
Learning, then Compacting Visual Policies (Extended Abstract)

Sébastien Jodogne S.Jodogne@ULg.ac.be
Justus H. Piater Justus.Piater@ULg.ac.be

Montefiore Institute (B28), University of Liège, B-4000 Liège, Belgium

Abstract
We propose a way to fight overfitting in
the recently-published Reinforcement Learn-
ing of Visual Classes (RLVC) algorithm.
RLVC interactively learns mappings from im-
ages to actions. In RLVC, the visual space is
incrementally partitioned into a smaller set
of visual classes, by testing the presence of
highly informative visual features. Since the
splitting rule is local, useless features are of-
ten selected, which reduces the performance
of the algorithm. We introduce a method
to aggregate visual classes that are similar
with respect to the theory of Markov Decision
Processes using Binary Decision Diagrams.
We illustrate the practical interest of this ap-
proach on a complex visual navigation task.

1. Introduction

Constructing an optimal control policy through Rein-
forcement Learning (RL) becomes exponentially har-
der as the size of the perceptual (input) space grows.
This is known as the curse of dimensionality . There
exist only little work on perceptual spaces consisting
of images, which are extremely high-dimensional and
noisy. Likewise, in the Computer Vision community,
there has been so far only very little focus on what
could be called the vision-for-action paradigm, which
consists in computing image-to-action mappings suit-
able for a given visual task. However, in many robotic
control tasks, the learning agent is equipped with cam-
eras. We therefore argue that RL algorithms able to
directly tackle visual spaces should be developed.

The issue of dealing with large, discrete perceptual
spaces in RL was previously addressed by the G Al-
gorithm (Chapman & Kaelbling, 1991) and by the so-
called “selective attention” mechanism of U Tree (Mc-
Callum, 1996). These algorithms incrementally refine
a decision tree, in a sequence of attempts to remove
perceptual aliasing. The decision tree partitions the
input space into several perceptual classes by testing
the presence of domain-specific features that are highly

relevant for solving the task. This idea was later ex-
tended to continuous input spaces, like in Continuous
U Tree (Uther & Veloso, 1998) and Variable Resolu-
tion Grids (Munos & Moore, 2002). However, these
papers do not answer the question of which type of
features could be used in the case of visual tasks.

We have recently proposed to take advantage of the vi-
sual features that are used in local-appearance methods
in Computer Vision (Jodogne & Piater, 2005). Such
methods have had much success in applications such
as image matching, image retrieval and object recog-
nition. They are indeed powerful and flexible, as they
are robust to partial occlusions, and do not require seg-
mentation or 3D models of objects. They rely on the
detection of discontinuities in the visual signal thanks
to interest point detectors. The image patch around
each interest point is then summarized as a vector of
real numbers, which is called a visual feature (Mikola-
jczyk & Schmid, 2003). Once a suitable metric (e.g.,
Mahalanobis’ or Euclidean distance) is defined upon
the visual features, two images can be matched if they
share a sufficient number of matching visual features.

In our framework, which we called Reinforcement
Learning of Visual Classes (RLVC), we build a de-
cision tree that tests, at each of its internal nodes, the
existence of one visual feature in the visual stimulus.
The leaves of the decision tree define a set of visual
classes, which is hopefully exponentially smaller than
the original visual space, and upon which it is possible
to apply directly any usual RL algorithm. The con-
struction of the decision tree is carried on incremen-
tally, like in the G Algorithm and in U Tree, but us-
ing a different splitting rule that targets zero Bellman
residuals and that relies on an information-theoretic
measure. We have shown that this algorithm is of
practical interest, by solving a visual navigation task.

