Task-Driven Learning of Spatial Combinations of Visual Features

Sébastien Jodogne®, Fabien Scalzo and Justus H. Piater
Institut Montefiore (B28), Université de Licge
B-4000 Liege, Belgique
{S.Jodogne, FScalzo,Justus.Piater}e@ULg.ac.be

Abstract

Solving a visual, interactive task can often be thought of
as building a mapping from visual stimuli to appropriate
actions. Clearly, the extracted visual characteristics that
index into the repertoire of actions must be sufficiently rich
to distinguish situations that demand distinct actions. Spa-
tial combinations of local features permit, in principle, the
construction of features at various levels of discriminative
power. We present an algorithm for selecting relevant spa-
tial combinations of visual features by exercising a given
task in a closed-loop learning process based on Reinforce-
ment Learning. The algorithm operates by progressively
splitting the perceptual space into distinct regions. When-
ever the agent detects perceptual aliasing of distinct world
states, it constructs a spatial combination of visual features
that disambiguates the aliased states. We demonstrate the
efficacy of our algorithm on a version of the classical “Car
on the Hill” control problem where position and velocity
are presented to the agent visually, in a way that the task is
unsolvable using individual point features.

1. Introduction

Strong neuropsychological evidence suggests that human
beings learn to extract useful information from visual data
in an interactive fashion, without any external supervi-
sor [5]. By evaluating the consequence of our actions on
the environment, we learn to pay attention to visual cues
that are behaviorally important for solving the task. This
process is certainly task-driven, since different tasks do not
necessarily need to make the same distinctions [17]. This
way, as we interact with the outside world, we gain more
and more expertise on our tasks [19].

Reinforcement Learning (RL) is a successful approach
for modeling the behavior of an artificial agent that learns
how to perform its task through its interactions with the en-
vironment [2, 18]. In RL, the agent learns to connect its
sensory inputs to the appropriate actions. It is never told
what action it should take; rather, when it does a good or a

* Aspirant — Fonds National de la Recherche Scientifique Belge (FNRS)

0-7695-2372-2/05/$20.00 (c) 2005 IEEE

percepts reinforcements

Image Classifier Reinforcement Learning

actions

detected visual class

aliased visual class

Figure 1: The information flow in Reinforcement Learning
of Visual Classes.

bad action, it only receives a reward or a punishment, the re-
inforcement signal. Schematically, RL lies between super-
vised learning (where an external teacher gives the correct
action to the agent) and unsupervised learning (in which no
clue about the goodness of the action is given). Unfortu-
nately, RL is highly sensitive to the number of distinct per-
cepts as well as to the noise that results from the sensing
process. This makes RL inapplicable for the direct closed-
loop learning of image-to-action mappings.

We have recently proposed a new RL paradigm, called
Reinforcement Learning of Visual Classes (RLVC) [8], that
makes such a learning possible. In RLVC, an image clas-
sifier is introduced in front of a classical RL algorithm.
This classifier partitions the perceptual space into a finite
set of distinct regions according to the local-appearance
paradigm, by focusing the attention of the agent on highly
distinctive local descriptors located at interest points of the
visual stimuli [15]. The detected class number is given as
input to the embedded RL algorithm, as shown in Figure 1.

Initially, the classifier maps all the possible percepts to
the same perceptual class. Of course, this introduces per-
ceptual aliasing [10, 21], since, in general, two states re-
quiring different reactions are merged into this single class.
Whenever the agent identifies perceptual aliasing of distinct
world states, it dynamically selects a local-appearance fea-
ture that disambiguates the aliased states. The selected fea-
ture is used to refine the classifier. When no further aliasing
is detected, this iterative process is stopped, and the result-
ing image classifier is used to control the system. Thus,
RLVC can be thought of as performing an adaptive dis-
cretization of the perceptual space.

The efficacy of RLVC clearly depends on the discrimi-
native power of the visual features. If their power is insuf-
ficient, the algorithm will not be able to remove completely
the aliasing, which will produce a sub-optimal control law.
Practical experiments on simulated visual navigation tasks
have exhibited this deficiency, as soon as the number of
detected visual features is reduced or as features are made
more similar by using a less sensitive metric.

