
Interactive Learning of Mappings from Visual Percepts to Actions

Sébastien Jodogne1 S.Jodogne@ULg.ac.be
Justus H. Piater Justus.Piater@ULg.ac.be

Montefiore Institute (B28), University of Liège, B-4000 Liège, Belgium

Abstract

We introduce flexible algorithms that can
automatically learn mappings from images
to actions by interacting with their environ-
ment. They work by introducing an image
classifier in front of a Reinforcement Learn-
ing algorithm. The classifier partitions the
visual space according to the presence or ab-
sence of highly informative local descriptors.
The image classifier is incrementally refined
by selecting new local descriptors when per-
ceptual aliasing is detected. Thus, we reduce
the visual input domain down to a size man-
ageable by Reinforcement Learning, permit-
ting us to learn direct percept-to-action map-
pings. Experimental results on a continuous
visual navigation task illustrate the applica-
bility of the framework.

1. Introduction

Many reactive robotic tasks can be solved by “black-
box” mappings from an input space to an output
space, that directly connect percepts to the appro-
priate actions through a given computational mech-
anism. Such mappings are usually hard to derive by
hand, especially when the input space contains images,
since visual domains are high dimensional and noisy.
This paper introduces algorithms suitable for building
image-to-action mappings using a fully automatic and
flexible learning protocol.

Strong neuropsychological evidence suggests that hu-
man beings learn to extract useful information from
visual data in an interactive fashion, without any ex-
ternal supervisor (Gibson & Spelke, 1983). By evaluat-
ing the consequence of our actions on the environment,
we learn to pay attention to visual cues that are be-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

haviorally important for solving the task. This process
is task-driven, since different tasks do not necessarily
need to make the same distinctions.

One plausible framework to learn image-to-action
mappings in such an interactive protocol is Reinforce-
ment Learning (RL) (Bertsekas & Tsitsiklis, 1996;
Sutton & Barto, 1998). RL is a generic framework
for modeling the behavior of an agent that learns
a percept-to-action mapping through its interactions
with the environment. The agent is never told what
action it should take. Rather, when it does a good
or a bad action, it only receives from the environment
a reward or a punishment, the reinforcement signal .
The major advantages of the RL protocol are that it
is fully automatic, and that it imposes very weak con-
straints on the environment. However, the price to pay
for the flexibility of RL is poor performance when the
input space of the agent is high dimensional or noisy,
which makes it unsuitable for building image-to-action
mappings.

However, to take the right decision, it is often sufficient
for the robotic agent to focus its attention on robust
and highly informative patterns in the percepts. This
is actually the basic postulate behind local-appearance
methods, that have had much success in Computer Vi-
sion applications such as image matching, image re-
trieval and object recognition (Lowe, 1999; Schmid &
Mohr, 1997). They rely on the detection of discon-
tinuities in the visual signal thanks to interest point
detectors (Schmid et al., 2000). Similarities in images
are thereafter identified using a local description of the
neighborhood around the interest points (Mikolajczyk
& Schmid, 2003): If two images share a sufficient num-
ber of matching local descriptors, they are considered
as belonging to the same visual class. Matches are de-
tected through a suitable metric (e.g., Mahalanobis’
or Euclidean distance), as local descriptors are noth-
ing else than vectors of real numbers. Such techniques
are at the same time powerful and flexible, as they

1Research fellow of the Belgian National Fund for Sci-
entific Research (FNRS).

Interactive Learning of Mappings from Visual Percepts to Actions

are robust to partial occlusions, and do not require
segmentation or 3D models of objects.

It seems therefore promising to introduce, in front of
the RL algorithm, an image classifier that translates
the raw visual input to a visual class according to the
presence of some selected local descriptors at the in-
terest points in the image. This preprocessing step is
intended to reduce the size of the input domain, thus
enhancing the rate of convergence, the generalization
capabilities as well as the robustness of RL to noise in
visual domains. The central difficulty is the dynamic
selection of the discriminative local descriptors.

