratively refined using a
statistical analysis of the updates thatQ Learning would ap-
ply to an optimalQ function for the considered classifica-
tion. This process relies only on the reinforcements earned
by the agent during its interaction with the environment.
Thus, the distinctive features are selected interactively in a
task-driven fashion, without an external supervisor.

KEY WORDS
Machine Learning, Computer Vision, Feature Selection.

1 Introduction

One of the most exciting topics in robotics is to design au-
tonomous agents that automatically learn to behave prop-
erly in somea priori unknown environment by extrapo-
lating from their interactions with this environment. This
challenging goal gave rise to the theory ofReinforcement
Learning(RL) that allowed to better understand the mech-
anisms by which living beings learn to solve their everyday
tasks [2]. In RL, each time the agent takes a decision, it re-
ceives a reward or a punishment, called thereinforcement,
that evaluates its reaction. RL has had spectacular appli-
cations in robotic control, e.g. making a quadruped robot
learn walking progressively without any human interven-
tion [6].

Studies in RL have shown deficiencies when the input
and/or output spaces of the agent is large or noisy. Since the
rise of embedded CCD sensors, this problem has been ex-
acerbated. Things get even worse if those spaces are con-
tinuous, which is the case for example if the agent con-
trols robotic actuators with multiple degrees of freedom.

∗Research fellow of the Belgian National Fund for Scientific Research.

In such continuous cases, the traditional solution is to dis-
cretize the spaces. However, this results in an explosion of
the representational size of the domains known as thecurse
of dimensionality. Recent research seeks to take advantage
of powerful supervised-learning methods that handle high-
dimensional problems with excellent generalization perfor-
mances [4, 11].

With the same motivation in mind, we have intro-
duced the paradigm ofReinforcement Learning of Classes
(RLC) [7]. RLC uses context-dependent information to re-
duce the size of the input space1 by focusing the attention
of the agent on pertinent and robust parts of the raw per-
cepts. This enhances the rate of convergence as well as the
robustness to noise of RL algorithms. Such highly informa-
tive patterns in the inputs are calledfeatures, and are drawn
from a possibly infinite set. The features we consider are
binary, in the sense that a given percept can exhibit them
or not. For example, in visual perceptual spaces, features
could be local descriptions of patches of images [9]. In
this case, an image is considered to exhibit a visual feature
if there exists an interest point in the image such that the
description of its neighborhood is similar to the feature.

RLC is founded on a two-level architecture: (i) A
classifier partitions the perceptual space intoperceptual
classesby testing the presence of suitably selected features,
then (ii) an embedded RL algorithm is fed with the output
of the classifier. If the agent identifies inconsistencies in
the earned reinforcements when faced with some percep-
tual class (e.g., if the same reaction leads sometimes to a
reward, and other times to a punishment), it informs the
classifier that it should refine itself by selecting a new dis-
tinctive feature in the percepts corresponding to that class.

The agent will consequently learn perceptual classes
only through interactions in a task-driven fashion, which is
the central property of this system. Contrary to classical
techniques for discretizing perceptual spaces [16], we do
not assume that the interesting features, nor their number,
are fixed in advance. Rather, our algorithms dynamically
learn new features when needed. This also results in a good
interpretability of the results.

The main contribution of this paper is the introduction
of a new RLC algorithm, calledRLC throughQ Learning
Updates, that does not make any assumption about the way

1In the sequel, perceptual space is a synonym for input space.

experiments are acquired, contrary to the algorithmRLC
through Sequences of Actions, that was described in our
previous work [7]. This is a great advantage, especially
in robotic applications, in which collecting a representa-
tive set of experiments can be very expensive. Moreover,
a stopping criterion can be derived for the new algorithm,
which was not possible previously. We finally present the
results of the new algorithm on a visual navigation task.

2 Theoretical Background

2.1 Markov Decision Problems

In RL, the environment is generally modeled as aMarkov
Decision Process(MDP). A MDP is a tuple〈S,A, T ,R〉,
whereS is a finite set of states,A is a finite set of actions,T
is a probabilistic mapping fromS×A toS, andR is a map-
ping fromS × A to R. MDP obey the following discrete-
time dynamics: If at timet, the agent takes the actionat

while the environment lies in a statest, the agent perceives
a numerical reinforcementrt+1 = R(st, at), then reaches
some statest+1 with probabilityT (st, at, st+1). Through-
out this work, we will assume that the perceptual space is
fully observable, i.e. the agent is able to distinguish be-
tween the states of the environment using only its sensors.
This allows to talk equally about states and percepts.