Unfortunately, because of its greedy nature, RLVC is
highly subject to overfitting. Splitting one visual class
has an impact on the Bellman residuals of all the vi-
sual classes. Therefore, the splitting strategy can get
stuck in local minima: Once a split is made that sub-
sequently proves useless, it cannot be undone in the

original description of RLVC. In this work, we propose
to provide RLVC with the possibility of aggregating
visual classes that share similar properties. Doing so
has at least three potential benefits: (i) Useless fea-
tures are discarded, which enhances generalization ca-
pabilities; (ii) RLVC can escape from local minima by
re-initializing the search for good features; and (iii) the
number of samples that the embedded RL algorithm
has at its disposal for each visual class is increased,
which results in better visual control policies.

2. Compacting Visual Policies

We cannot include here a thorough discussion of RLVC
for space reasons. The reader is kindly invited to con-
sult our previous papers for more details (Jodogne
& Piater, 2005). For the purpose of this work, it
is sufficient to know that RLVC builds a sequence
(C0, . . . , Ck, . . .) of decision trees until no further per-
ceptual aliasing is detected. Each Ck induces a mapped
Markov Decision Process (MDP), the states of which
correspond to the leaves of Ck. Furthermore, for each
k in the sequence, a traditional RL algorithm is ap-
plied, so that properties like the optimal value function
V ∗

k (·), the optimal state-action value function Q∗
k(·, ·)

and the optimal control policy π∗
k(·) are known for the

MDP that is mapped through Ck. Using those proper-
ties, it is easy to define a whole range of equivalence re-
lations between the visual classes. For instance, given
a threshold ε ∈ R+, we list hereunder three possible
equivalence relations for a pair of visual classes (ck, c′k):

Optimal Value Equivalence:
|V ∗

k (ck)− V ∗
k (c′k)| ≤ ε.

Optimal Policy Equivalence:
|V ∗

k (ck)−Q∗
k(c′k, π∗

k(ck))| ≤ ε ∧
|V ∗

k (c′k)−Q∗
k(ck, π∗

k(c′k))| ≤ ε.

Optimal State-Action Value Equivalence:
(∀a ∈ A)|Q∗

k(ck, a)−Q∗
k(c′k, a)| ≤ ε.

We therefore propose to modify RLVC so that, period-
ically, visual classes that are equivalent with respect to
one of those criteria are merged together. We have ex-
perimentally observed that the conjunction of the first
two criteria seems to lead to the best performance.
This way, RLVC alternatively splits and merges visual
classes. Therefore, a visual class cannot be represented
as a single branch of a decision tree anymore. Rather, a
visual class is characterized by a general Boolean func-
tion, the variables of which correspond to the tested
visual features, so that we need a more expressive tool
than decision trees to represent the visual classes.

One such suitable tool is the Binary Decision Diagram
(BDD) (Bryant, 1992). BDD is a tree-based sym-

bolic representation for encoding arbitrary Boolean
functions, and has had much success in the field of
computer-aided verification. A BDD is unique when
the ordering of its variables is fixed, but different vari-
able orderings can lead to different sizes of the BDD,
since some variables can be discarded by the reorder-
ing process. Although the problem of finding the op-
timal variable ordering is NP-complete, heuristics can
in practice find orderings that are closed to optimality.
This is interesting in our case, since reducing the size
of the BDD amounts to discarding irrelevant variables,
which correspond to useless visual features.

To summarize, the modified RLVC does not use deci-
sion trees anymore, but assigns one BDD to each visual
class. The process of refining, with a visual feature f ,
a visual class v that is labeled by the BDD B(v), con-
sists in replacing v by two visual classes v1 and v2 such
that B(v1) = B(v) ∧ f and B(v2) = B(v) ∧ ¬f . Merg-
ing a pair of visual classes (v1, v2) amounts to deleting
v1 and v2, and adding a new visual class v such that
B(v) = B(v1)∨B(v2). Every time a merging operation
takes place, variable reordering is carried on.

3. Experimental Results

We have applied the modified version of RLVC to a
simulated navigation task. In this task, the agent
moves between 11 spots of our campus (Figure 1).
Every time the agent is at one of the 11 locations,
its body can aim at four possible orientations (north,
south, west, east). The state space is therefore of size
11×4 = 44. The agent has three possible actions (turn
left, turn right, go forward). Now, the agent does not
have direct access to its position and its orientation.
Rather, it only perceives a picture of the area that is
in front of it (Figure 2). So, the agent has to connect
images to the appropriate reactions without knowing
the underlying physical structure of the task.