We propose the following algorithm, that will be called
Reinforcement Learning of Visual Classes (RLVC).
Initially, the agent just knows about one visual class,
so that all images are mapped to this class. Of course,
this introduces a kind of perceptual aliasing (White-
head & Ballard, 1991): The optimal decisions cannot
always be made, since percepts requiring different re-
actions are associated with the same class. Then, the
agent isolates the aliased classes. Since there is no
external supervisor, the agent can only rely on a sta-
tistical analysis of the earned reinforcements. Once
some aliased class has been detected, the agent selects
a new local descriptor that is distinctive, i.e. that best
explains the observed variations in the reinforcements
for the considered class. The extracted descriptor is fi-
nally used to refine the classifier. New local descriptors
are learned until perceptual aliasing vanishes.

RLVC is quite different from classical RL techniques
for discretizing the input space (Bertsekas & Tsitsik-
lis, 1996), since previous methods assume that the in-
teresting features (i.e., the local descriptors) or their
numbers are known in advance. In fact, RLVC can be
thought of as performing adaptive discretization of the
perceptual space on the basis of an image processing
algorithm. It allows us to select a subset of highly rel-
evant visual features in a fully closed-loop, task-driven
learning process.

2. Theoretical Background

2.1. Reinforcement Learning

In RL, the environment is traditionally modeled as a
Markov Decision Process (MDP). An MDP is a tu-
ple 〈S, A, T ,R〉, where S is a finite set of states, A
is a finite set of actions, T is a probabilistic tran-
sition function from S × A to S, and R is a rein-
forcement function from S × A to R. An MDP obeys
the following discrete-time dynamics: If at time t, the
agent takes the action at while the environment lies in
a state st, the agent perceives a numerical reinforce-

ment rt+1 = R(st, at), then reaches some state st+1

with probability T (st, at, st+1).

The definition of MDPs assumes the full observability
of the state space, which means that the agent is able
to distinguish between the states of the environment
using only its sensors. Let us define the perceptual
space P as the set of possible percepts that the sen-
sors can return. In visual tasks, P is a set of images.
So, from the point of view of the agent, an interac-
tion with the environment is defined as a quadruple
〈pt, at, rt+1, pt+1〉, where pt (resp. pt+1) is the percept
furnished by its sensors in the presence of the state st

(resp. st+1).

A percept-to-action mapping is a fixed probabilistic
function π : P 7→ A from percepts to actions. A
percept-to-action mapping tells the agent the proba-
bility with which it should choose an action when faced
with some percept. In RL terminology, such a map-
ping is called a stationary Markovian control policy .
For an infinite sequence of interactions starting in a
state st, the discounted return is Rt =

∑∞
i=0 γirt+i+1,

where γ ∈ [0, 1[is the discount factor that gives
the current value of the future reinforcements. The
Markov Decision Problem for a given MDP is to find
an optimal percept-to-action mapping that maximizes
the expected discounted return.

MDPs can be solved using Dynamic Programming
(DP). Let us call Qπ(s, a), the function giving for each
state s ∈ S and each action a ∈ A the expected dis-
counted return obtained by starting from state s, tak-
ing action a, and thereafter following the mapping π:
Qπ(s, a) = Eπ {Rt | st = s, at = a}, where Eπ denotes
the expected value if the agent follows the mapping π.
Let us also define the H transform from Q functions
to Q functions as:

(HQ)(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′∈A

Q(s′, a′),

(1)
for all s ∈ S and a ∈ A. All the optimal mappings
for a given MDP share the same Q function, denoted
Q∗, that always exists and that satisfies Bellman’s so-
called optimality equation (Bellman, 1957):

HQ∗ = Q∗. (2)

Once Q∗ is known, an optimal deterministic percept-
to-action mapping π∗ is easily derived by letting
π∗(s) = argmaxa∈A Q∗(s, a) for each s ∈ S.