Now, most objects encountered in the world are com-
posed of a number of distinct constituent parts (e.g., a face
contains a nose and two eyes, a phone possesses a keypad).
These parts are themselves recursively composed of other
subparts (e.g., an eye contains an iris and eyelashes, a key-
pad is composed of buttons). Such a hierarchical physical
structure certainly imposes strong constraints on the spatial
disposition of the visual features.

In this paper, we show how highly informative spa-
tial combinations of visual features can be iteratively con-
structed using only reinforcement feedback. Our algorithms
are general, since they can be applied to any visual control
problem that can be defined in the RL framework. This re-
sult is promising for it permits the construction of features at
increasingly higher levels of discriminative power, enabling
us to tackle visual tasks that are unsolvable using individ-
ual point features alone. To the best of our knowledge, this
paper appears to be the very first attempt to build visual fea-
ture hierarchies in a closed-loop, interactive and task-driven
learning process.

2. Reinforcement Learning

In RL, the environment is traditionally modeled as a Markov
Decision Process (MDP). A MDP is a tuple (S, A,7,R),
where S is a finite set of states, A is a finite set of actions, T
is a probabilistic transition function from S x A to S, and
R is a reinforcement function from S x A to R. A MDP
obeys the following discrete-time dynamics: If at time ¢,
the agent takes the action a; while the environment lies in
a state s;, the agent perceives a numerical reinforcement
ri41 = R(st, ar), then reaches some state s;11 with proba-
blllty T(St, at, St+1).

In general, the agent does not have a direct access to the
state s, it lies in, neither to the state s, it reaches. Rather,
it perceives the current and the next state through its sen-
sors. Let us define the perceptual space P as the set of
possible percepts the sensors can return. In visual tasks,
P is a set of images. So, from the point of view of the
agent, an interaction with the system is defined as a quadru-
ple (pt, s, i1, prya)-

If each percept can only be generated by one state, the
perceptual space is said fully observable, and the agent is
able to distinguish between the states of the environment
using only its sensors. Otherwise, the perceptual space is

called partially observable. Throughout this paper, we will
only consider fully observable perceptual spaces. This con-
trasts our scenario from established work on Partially Ob-
servable Markov Decision Processes (POMDPs) [9].

A percept-to-action mapping is a fixed probabilistic
function 7 : P — A from the percepts to the actions.
A percept-to-action mapping tells the agent the probabil-
ity with which it should choose an action when faced with
some percept. In RL terminology, such a mapping is called
a stationary Markovian control policy.

For an infinite sequence of interactions starting in a state
st, the discounted return is:

Ri = 'rivita, ()
=0

where v € [0, 1] is the discount factor that gives the current
value of the future reinforcements. The Markov Decision
Problem for a given MDP is to find an optimal percept-to-
action mapping maximizing the expected discounted return.

MDPs can be solved using Dynamic Programming (DP).
Let us call Q7(s,a) the function giving for each state
s € S and each action a € A the expected discounted
return obtained by starting from state s, taking action
a, and thereafter following the mapping m: Q7(s,a) =
E™{R; | st = s, ax = a}, where E” denotes the expected
value if the agent follows the mapping 7. Let us also define
the H transform from (functions to () functions as:

(HQ)(s,0) = R(s,) +7 3 T(s,a,5) max Q(s',),

s'esS
(2)
forall s € S and a € A. All the optimal mappings for a
given MDP share the same () function, denoted QQ*, that al-
ways exists and that satisfies Bellman’s so-called optimality
equation [1]:
HQ" = Q" (3)
Once Q* is known, an optimal deterministic percept-to-
action mapping 7* is easily derived by letting 7*(s) =
argmax,c 4 Q*(s,a) for each s € S. Hence, DP reduces
the Markov Decision Problem to the solution of the non-
linear system of Equations (3). However, the direct solu-
tion is seldom used in practice, in favor of incremental al-
gorithms such as Value Iteration [2].

Reinforcement Learning (RL) [2] is a set of algorithmic
methods for solving Markov Decision Problems when the
underlying MDP is unknown. The input of RL algorithms
is basically a sequence of interactions (p;, at, ¢41, De+1)
of the agent with its environment. The most popular RL
algorithm is certainly @) Learning [20].