A stationary Markovian control policy(for shortness,
apolicy) is a probabilistic mappingπ from the states to the
actions. A policy tells the agent the probability with which
it should choose an action in each state.

TheMarkov Decision Problemfor one given MDP is
to find anoptimal policythat maximizes an evaluation of
the performances of the agent over time, called theobjec-
tive function. Thediscounted return-based objective func-
tion is commonly used in DP. Given an infinite sequence of
interactions, the discounted return at timet is:

Rt =
∞∑

i=0

γirt+i+1, (1)

whereγ ∈ [0, 1[is thediscount factorthat gives the current
value of the future reinforcements. Therefore, the agent
should not only maximize its immediate reinforcements
(i.e., the sequence ofrt), but should also take less attrac-
tive actions that move it into parts of the state space where it
expects obtaining higher future reinforcements. This trade-
off is known as thedelayed-reward problem.

2.2 Dynamic Programming

The theory ofDynamic Programming(DP) is concerned
with solving Markov Decision Problems. Let us call theQ
functionof a policyπ, the function giving for each states ∈
S and each actiona ∈ A, the expected discounted return
obtained by starting from the states, taking the actiona,
and thereafter following the policyπ:

Qπ(s, a) = Eπ {Rt | st = s, at = a} , (2)

whereEπ denotes the expected value when the agent fol-
lows the policyπ. Let us also define theH mappingfrom
Q functions toQ functions as:

(HQ)(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q(s′, a′),

(3)
for all s ∈ S and a ∈ A. Bellman [1] proved that all
the optimal policies for a given MDP share the sameQ
function, denotedQ∗, that always exists and that satisfies
Bellman’s so-called optimality equation:

HQ∗ = Q∗. (4)

OnceQ∗ is known, an optimal deterministic policyπ∗ is
easily derived by lettingπ∗(s) = argmaxa∈AQ

∗(s, a) for
eachs ∈ S. Hence, DP reduces the Markov Decision
Problem to the resolution of the non-linear system of Equa-
tions (4). However, the direct resolution is seldom used in
practice, to the advantage of incremental algorithms such
asState-Action Value Iteration[2].

2.3 Reinforcement Learning

Reinforcement Learning(RL) is a set of algorithmic meth-
ods for solving Markov Decision Problems when the under-
lying MDP is unknown. The input given to RL algorithms
is basically a sequence of interactions〈st, at, rt+1, st+1〉
of the agent with its environment. RL techniques can be
roughly divided in two categories: (i)Model-based meth-
ods, that first build an estimation of the underlying MDP
(e.g., by computing the relative frequencies that appear in
the sequence of interactions), and then use classical DP al-
gorithms, and (ii)model-free methods, such asSARSAand
TD(λ) [2], that do not compute such an estimation.

2.4 Q Learning

The most popular model-free method,Q Learning[17], in-
crementally improves an estimation̂Q of theQ∗ function
by applying the following update rule whenever an experi-
ment〈st, at, rt+1, st+1〉 is acquired:

Q̂(st, at) := Q̂(st, at) + αt∆t, (5)

whereαt ∈ [0, 1] is known as thelearning rateat timet,
and∆t is theQ Learning updateto be applied tôQ(st, at):

∆t = rt+1 + γmax
a′∈A

Q̂(st+1, a
′)− Q̂(st, at). (6)

Under some mild assumptions about the learning rate and
the way experiments are acquired, it was proved that ran-
dom fluctuations inQ̂ due toT are progressively elimi-
nated as the number of experiments tends to infinity.

There is a strong relation between∆t and theH map-
ping. If the transition functionT is deterministic, theQ
Learning update can be rewritten as∆t = (HQ̂)(st, at)−
Q̂(st, at). Hence, by Bellman’s optimality equation, from
the moment wherêQ becomes equal toQ∗, theQ Learning
updates will always be zero.

3 Reinforcement Learning of Classes

As discussed in the Introduction,Reinforcement Learning
of Classes(RLC) aims at building a classifier that maps per-
cepts to symbolic perceptual classes by testing the presence
of context-dependent features. The output of the classifier
is connected to the input of an embedded RL algorithm that
controls the agent. Such an approach requires the presence
of at least two elements in the perceptual space: (i) A pos-
sibly infinite set of(binary) features, which are properties
that can be exhibited or not by the raw percepts, and (ii)
a feature detector, which is a Boolean function that tells
whether or not a given feature is present in a given percept.