RL is a set of algorithmic methods for solving Markov
Decision Problems when the underlying MDP is un-
known (Bertsekas & Tsitsiklis, 1996). The input of
RL algorithms is basically a sequence of interactions

Interactive Learning of Mappings from Visual Percepts to Actions

〈pt, at, rt+1, pt+1〉 of the agent with its environment.
RL techniques are often divided in two categories: (i)
model-based methods that first build an estimate of the
underlying MDP (e.g., by computing the relative fre-
quencies that appear in the sequence of interactions),
and then use classical DP algorithms, and (ii) model-
free methods such as SARSA, TD(λ), and the popular
Q Learning (Watkins, 1989), that do not compute such
an estimate.

2.2. Local-Appearance Methods

Besides RL, the local-appearance paradigm in Com-
puter Vision is the other technique required by our
algorithms. Formally, let us call F the infinite set of
local descriptors that can be generated by the cho-
sen description method (Mikolajczyk & Schmid, 2003).
The elements of F will be equivalently referred to as
visual features. Usually, F corresponds to Rn for some
n ≥ 1. We assume the existence of a visual feature de-
tector , that is a Boolean function F : P × F 7→ B
testing whether a given image exhibits a given local
descriptor at one of its interest points (Schmid et al.,
2000). Any suitable metric can be used to test the
similarity of two visual features, e.g. Mahalanobis’ or
Euclidean distance.

3. Learning Visual Mappings

As discussed in the Introduction, we propose to insert
an image classifier before the RL algorithm. The clas-
sifier will be iteratively refined. At any step k, the clas-
sifier, which will be denoted Ck, partitions the visual
perceptual space P into a finite number mk of visual
classes {V k

1 , . . . , V k
mk
}. The classification is done ac-

cording to the local-appearance paradigm, by focusing
the attention of the agent on highly distinctive local
descriptors detected at interest points in the images.
The goal of our visual learning algorithms is to iter-
atively refine a sequence of classifiers by successively
selecting new visual features, starting with a classifier
C0 that maps all of its input images in a single visual
class V0,1.

3.1. Image Classifier

Because of this incremental process, a natural way to
implement the classifiers is to use binary decision trees.
The visual classes correspond to the leaves of the trees.
Each internal node is labeled by the visual feature, the
presence of which is to be tested in that node. To
classify an image, the system starts at the root node,
then progresses down the tree according to the result
of the feature detector F for each visual feature found
during the descent, until reaching a leaf. To refine a

percepts

Image Classifier Reinforcement Learningdetected visual class

reinforcements

aliased visual class

actions

Figure 1. The information flow in RLVC.

visual class using a feature, it is sufficient to replace
the leaf corresponding to this class by an internal node
testing the presence or absence of this feature.

3.2. Learning Architecture

We are interested in computing an image-to-action
mapping π : P 7→ A. At step k, given a visual percept
p ∈ P , rather than applying RL algorithms directly on
the raw values of the pixels of p, the RL algorithm is
supplied with the output of Ck(p). The resulting archi-
tecture will be referred to as Reinforcement Learning
of Visual Classes (RLVC), and is depicted in Figure 1.

RLVC consists of two interleaved, different learning
processes: (i) the selection of the distinctive visual fea-
tures, and (ii) the Reinforcement Learning of a map-
ping from the visual classes to the actions. The two
main challenges in RLVC are therefore (i) to identify
when a refinement of the image classifier is needed,
and (ii) to select visual features that are suitable to
refine the classifier.

Until the agent has learned the visual classes required
to complete its task, visual percepts needing different
reactions may be mapped to the same class. There-
fore, the right decisions cannot always be made by
the embedded RL algorithm on the basis of its inputs.
From the viewpoint of the embedded RL algorithm,
the input space is only partially observable (cf. Sec-
tion 2.1). This phenomenon is known as the percep-
tual aliasing (or hidden state) problem (Whitehead &
Ballard, 1991). Hence, detecting when a refinement
is needed is actually equivalent to detecting in which
visual classes perceptual aliasing occurs. We discuss
how this detection is achieved in RLVC in the follow-
ing section.