3. Dynamic Selection of Features

In this section, we give a short description of the Reinforce-
ment Learning of Visual Classes (RLVC) algorithm. We

invite the interested reader to refer to our previous paper for
a more thorough discussion [8]. As stated in the Introduc-
tion, RLVC iteratively refines an image classifier by suc-
cessively selecting new visual features. After £ refinement
steps, the classifier, which will be denoted Cy,, partitions the
visual perceptual space P into a finite number my, of visual
classes {VF,... ,V}E }. Cj is a binary decision tree, each
internal node of which tests the presence of a given visual
feature, and each leaf of which corresponds to a visual class.
Here is the outline of the algorithm:

Algorithm 1 RLVC General Structure

I: k0

22 my «— 1

3: Cy, is a binary decision tree with only one leaf

4: repeat

5. Collect N interactions (ps, as, 741, Pry1)

6: Apply an arbitrary RL algorithm to obtain @}
7 Ck+1 — Cp,
g
9

foralli e {1,...,m;} do

if aliased(Vik) then
10: v« select(V}F)
11: if v #1 then
12: In Cy 41, replace the leaf corresponding to V¥

by an internal node that tests the presence of
v, and that leads to two new leaves corre-

sponding to visual classes V;""! and Vrﬁj}rl
13: mg <— mp + 1 ’
14: end if
15: end if
16: end for
17: k—k+1

18: until Cx, = Ci11
19: Control the system with the image-to-action mapping
7* defined as 7* (p) = argmax,c 4 Qf(p,a) forall p

In order to turn this learning structure into a working al-
gorithm, we still have to describe how to detect aliasing and
how to select a visual feature that removes this aliasing. It
is important to notice that ();; depends on the image classi-
fier Cj, through which it was computed. In the absence of
aliasing, the agent could act optimally, and Cj, would corre-
spond to *, by Bellman’s theorem that states the unique-
ness of the optimal () function. By Equation (3), the matrix
By, = HQj, — Qy, is therefore a measure of the aliasing in-
duced by the image classifier Cy. In RL terminology, By, is
known as Bellman’s residual of the function Q},. The basic
idea behind RLVC is to refine the visual classes that have a
non-zero Bellman’s residual.

The underlying MDP, and hence the H transform, are
generally unknown in the RL framework. It is there-
fore impossible for the agent to compute Bellman’s resid-
uals directly. However, if the transition function 7 of

the MDP is deterministic, it is still possible to compute
the value of By(p,a) by acquiring a single interaction
(pt,ag,re41,pe41) such that pp = p and a; = a. Using
Equation (2), we get:

Bk(pv (],) = HQZ(pv (l) - QZ(paa)

= R(pa a) + aé Z T(pv a’apl) (Ill}gfq(QZ(p/a al) - QZ(pv (l)
p'epP

= 7oy +ymax Qi(pisr1,a") — Qi(pr,ar). (4

According to the previous discussion, a non-zero By (p;, a;)
for some time stamp ¢ indicates the presence of aliasing in
the visual class Cy(p;) with respect to the action a;. This
leads us to the following algorithm for detecting aliasing:

Algorithm 2 Aliasing Criterion: aliased(V}*)

1: foralla € Ado
2. for all ¢ such that C,(p;) = V* and a; = a do
3: Compute By (py, a;) through Equation (4)
4: ika(pt,at) # 0 then
5
6
7

return true
end if
end for
8: end for
9: return false

Once aliasing has been detected in some visual class Vik,
we are interested in discovering a visual feature that con-
tributes to the removal of this aliasing, i.e. that best explains
the variations in Bellman’s residuals. Ideally, such a feature
would split the percepts classified as V¥ in the same way as
a threshold on the residuals. Of course, since the transition
function is assumed deterministic, such variations can also
come from the non-deterministic nature of the environment.
Therefore, for each selected visual feature, a x2 hypothesis
test is used to decide whether the split it implies is signifi-
cantly different from a random spit. This technique is quite
close to the construction of decision trees with pruning [14],
and is summarized in Algorithm 3.