At any timek, the classifier, which will be denoted
Ck, partitions the perceptual space into a numbermk of
perceptual classes{P1, . . . , Pmk

} using a finite number
of selected, highly informative features. Each classPi is
identified by a Boolean conjunction of features. All these
Boolean formulas must be mutually exclusive. Such a clas-
sifier can be implemented as a binary decision tree, the
leaves of which correspond to the perceptual classes, and
the internal nodes of which test the presence of one feature.

Initially, the classifier just knows about one class. Of
course, this introduces a kind ofperceptual aliasing: Per-
cepts requiring different reactions may be merged into the
same class. Perceptual aliasing reveals itself in inconsis-
tencies between discounted returns in a given class. Tech-
niques for detecting and removing (or avoiding) perceptual
aliasing have been studied in the literature [3, 8, 18]. How-
ever, such techniques are irrelevant in our context, in which
aliasing can be removed by further refining the classifier. In
fact, previous approaches address alack of informationin-
herent to the used sensors, whereas ours handles asurplus
of informationrelated to redundancies in the input space.

The challenge in RLC is therefore to identify the
aliased classes, then to refine them by selecting new dis-
tinctive features. This is the topic of the following sec-
tions. The refining process should use no more information
than available in the context of RL, i.e. a sequence of in-
teractions〈st, at, rt+1, st+1〉. Eventually, when no further
refinement is needed, the classifier is saidcomplete. Here,
we implicitly assume that percepts requiring different re-
actions can always be distinguished using a finite Boolean
conjunction of features. Intuitively, this simply means that
the used features should be powerful enough for the task.

3.1 Identifying Aliased Classes

Let Pi a perceptual class. We propose two ways for de-
tecting aliasing inPi, that are not described in the seminal
papers about perceptual aliasing [3, 8, 18]. For the time
being, the transition functionT is assumed deterministic.

3.1.1 Sequences of Actions

A possible solution is to check if there exists a finite se-
quence of actions that gives rise to two different sequences

of reinforcements for two states inPi. This basic idea has
been exploited in the algorithmRLC through Sequences of
Actions[7]. Since the criterion can only use the interactions
that the agent has previously encountered, it is in practice
impossible to consider every possible sequence of actions.

We solved this problem by requiring the agent to
choose one sequence of actions for each perceptual class.
Every time a perceptual class is met, either its associated
sequence of actions is executed, or a random action is taken
to explore new parts of the input space. This ensures that, in
the absence of perceptual aliasing, the same sequence of ac-
tions will be generated whenever the agent decides to per-
form its deterministic behavior when faced with a percep-
tual classPi. Periodically, the agent selects new sequences
of actions. This can be done either by randomization, or by
using interesting trajectories in the system according to the
information gathered on the task so far.

The main problem with this approach is that it im-
poses strong requirements on the way the interactions are
acquired. For instance, it prevents the use of a static
database of interactions. This is particularly restrictive in
robotic applications, where collecting a representative set
of experiments can be very expensive. Furthermore, it is
impossible to know when the classes have been sufficiently
refined. Finally, the power of this aliasing criterion strongly
depends on the way the sequences of actions are chosen.
This motivates the introduction in this paper of a more flex-
ible measure of the inconsistencies in a partitionPi.

3.1.2 Q Learning Updates

The classifierCk converts an input sequence of interac-
tions 〈st, at, rt+1, st+1〉 into amapped sequenceof tuples
〈Ck(st), at, rt+1, Ck(st+1)〉. In general, there may exist no
MDP that can generate such a mapped sequence, since it
does not necessarily verify the Markovian assumption any-
more. So, if some RL algorithm is run on the mapped se-
quence, it might not converge to a useful solution with re-
spect to the underlying spaces.

Let use define themapped MDPMk as the MDP
〈S′, A, T ′,R′〉 obtained from the mapped sequence, where
S′ = {P1, . . . , Pmk

} is the set of perceptual classes that
are known toCk, and whereT ′ andR′ have been computed
using the relative frequencies occurring in the mapped se-
quence. When applied on a mapped sequence,Q Learning
andTD(0) have been shown to converge toward the op-
timalQ function of the corresponding mapped MDP [14].
Of course, model-based RL methods would give the same
results if they use the mapped MDP as a model.