3.3. Detecting the Aliased Visual Classes

3.3.1. Projecting MDPs through a Classifier

Formally, any image classifier Ck converts a sequence
of N interactions 〈pt, at, rt+1, pt+1〉 to a mapped se-
quence of N quadruples 〈Ck(pt), at, rt+1, Ck(pt+1)〉.
Let use define the mapped MDP Mk as the MDP

Interactive Learning of Mappings from Visual Percepts to Actions

〈Sk, A, Tk,Rk〉 obtained from the mapped sequence,
where Sk is the set of visual classes that are known to
Ck, and where Tk and Rk have been computed using
the relative frequencies in the mapped sequence.

Consider two visual classes V, V ′ ∈ {V k
1 , . . . , V k

mk
} and

one action a ∈ A. We define the following functions:

• δt(V, a) equals 1 if Ck(pt) = V and at = a, and 0
otherwise;

• δt(V, a, V ′) equals 1 if Ck(pt) = V , at = a and
Ck(pt+1) = V ′, and 0 otherwise;

• η(V, a) is the number of t such that δt(V, a) = 1.

Using this notation, we can write:

• Sk = {V k
1 , . . . , V k

mk
};

• Tk(V, a, V ′) =
∑N

t=1 δt(V, a, V ′)/η(V, a);

• Rk(V, a) =
∑N

t=1 rtδt(V, a)/η(V, a).

3.3.2. Optimal Q Function for a Mapped MDP

Each mapped MDP Mk induces an optimal Q func-
tion on the domain Sk × A that will be denoted Q′∗

k .
Computing Q′∗

k can be difficult: In general, there may
exist no MDP defined on the state space Sk and on
the action space A that can generate a given mapped
sequence, since the latter is not necessarily Marko-
vian anymore. So, if some RL algorithm is run on the
mapped sequence, it might not converge toward Q′∗

k ,
or not even converge at all. However, when applied on
a mapped sequence, any model-based RL method (cf.
Section 2.1) can be used to compute Q′∗

k ifMk is used
as the underlying model. Under some conditions, Q
Learning also converges to the optimal Q function of
the mapped MDP (Singh et al., 1995).

In turn, the function Q′∗
k induces another Q func-

tion on the initial domain S × A through the rela-
tion Q∗

k(s, a) = Q′∗
k (Ck(ps), a), where ps is an arbi-

trary percept that s can generate. In the absence of
aliasing, the agent could perform optimally, and Q∗

k

would correspond to Q∗, according to Bellman’s theo-
rem that states the uniqueness of the optimal Q func-
tion (cf. Section 2.1). By Equation (2), the matrix
Bk = HQ∗

k −Q∗
k is therefore a measure of the aliasing

induced by the image classifier Ck. In RL terminology,
Bk is Bellman’s residual of the function Q∗

k. The basic
idea behind RLVC is to refine the states that have a
non-zero Bellman’s residual.

3.3.3. Measuring Aliasing

Unfortunately, in practice, the H transform is un-
known, because the agent does not have direct access

to the state space of the MDP modeling the environ-
ment. We propose a different approach, by assum-
ing temporarily that the transition function T of the
environment is deterministic. In this case, Bellman’s
residual of Q∗

k can be rewritten as:

Bk(s, a) = R(s, a) + γ max
a′∈A

Q∗
k(T (s, a), a′)−Q∗

k(s, a)

= R(s, a)+γ max
a′∈A

Q′∗
k

(
Ck

(
pT (s,a)

)
, a′

)
−Q′∗

k (Ck(ps), a)

(3)

Consider an action a ∈ A and two states s, s′ ∈ S of
the environment. Interestingly, Equation (3) allows to
compute Bellman’s residual for the pair (s, a), if we
have an interaction 〈pt, at, rt+1, pt+1〉 such that pt has
been generated by s, pt+1 has been generated by s′,
and at corresponds to a. Indeed, in the latter case,
Bk(s, a) equals:

∆t = rt+1 + γ max
a′∈A

Q′∗
k (Ck(pt+1), a′)−Q′∗

k (Ck(pt), at).