4. Learning Spatial Relationships

As motivated in the Introduction, we propose to extend
RLVC by constructing a hierarchy of spatial arrangements
of individual point features. This structure is built simulta-
neously with the image classifier. As soon as no sufficiently
informative visual feature can be extracted, the algorithm
tries to combine two visual features in order to construct a
higher level of abstraction, which is hopefully more distinc-
tive and more robust to noise. Our method subsumes the
co-existence of two different kinds of visual features:

Algorithm 3 Feature Selection: select(Vik)

1 v* —1L {Best feature found so far}

2. 8% «— —oo {Information-theoretic score of v*}
3: foralla € Ado

kA {)

5 F—{}

6: for all ¢ such that C(p;) = V¥ and a; = a do
7

8

9

A — A U {Bk(pt, at)}
F « FU{v | vis afeature exhibited by p; } !

end for
10: for all cutpoints ¢ in the sequence A of residuals do
11 F' — F {Used when combining features}
12: for all visual feature v € F’ do
13: s «— the information gain provided by v on the
partition induced by ¢
14: if s > s™ and the X2 test succeeds then
15: v —v
16: s — s
17: end if
18: end for
19: end for
20: end for

21: return v*

Primitive Features: They correspond to the individual
point features, i.e. to the local-appearance descriptors.
They are simply vectors of reals describing the appear-
ance of the neighborhood around interest points of the
images. Our algorithms are independent of the choice
of the interest point detector [16] and of the local de-
scription technique [11].

Composite Features: They consist of spatial combina-
tions of lower-level visual features. There is no a priori
bound on the maximal height of the hierarchy. There-
fore, a composite feature can be combined with a prim-
itive one, or with a composite one.

4.1. Detection of Visual Features

A natural way to represent such a hierarchy is to use a di-
rected acyclic graph G = (V, E), in which each vertex
v € V corresponds to a visual feature, and in which each
edge (v,v") € E models the fact that v’ is a part of the
composite feature v. Thus, G must be binary, i.e. any ver-
tex should have either no child, or exactly two children. The
set Vp of the leaves of G corresponds to the set of primitive
features, while the set Vi of its internal vertices represents
the set of composite features.

'Note that at Step 8 of the algorithm, it is implicitly assumed that it
is possible to compare the features between them, i.e. that a metric (like
Euclidean or Mahalanobis’) has been defined on the set of features.

Each leaf vertex vp € Vp is annotated with a local de-
scriptor D(vp). Similarly, each internal vertex v € Vi is
annotated with constraints on the relative position between
its parts. In this work, we consider only constraints on
the distances between the constituent visual features of the
composite features, and we assume that they should be dis-
tributed according to some Gaussian law G(u, o) of mean
and standard deviation o. More precisely, let vo be a com-
posite feature, the parts of which are v; and vs. In order to
trigger the detection of v¢ in an image p, there should be an
occurrence of v1 and an occurrence of vs in p such that their
relative Euclidean distance has a sufficient likelihood 7 of
being generated by a Gaussian of mean 1i(v¢) and standard
deviation o(v¢). To ensure symmetry, the location of the
composite feature is then taken as the mid point between
the locations of v1 and vs.

The occurrences of a visual feature v in a percept p can
be found using recursive Algorithm 4. At Step 8 of Algo-
rithm 3, the composite features that belong to the current hi-
erarchy and that appear in p; (i.e., such that occurrences(v,
p) # ¢) must be added to F.

Algorithm 4 Detecting Features: occurrences(v, p)
1: if v is primitive then
2: return {(z,y) | (x,y) is an interest point of p, the
local descriptor of which corresponds to D(v)}
3: else
4 0<{}
5: 01 < occurrences(subfeature; (v), p
6: Og « occurrences(subfeatures(v), p
7
8
9

)
)
for all (x1,y1) € Oy and (22,y2) € Oz do
d— /(2 —21)>+ (y2 — y1)?
if G(d — p(v),o(v)) > 7 then
10: O — OU{((z1 +2)/2, (y1 + y2)/2)}
11: end if
12: end for
13: return O
14: end if

4.2. Generation of Composite Features

In this section, we describe how composite features are gen-
erated. The general idea behind our algorithm is to accu-
mulate statistical evidence from the relative positions of the
detected visual features in order to find “conspicuous co-
incidences” of co-occurrences of visual features. The gen-
eration of composite features takes place at Step 11 of Al-
gorithm 3. Rather than iterating only over the visual fea-
tures in I, we add the possibility of enriching F' with spatial
combinations of two features from F'.