We have used the SIFT keypoints as visual fea-
tures (Lowe, 2004). There was a total of 2,591 distinct
features. The original version of RLVC has identified
644 visual classes by selecting 336 SIFT features. The
error on the computed visual policy was 2% on the
learning set and 22% on the test set1. The modified
RLVC was then applied, with one compacting every 5
steps. The results are shown in Figure 3 and are clearly
superior: There is an improvement in the generaliza-
tion abilities, as well as a reduction of the number of
visual classes and selected features.

As a conclusion, compacting visual policies is probably
a required step to deal with realistic visual tasks, if an

1With respect to the optimal policy when the agent has
direct access to its position and viewing direction.

N

Figure 1. The Montefiore campus at Liège. Red spots cor-
responds to the places between which the agent moves. The
agent can only follow the links between the different spots.
Its goal is to enter the Montefiore Institute, that is labeled
by a red cross, and where it gets a reward of 100. Turning
left or right induces a penalty of −5, and moving forward,
a penalty of −10. The discount factor γ is set to 0.8.

iterative splitting process is applied. Future work will
focus on a theoretical justification of the used equiva-
lence relations. This implies bridging the gap with the
theory of MDP minimization (Givan et al., 2003).

References

Bryant, R. (1992). Symbolic boolean manipulation with
ordered binary decision diagrams. ACM Computing Sur-
veys, 24, 293–318.

Chapman, D., & Kaelbling, L. (1991). Input generaliza-
tion in delayed reinforcement learning: An algorithm
and performance comparisons. Proc. of the 12th Int.
Joint Conf. on Artificial Intelligence (pp. 726–731).

Givan, R., Dean, T., & Greig, M. (2003). Equivalence no-
tions and model minimization in markov decision pro-
cesses. Artificial Intelligence, 147, 163–223.

Jodogne, S., & Piater, Journal (2005). Interactive learning
of mappings from visual percepts to actions. Proc. of the
22nd Int. Conf. on Machine Learning (pp. 393–400).

Lowe, D. (2004). Distinctive image features from scale-
invariant keypoints. Int. Journal of Computer Vision,
60, 91–110.

McCallum, R. (1996). Reinforcement learning with selec-
tive perception and hidden state. Doctoral dissertation,
University of Rochester, New York.

Mikolajczyk, K., & Schmid, C. (2003). A performance
evaluation of local descriptors. IEEE Conf. on Computer
Vision and Pattern Recognition (pp. 257–263).

Munos, R., & Moore, A. (2002). Variable resolution dis-
cretization in optimal control. Machine Learning, 49,
291–323.

Uther, W. T. B., & Veloso, M. M. (1998). Tree based
discretization for continuous state space reinforcement
learning. Proc. of the 15th National Conf. on Artificial
Intelligence (AAAI) (pp. 769–774).

Figure 2. The percepts of the agent. For each possible lo-
cation and each possible viewing direction, a database of
24 images of size 1024 × 768 with viewpoint changes has
been collected. Those 44 databases have been divided into
a learning set of 18 images and a test set of 6 images. 4 dif-
ferent percepts are shown, that correspond to the location
and viewing direction marked in yellow on the top image.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6
Test

Learning
Classes

Features

Figure 3. Statistics about the modified RLVC as a function
of the step counter k. The green (resp. red) plot corre-
sponds to the error of the computed policy on the learning
(resp. test) set. At the end, the learning error is 2% and
the test error is 14%, which is superior to the scores of the
original RLVC. The number of visual classes (resp. selected
features) is plotted in blue (resp. purple). The decreases in
these curves indicate the compacting phases. Only 183 vi-
sual features were selected. Interestingly, 57 visual classes
were identified, which is close to 44, the number of states.