(4)

According to the previous discussion, the residuals ∆t

measure the perceptual aliasing induced by Ck.2 A
nonzero ∆t indicates the presence of perceptual alias-
ing in the visual class Vt = Ck(pt) with respect to ac-
tion at. Our criterion for detecting the aliased classes
consists in computing the Q′∗

k function, then in sweep-
ing again all the 〈pt, at, rt+1, pt+1〉 to identify nonzero
∆t.

3.4. Extracting Distinctive Visual Features

Once aliasing has been detected in some visual class
V ∈ Sk with respect to an action a, we need to discover
a new local descriptor that best explains the variations
in the set of ∆t values corresponding to V and a. This
is a classification problem, for which we suggest an
adaptation of a popular splitting rule used with deci-
sion trees (Quinlan, 1993).

Let us denote T the set of time stamps t such that
Ck(pt) = V and at = a. Each threshold c ∈ R induces
a binary partition {T c

1 , T c
2} of the set T , where:

T c
1 = {t ∈ T | ∆t ≤ c},

T c
2 = {t ∈ T | ∆t > c}.

Similarly, any visual feature f ∈ F splits T into two
subsets:

T f
1 = {t ∈ T | F(pt, f)},

T f
2 = {t ∈ T | ¬F(pt, f)}.

2It is worth noticing that αt∆t corresponds to the up-
dates that would be applied by Q Learning (Watkins,
1989), where αt is known as the learning rate at time t.

Interactive Learning of Mappings from Visual Percepts to Actions

Ideally, we would like to identify a visual feature f that
splits T the same way a threshold c would.

Therefore, for each cutpoint in the sorted sequence of
∆t such that t ∈ T , we select the visual feature that
maximizes a given information-theoretic score for the
partition of images induced by the feature detector F .
This is done by iterating over the local descriptors that
describe the neighborhood of all the interest points of
the images in {pt | t ∈ T}. Finally, the visual feature
that has the maximal score among all the extracted
features is used to refine the classifier.

Our algorithms assume that the transition function T
behaves deterministically to be able to directly tar-
get Bellman’s residuals. Of course, interesting envi-
ronments are in general non-deterministic, which gen-
erates variations in Bellman’s residuals that are not
a consequence of perceptual aliasing. RLVC can be
made somewhat robust to such a variability by intro-
ducing a statistical hypothesis test: For each candidate
split, a χ2 test is used to decide whether it is signifi-
cantly different from a random split. This approach is
inspired from decision tree pruning.

3.5. Algorithm

Putting it all together, RLVC can be described as:

1. Begin with a counter k ← 0 and a classifier Ck that
maps all the percepts to the same visual class.

2. Construct an optimal function Q′∗
k for the clas-

sification induced by Ck, e.g. using model-based
methods. Record in a database the interac-
tions 〈pt, at, rt+1, pt+1〉 encountered during this
RL process.

3. Let Ck+1 ← Ck. For each (i, a) ∈ {1, . . . ,mk}×A:

(a) Select all the interactions 〈pt, at, rt+1, pt+1〉
in the database such that Ck(pt) = V k

i and
at = a.

(b) For each of them, compute the value:

ξt = rt+1 + γ max
a′∈A

Q′∗
k (pt+1, a

′).

Note that since Q′∗
k (Ck(pt), at) = Q′∗

k (V k
i , a)

is a constant c for all the selected interac-
tions, ξt is just the ∆t from Equation (4),
offset by c.

(c) If some of the ξt are different from c, select
a distinctive feature that best explains the
variations in the set of ξt. If the hypothe-
sis test succeeds, refine the classifier Ck+1 by
splitting the class V k

i according to the newly
selected feature.

4. If Ck 6= Ck+1, let k ← k + 1 and go to step 2.

At the end of the algorithm, the classifier Ck is assumed
free of perceptual aliasing, and can be subsequently
used to control the system.