Let us callQ′∗
k , the optimalQ function obtained by

the RL process for the mapped MDPMk. Q′∗
k is defined

on the domain{P1, . . . , Pmk
} × A. ThisQ function in-

duces anotherQ function on the initial domainS × A,
denotedQ∗

k, that is defined by the relationQ∗
k(s, a) =

Q′∗
k (Ck(s), a) for all s ∈ S anda ∈ A.

If the classifierCk were complete, then the task could
be solved using this classifier, andQ∗

k would correspond to

Q∗, according to Bellman’s theorem that states the unique-
ness of the optimalQ function. In this case, asT is as-
sumed deterministic, the updates thatQ Learning would
apply toQ∗

k should be zero (cf. Section 2.4). More pre-
cisely, letPi be a perceptual class anda an action. Then,
for all time stampst such thatCk(st) = Pi andat = a, the
following quantity should be zero:

∆t = rt+1 + γmax
a′∈A

Q∗
k(st+1, a

′)−Q∗
k(st, at). (7)

This suggests using theQ Learning updates as a mea-
sure of the aliasing in a perceptual class. The new aliasing
criterion therefore consists in computing theQ∗

k function,
then to sweep again all the tuples〈st, at, rt+1, st+1〉 that
were used to generateQ∗

k, computing the quantity∆t for
each of them. The classPi is considered aliased if for some
action a, there exist variations in∆t for the t such that
Ck(st) = Pi andat = a.

This criterion is different from the one described in
Section 3.1.1, of which it overcomes the main problems: It
provides an inherent stopping criterion, and it does not im-
pose any requirement on the way interactions are collected.

3.2 Refining an Aliased Class

Once aliasing has been detected in a classPi with respect
to an actiona, we need to discover a new feature that best
explains the variations in the set ofQ Learning updates∆t

corresponding toPi anda. This is a classification problem,
for which we propose an adaptation of the standard splitting
rule used when building decision trees [10].

Firstly, we sort the updates∆t. Each cutpoint in the
sorted sequence induces a binary partition of the percepts
mapped to the perceptual classPi: those perceptsst such
that the corresponding updates∆t are above the cutpoint,
and the others. Then, for each cutpoint, we select the fea-
ture that maximizes an information-theoretic score for this
partition of percepts. Finally, only the feature that has the
maximal score among all the extracted features is kept.

RLC therefore assumes that a third element can be
defined on the perceptual space, namely arefining ora-
cle. Given two sets of percepts, a refining oracle returns
the most informative feature explaining this partition into
two sets. It is introduced as an oracle since it allows to use
context-dependent information to direct the search for the
best feature: The oracle is not obliged to exhaustively con-
sider every feature, which is particularly useful if there is
an infinite number of features.

To refine the classPi in the classifierCk using a fea-
tureF , we simply replacePi by two classesP ′i andP ′′i ,
respectively labeled by the formulasψ ∧ F andψ ∧ ¬F ,
whereψ is the Boolean conjunction corresponding toPi.
This construction is easy to achieve on a binary decision
tree. It consists in replacing the leaf corresponding toPi

by an internal node testing the presence ofF and leading
to two new leaves corresponding toP ′i andP ′′i .

3.3 Non-deterministic Environments

We have assumed since Section 3.1 that the environment
behaves deterministically. Of course, this might not be the
case. So, a hypothesis test using theχ2-statistic is applied
after each class refining attempt in order to decide if the
selected feature induces a genuine split that is significantly
different from a random split. This approach is inspired
from decision tree pruning [13].

3.4 Algorithm

Putting it all together, we obtain the algorithm calledRLC
throughQ Learning updates:

1. Begin with a counterk = 1 and a classifierCk that
maps all the percepts in one single class.

2. Construct an optimalQ functionQ∗
k for the classifica-

tion induced byCk:

• either by applyingQ Learning orTD(0), and
recording all the interactions〈st, at, rt+1, st+1〉
encountered during the RL process in a database;

• or by collecting a representative database of
interactions, for example by reading a static
database or by using aε−greedy exploration
policy based onQ∗

k−1, and then applying any
model-based RL technique on the mapped MDP
for the sequence〈Ck(st), at, rt+1, Ck(st+1)〉.