At Step 11 of Algorithm 3, let I be the set of visual per-
cepts that are mapped to the considered visual class V;*, and

that are associated with the considered action a:
I= {Pt | Ck(Pt) = ‘/;k and a; = a}.

Each cutpoint ¢ € R in the sequence of Bellman’s residuals
A induces a binary partition of the set of images I: Those
images p; for which the residuals are above ¢, and the oth-
ers. Thus, I = {I, I}, where:

e Iy ={pt € I| Bk(pt,a) < c},and
° IQ = {pt cl | Bk(pt,a) > C}.

As stated at the end of Section 3, we wish to extract a com-
posite feature that splits the set [into the sets /; and /5.

4.2.1 Identifying Spatial Relations

To achieve this goal, we first identify the pairs of visual fea-
tures the occurrences of which are highly correlated within
the set of images I; or 5. This simply amounts to counting
the number of co-occurrences for each pair of features in
F, then only keeping the pairs the corresponding count of
which exceeds a fixed threshold.

Let now v; and vy be two features that are highly cor-
related in the set I; (with¢ = 1 or ¢ = 2). A search for
a meaningful spatial relationship between v; and v is then
carried out in the images of I; that contain occurrences of
both v and vy. For each such co-occurrence, we accumu-
late in a set A the distances between the corresponding oc-
currences of v; and vy. Finally, a clustering algorithm is
applied on the distribution A in order to detect typical dis-
tances between v; and vy. For the purpose of our experi-
ments, we have used hierarchical clustering [7]. For each
cluster, a Gaussian is fitted by estimating a mean value
and a standard deviation o. Then, a new composite feature
ve is introduced in F”, that has v and vy as parts and such
that u(ve) = pand o(ve) = o.

In summary, we replace Step 11 of Algorithm 3 by a call
to Algorithm 5. It is worth pointing out that, clearly, the fea-
ture combination stage is liable to combinatorial explosion,
since O(N?) clusterings are necessary if there are NV visual
features in the set of images /. Future work will address
this problem.

4.2.2 Feature Validation

Algorithm 5 can generate several composite features for a
given visual class Vik. However, at the end of Algorithm 3,
at most one composite feature is to be kept.

It is important to notice that the performance of the clus-
tering method is not critical for our purpose. Indeed, ir-
relevant spatial combinations are automatically discarded,
thanks to the information-theoretic checks of the discrimi-
native power of the constructed feature at Steps 13 and 14
of Algorithm 3. In fact, the reinforcement signal helps to

Algorithm 5 Generation of Composite Features

1: I {p:|Cr(p:) = VF and a; = a}

2 I —{p: € I'| Br(pt,a) < c}

3. Iy — {pt € I | Bi(ps,a) > ¢}

4: foralli € {1,2} do

5 for all (vy,v2) € F x F do

6 if enough co-occurrences of v1 and v, in I; then
7: A — {}
3
9

forallp € I, do
for all occurrences (x1,y1) of v1 in p do

10 for all occurrences (2, y2) of v9 in p do
1 A= AU{y/(z2 —21)% + (12 — 11)?}
12: end for

13: end for

14: end for

15: Apply a clustering algorithm on A

16: for each cluster C' = {dy,...d,,} in A do

17: p = mean(C)

18: o = stddev(C)

19: Add to F’ a composite feature vc composed

of v; and v9, annotated with a mean p and a
standard deviation o

20: end for
21: end if

22: end for

23: end for

direct the search for a good feature, which is an advantage
over unsupervised methods of building feature hierarchies.

5. Visual “Car on the Hill”’ Problem

5.1. General Description

In this section, we demonstrate the efficacy of our algo-
rithms on a version of the classical “Car on the Hill” control
problem [12], where the position and velocity information
is presented to the agent visually.

In this episodic task, a car (modeled by a mass point)
is riding without friction on a hill, the shape of which is
defined by the function:

if p <0,

2
Hp) =4 7 "2
p/+/1+5p? ifp>0.

The goal of the agent is to reach as fast as possible the top
of the hill, i.e. a location such that p > 1. At the top of the
hill, the agent obtains a reward of 100. The car can thrust
left or right with an acceleration of 4 Newtons. However,
because of gravity, this acceleration is insufficient for the
agent to reach the top of the hill by always thrusting toward
the right. Rather, the agent has to go left for while, hence
acquiring potential energy by going up the left side of the

H(p)
0.4 N
u
0.24
myg
—1 —.5 5 1
p
1—0.2

Figure 2: The “Car on the Hill” control problem.

hill, before thrusting rightward. There are two more con-
straints: The agent is not allowed to reach locations such
that p < —1, and a velocity greater than 3 in absolute value
leads to the destruction of the car.