4. Experiments on a Navigation Task

We have evaluated our system on an abstract task that
closely parallels a real-world scenario while avoiding
any unnecessary complexity. RLVC has succeeded at
solving the continuous, noisy visual navigation task
depicted in Figure 2. The goal of the agent is to reach
as fast as possible one of the two exits of the maze.
The set of possible locations is continuous. At each
location, the agent has four possible actions: Go up,
right, down, or left. Every move is altered by a Gaus-
sian noise, the standard deviation of which is 2% the
size of the maze. Glass walls are present in the maze.
Whenever a move would take the agent into a wall or
outside the maze, its location is not changed.

The agent earns a reward of 100 when an exit is
reached. Any other move, including the forbidden
ones, generates zero reinforcement. When the agent
succeeds in escaping the maze, it arrives in a terminal
state in which every move gives rise to a zero reinforce-
ment. In this task, γ was set to 0.9. Note that the
agent is faced with the delayed reward problem, and
that it must take the distance to the two exits into
consideration for choosing the most attractive one.

The maze has a ground carpeted with a color image of
1280× 1280 pixels that is a montage of pictures from
the COIL-100 database3. The agent does not have di-
rect access to its (x, y) position in the maze. Rather,
its sensors take a picture of a surrounding portion of
the ground. This portion is larger than the blank ar-
eas, which makes the input space fully observable. Im-
portantly, the glass walls are transparent, so that the
sensors also return the portions of the tapestry that
are behind them. Therefore, there is no way for the
agent to directly locate the walls. It is obliged to iden-
tify them as the regions of the maze in which an action
does not change its location.

In this experiment, we have used color differential in-
variants as visual features (Gouet & Boujemaa, 2001).
The entire tapestry includes 2298 different visual fea-
tures. RLVC selected 200 features, corresponding to a
ratio of 9% of the entire set of possible features. The
computation stopped when k reached 84, which took
35 minutes on a 2.4GHz Pentium IV using databases
of 10,000 interactions. 205 visual classes were identi-
fied. This is a small number, compared to the number
of perceptual classes that would be generated by a dis-

3http://www.cs.columbia.edu/CAVE/coil-100.html

Interactive Learning of Mappings from Visual Percepts to Actions

Figure 2. A continuous, noisy navigation task. The exits of
the maze are indicated by boxes with a cross. Walls of glass
are identified by solid lines. The agent is depicted at the
center of the figure. Each one of the four possible moves is
represented by an arrow, the length of which corresponds
to the resulting move. The sensors return a picture that
corresponds to the dashed portion of the image.

Figure 3. The resulting deterministic image-to-action map-
ping π∗ = argmaxa∈A Q∗

k(s, a), sampled at regularly-
spaced points. It manages to choose the correct action
at each location.

(a) (b)

Figure 4. (a) The optimal value function, when the agent
has direct access to its (x, y) position in the maze and when
the set of possible locations is discretized into a 50×50 grid.
The brighter the location, the greater its value. (b) The
optimal value function obtained by RLVC.

cretization of the maze when the agent knows its (x, y)
position. For example, a reasonably sized 20× 20 grid
leads to 400 perceptual classes.

The optimal, deterministic image-to-action mapping
that results from the last obtained image classifier Ck
is shown in Figure 3. In RL, it is generally instruc-
tive to study the optimal value function V ∗(s) of each
state, that corresponds to the expected discounted re-
turn when the agent always chooses the optimal ac-
tion in each state, i.e. V ∗(s) = maxa∈A Q∗(s, a).
Figure 4 compares the optimal value function of the
discretized problem with the one obtained through
RLVC. The similarity between the two pictures in-
dicates the soundness of our approach. Importantly,
RLVC operates with neither pre-treatment, nor human
intervention. The agent is initially not aware of which
visual features are important for its task. Moreover,
the interest of selecting descriptors is clear in this ap-
plication: A direct, tabular representation of the Q
function considering all the Boolean combinations of
features would have 22298 × 4 cells.