3. LetCk+1 := Ck. For each(i, a) ∈ {1, . . . ,mk} ×A:

(a) Select all the interactions〈st, at, rt+1, st+1〉 in
the database such thatCk(st) = Pi andat = a.

(b) For each one of them, compute the value:

ξt = rt+1 + γmax
a′∈A

Q∗
k(st+1, a

′).

Note that sinceQ∗
k(st, at) is a constantc for all

the selected interactions,ξt is just theQ Learn-
ing update∆t from Equation (7), offset byc.

(c) If some of theξt are different fromc, select a dis-
tinctive feature that best explains the variations
in the set ofξt. If the hypothesis test succeeds,
refine the classifierCk+1 by splitting the classPi

with respect to the newly selected feature.

4. If Ck 6= Ck+1, let k := k + 1 and go to step 2.

When the algorithm stops, the classifierCk is assumed
complete and can be used to control the system.

4 Experiments with Visual Sensors

The behavior of RLC throughQ Learning updates has been
investigated in the context of a simple navigation problem
that makes use of visual sensors, namely escaping from a
discrete 2D maze constituted of walls and empty cells. The
goal of the agent is to reach as fast as possible the exit of

the maze. In each cell, the agent has four possible actions:
Go up, right, down, or left. If a move would take the agent
into a wall, its location is not changed. If a move takes it
into the exit, the agent is randomly teleported elsewhere in
the maze. The agent earns a reward of 100 when the exit is
reached, and a penalty of−1 for any other move. Note that
the agent is faced with the delayed-reward problem.

This task is directly inspired by Sutton’s so-called
“Gridworld” [15], with the major exception that our agent
does not have a direct access to its(x, y) position in the
maze. Rather, the position is implicitly encoded in the per-
cepts by an image: In each cell, a different object is buried
under a transparent glass, and the sensors of the agent re-
turn a color picture of the object underneath.

We have used the pictures from the COIL-100 data-
base2. In our setup, features are defined as 8-dimensional
vectors of reals corresponding to color differential invari-
ants [5]. The feature detector locates all the Harris color
points of interest in the input image. For each of them, it
tests whether the local description of its neighborhood is
similar to the input feature, with respect to Mahalanobis’
metric. The refining oracle also iterates over all the Harris
color points of interest found in its input pair of buckets of
visual percepts. For each of those points, it evaluates the
split induced by the local description of the neighborhood
around the point. Finally, it returns the descriptor that in-
duces the best split score. We have made experiments for
this task under different configurations:

Small Gridworld: The topology for this first experiment
is depicted in Figure 1. Figure 2 shows the obtained
results. It can easily be seen that the policy built using
the last classifier is indeed optimal for the task, since
the algorithm succeeds at distinguishing between all
the 7 visual inputs. There were 120 distinct visual
features, but RLC has only selected 6 features. The
algorithm stopped oncek reached the value 6.

Large Gridworld: In a second experiment, we have used
Sutton’s original Gridworld topology [15], which is
depicted in Figure 3. Here also, RLC managed in 45
steps to build a classifier that allows the agent to dis-
tinguish between all the states, and therefore to opti-
mally solve its task. This classifier is too large to be
included in this paper. However, it is very interesting
to report that RLC has selected only 46 different fea-
tures among the 1080 possible ones. Actually, the al-
gorithm has produced 47 perceptual classes, each one
of these corresponding exactly to one cell, allowing it
to produce here again the optimal policy.

Large Gridworld with Rotations: This third setup is the
same as Large Gridworld, but each time the sensors
take a picture of the object, its point of view is ran-
domly chosen in the interval[0◦, 45◦], which adds
noise to the task. RLC succeeded after 71 iterations in
computing a classifier that distinguishes between 343

2http://www.cs.columbia.edu/CAVE/coil-100.html

Figure 1. Small Gridworld topology. Cells with a cross
are walls, and the exit is indicated by a gray background.
Empty cells are labeled by a picture, in which circles indi-
cate the interest points where features are extracted.

perceptual classes by testing 171 different features out
of a set of 1141 possible features. This classifier is fine
enough to obtain an optimal policy for the task.

These experiments indicate the soundness of our ap-
proach. We conclude by noticing that the distribution of the
images has only a marginal influence on the results.