The behavior of RLVC on real-word images has
also been investigated. The navigation rules were
kept identical, but the tapestry was replaced by a
panoramic photography of 3041× 384 pixels of a sub-
way station, as depicted in Figure 5. RLVC took 101
iterations to compute the mapping at the right of Fig-
ure 5. The computation time was 159 minutes on a
2.4GHz Pentium IV using databases of 10,000 interac-
tions. 144 distinct visual features were selected among
a set of 3739 possible ones, generating a set of 149
visual classes. Here again, the resulting classifier is
fine enough to obtain a nearly optimal image-to-action
mapping for the task. Our framework therefore seems
applicable to realistic Computer Vision applications.

Interactive Learning of Mappings from Visual Percepts to Actions

(a) (b)

Figure 5. (a) A navigation task with a real-world image,
using the same conventions than Figure 2. (b) The de-
terministic image-to-action mapping computed by RLVC.

5. Related Work

The idea of building a decision tree that tests the pres-
ence of Boolean features to partition a large state space
into a piecewise constant value function goes back to
the G Algorithm (Chapman & Kaelbling, 1991). Mc-
Callum’s U Tree algorithm builds upon this idea by
combining this so-called “selective attention” mech-
anism with a short-term memory that enables the
learning agent to deal with partially observable en-
vironments (McCallum, 1996). Decision trees have
also been used to deal with continuous input spaces
in the context of Continuous U Tree (Uther & Veloso,
1998) and Variable Resolution Grids (Munos & Moore,
2002). However, our work appears to be the first to re-
late Reinforcement Learning with the local-appearance
paradigm in Computer Vision. The use of visual fea-
tures in fact appears to be a natural and powerful tool
for solving visual, reactive tasks.

A large number of criteria for deciding the presence of
aliasing have been proposed in the literature (White-
head & Ballard, 1991; Chrisman, 1992; McCallum,
1996; Munos & Moore, 2002). The aliasing criterion
used in RLVC is defined independently of any fixed RL
algorithm, and is very close to that used by Continuous
U Tree (Uther & Veloso, 1998), with the major excep-
tion that RLVC deals with Boolean features, whereas
Continuous U Tree works in a continuous input space.

6. Conclusions

We have introduced Reinforcement Learning of Visual
Classes (RLVC). RLVC is designed to learn mappings
that directly connect visual stimuli to output actions
that are optimal for the surrounding environment. The
learning process is closed-loop and flexible. It consists
in taking lessons from interactions with the environ-
ment, which is similar to the way living beings learn
to solve everyday tasks. RLVC focuses the attention
of an embedded Reinforcement Learning algorithm on
highly informative and robust parts of the inputs by
testing the presence or absence of local descriptors at
the interest points of the input images.

The relevant visual features are incrementally selected
in a sequence of attempts to remove perceptual alias-
ing. Importantly, this selection is task-driven: Differ-
ent tasks will not necessarily lead to the selection of
the same subset of features. This is similar to human
visual learning, for which there is strong evidence that
new visual classes are learned when the task requires
it (Schyns & Rodet, 1997). In this sense, the paradigm
of RLVC can also be motivated from a neuropsycholog-
ical point of view, and not only as an ad-hoc machine

Interactive Learning of Mappings from Visual Percepts to Actions

learning algorithm.

The area of applications is wide, since nowadays
robotic agents are often equipped with CCD sensors.
Our long-term goal would be to construct a robotic
system that autonomously learns to structure its vi-
sual system to solve a reactive task, such as grasping
objects (Coelho et al., 2001). RLVC could also be po-
tentially be applied to Human-Computer Interaction,
as the actions need not be physical actions.

However, many questions are still open. For example,
it is unclear how RLVC could be applied on continu-
ous action spaces, which is required for the example
of grasping. It would also be interesting to add post-
pruning operations to get rid of selected features that
subsequently prove useless for the task, and that gen-
erate overfitting effects. Finally, the efficacy of RLVC
clearly depends on the discriminative power of the vi-
sual features. If this power is insufficient, the algo-
rithm will not be able to completely remove the alias-
ing, which will produce a sub-optimal control law. For
future research, we therefore suggest the combination
of RLVC with techniques for disambiguating between
aliased percepts using a short-term memory (McCal-
lum, 1996), or for building higher-level geometrical
combinations of visual features that are more robust
to noise (Piater, 2001; Scalzo & Piater, 2005).

References

Bellman, R. (1957). Dynamic programming. Princeton
University Press.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic
programming. Athena Scientific.

Chapman, D., & Kaelbling, L. (1991). Input gener-
alization in delayed reinforcement learning: An al-
gorithm and performance comparisons. Proc. of the
12th International Joint Conference on Artificial In-
telligence (IJCAI) (pp. 726–731). Sydney.

Chrisman, L. (1992). Reinforcement learning with
perceptual aliasing: The perceptual distinctions ap-
proach. National Conference on Artificial Intelli-
gence (pp. 183–188).

Coelho, J., Piater, J., & Grupen, R. (2001). Develop-
ing haptic and visual perceptual categories for reach-
ing and grasping with a humanoid robot. Robotics
and Autonomous Systems, 37, 195–218.

Gibson, E., & Spelke, E. (1983). The development of
perception. Handbook of child psychology vol. iii:
Cognitive development, chapter 1, 2–76. Wiley.

Gouet, V., & Boujemaa, N. (2001). Object-based
queries using color points of interest. IEEE Work-

shop on Content-Based Access of Image and Video
Libraries (pp. 30–36). Kauai (HI, USA).

Lowe, D. (1999). Object recognition from local scale-
invariant features. International Conference on
Computer Vision (pp. 1150–1157). Corfu, Greece.

McCallum, R. (1996). Reinforcement learning with se-
lective perception and hidden state. Doctoral disser-
tation, University of Rochester, New York.

Mikolajczyk, K., & Schmid, C. (2003). A performance
evaluation of local descriptors. IEEE Conference on
Computer Vision and Pattern Recognition (pp. 257–
263). Madison (WI, USA).

Munos, R., & Moore, A. (2002). Variable resolution
discretization in optimal control. Machine Learning,
49, 291–323.

Piater, J. (2001). Visual feature learning. Doctoral
dissertation, University of Massachusetts, Computer
Science Department, Amherst (MA, USA).

Quinlan, J. (1993). C4.5: Programs for machine learn-
ing. Morgan Kaufmann Publishers Inc.

Scalzo, F., & Piater, J. (2005). Task-driven learning of
spatial combinations of visual features. Proc. of the
IEEE Workshop on Learning in Computer Vision
and Pattern Recognition. San Diego (CA, USA).

Schmid, C., & Mohr, R. (1997). Local greyvalue in-
variants for image retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, 530–
535.

Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evalu-
ation of interest point detectors. International Jour-
nal of Computer Vision, 37, 151–172.

Schyns, P., & Rodet, L. (1997). Categorization creates
functional features. Journ. of Experimental Psychol-
ogy: Learning, Memory and Cognition, 23, 681–696.

Singh, S., Jaakkola, T., & Jordan, M. (1995). Rein-
forcement learning with soft state aggregation. Ad-
vances in Neural Information Processing Systems
(pp. 361–368). MIT Press.

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing, an introduction. MIT Press.

Uther, W. T. B., & Veloso, M. M. (1998). Tree based
discretization for continuous state space reinforce-
ment learning. Proc. of the 15th National Con-
ference on Artificial Intelligence (AAAI) (pp. 769–
774). Madison (WI, USA).

Watkins, C. (1989). Learning from delayed rewards.
Doctoral dissertation, King’s College, Cambridge.

Whitehead, S., & Ballard, D. (1991). Learning to per-
ceive and act by trial and error. Machine Learning,
7, 45–83.