5 Conclusions

We have introduced a new Reinforcement Learning algo-
rithm that is able to focus the attention of the agent on dis-
tinctive and robust parts of the inputs. The abstraction level
upon which RL is applied is therefore raised, since it allows
the use of context-dependent information. The definition of
the algorithm does not rely on a particular RL algorithm, as
long as it converges under state aggregation. The pertinent
features are incrementally selected in a fully autonomous,
interactive fashion. This is done through a statistical anal-
ysis of the corrections thatQ Learning would apply on an
optimalQ function obtained through the aliased classifier.
Importantly, this selection process is task-driven: Different
tasks will not necessarily lead to the selection of the same
subset of features.

The area of possible applications is wide, since nowa-
days autonomous agents are often equipped with noisy or
visual sensors. For example, one of our long-term goals
is to construct a robotic hand that is able to automatically
learn to use optical sensors to grasp objects. However,
many questions are still open. For example, it is not clear
how RLC could be applied on continuous output spaces,
which is indeed required for realistic robotic applications.
It would also be interesting to add post-pruning operations
to get rid of selected features that are subsequently proved
useless for the task, and that generate overfitting effects.

(b)

(c)

7 5 2
3
164

*

(a)

Figure 2. Resolution of the small Gridworld: (a) The last
classifierCk, which tests the presence of the circled visual
features, (b) the number of the perceptual class that is as-
signed to each empty cell byCk, and (c) the computed opti-
mal policy for this classification, i.e.argmaxa∈AQ

∗
k(s, a).

Figure 3. Large Gridworld topology (with 47 empty cells).

The study of how features can be geometrically combined
to produce higher-level features that are more robust to
noise [12] is another interesting research project.

References

[1] R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

[2] D.P. Bertsekas and J.N. Tsitsiklis.Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, 1996.

[3] L. Chrisman. Reinforcement learning with perceptual alias-
ing: The perceptual distinctions approach. InNational Conf.
on Artificial Intelligence, pages 183–188, 1992.

[4] G.J. Gordon. Approximate Solutions to Markov Decision
Processes. PhD thesis, Carnegie Mellon University, June
1999.

[5] V. Gouet and N. Boujemaa. Object-based queries using
color points of interest. InIEEE Workshop on Content-
Based Access of Image and Video Libraries, pages 30–36,
Kauai, Hawaii, USA, 2001.

[6] M. Huber and R. Grupen. A control structure for learning
locomotion gaits. In7th Int. Symposium on Robotics and
Applications, Anchorage, May 1998.

[7] S. Jodogne and J.H. Piater. Interactive selection of visual
features through reinforcement learning. InProc. of the 24th
SGAI Int. Conf. on Innovative Techniques and Applications
of Artificial Intelligence, Cambridge (UK), December 2004.
Springer-Verlag. To appear.

[8] R.A. McCallum. Reinforcement Learning with Selective
Perception and Hidden State. PhD thesis, University of
Rochester, Rochester, NewYork, 1996.

[9] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. InIEEE Conf. on Computer Vision and
Pattern Recognition, volume 2, pages 257–263, Madison,
Wisconsin, June 2003.

[10] T.M. Mitchell. Machine Learning. McGraw Hill, 1997.
[11] D. Ormoneit and S. Sen. Kernel-based reinforcement learn-

ing. Machine learning, 49(2-3):161–178, 2002.
[12] J.H. Piater.Visual Feature Learning. PhD thesis, Computer

Science Department, University of Massachusetts, Amherst,
MA, February 2001.

[13] J.R. Quinlan. The effect of noise on concept learning.
In Machine Learning: An Artificial Intelligence Approach:
Volume II, pages 149–166. Kaufmann, Los Altos, CA, 1986.

[14] S.P. Singh, T. Jaakkola, and M.I. Jordan. Reinforcement
learning with soft state aggregation. InAdvances in Neural
Information Processing Systems, volume 7, pages 361–368.
The MIT Press, 1995.

[15] R.S. Sutton. Integrated architectures for learning, planning
and reacting based on approximating dynamic program-
ming. InProc. of 7th Int. Conf. on Machine Learning, pages
216–224, San Mateo, 1990.

[16] J.N. Tsitsiklis and B. Van Roy. Feature-based methods
for large scale dynamic programming.Machine Learning,
22:59–94, 1996.

[17] C.J.C.H. Watkins and P. Dayan.Q−learning. Machine
learning, 8:279–292, 1992.

[18] S.D. Whitehead and D.H. Ballard. Learning to perceive and
act by trial and error.Machine Learning, 7:45–83, 1991.