5.2. Formal Definition of the Task

Formally, the set of possible actions is A = {—4,4}, while
the state space is S = {(p,s) | [p| < 1 A|s| < 3}. The
system has the following continuous-time dynamics:

p = s
gH'(p)

a
MT+H(p)? 1+H@)?

where a € A is the thrust acceleration, H'(p) is the first
derivative of H(p), M = 1 is the mass of the car, and g =
9.81 is the acceleration due to gravity. These continuous-
time dynamics are approximated by the following discrete-
time state update rule:

Di+1 = Di+hpe+ h2$t/2
St41 = D¢+ hsy,

where h = 0.1 is the integration time step. The reinforce-
ment signal is defined through this expression:

100 ifpyg > 1A [spp1| <3,
R((pr, 5t),) _{ 0 othet:;rwise. .

In our setup, the discount factor v was set to 0.75.

5.3. Inputs of the Agent

In previous work [4, 12], the agent was always assumed to
have direct access to a numerical measure of its position and

2This definition is actually a mix of two coexistent formulations of the
“Car on the Hill” task [4, 12]. The major differences with the initial formu-
lation of the problem [12] is that the set of possible actions is discrete, and
that the goal is at the top of the hill (rather than on a given area of the hill),
just like in the definition from Ernst et al. [4]. To ensure the existence of an
interesting solution, the velocity is allowed to remain less than 3 (instead
of 2), and the integration time step is set to A = 0.1 (instead of 0.01).

velocity. In our experimental setup, the agent is provided
with two cameras, one looking at the ground underneath,
the second at a velocity gauge. This way, the agent cannot
directly know its current position and velocity, but has to
suitably interpret its visual inputs to derive them.

Some examples of the pictures the sensors can return are
presented in Figure 3. The ground is carpeted with a color
image of 1280 x 128 pixels that is a montage of pictures
from the COIL-100 database [13]. It is very important to
notice that using individual point features is insufficient for
solving this task, since the set of features in the pictures of
the velocity gauge are always the same. To know its veloc-
ity, the agent has to generate composite features sensitive
to the distance of the primitive features on the cursor with
respect to the primitive features on the digits.

5.4. Results

In this experimental setup, we used color differential invari-
ants as primitive features [6]. Among all the possible visual
inputs (both for the position and the velocity sensors), there
were 88 different primitive features. The entire image of the
ground includes 142 interest points, whereas the images of
the velocity gauge include about 20 interest points.

The output of RLVC is a decision tree with 157 leaves,
thus defining 157 visual classes. Each internal node of this
tree tests the presence of one visual feature, taken from a
set of 91 highly discriminant features selected by RLVC.
This implies that a given visual feature can be tested in more
than one node, and that RLVC makes distinct visual features
work together to delimit regions in the state space corre-
sponding to different values of @*. Among the 91 selected
visual features, there were 56 primitive and 26 composite
features. Two examples of composites features that were
selected by RLVC are depicted in Figure 5. The computa-
tion stopped after £ = 38 refinement steps in Algorithm 1.

To show the efficacy of our method, we compare its per-
formance with the scenario in which the agent has a direct
perception of its current (p, s) state. In the latter scenario,
the state space was discretized in a grid of 13 x 13 cells. The
number 13 was chosen since it corresponds to the square
root of 157, the number of visual classes that were produced
by RLVC. This way, RL is provided an equivalent number
of perceptual classes in the two scenarios.

In RL, it is generally instructive to study the opti-
mal value function V*((p,s)) of each state (p,s) € S,
that corresponds to the expected discounted return when
the agent starts from the state (p,s), and then always
chooses the optimal action in each state, i.e. V*((p,s)) =
maxgea Q@*((p, s), a). Figure 4 compares the optimal value
function of the direct-perception problem with the one ob-
tained through RLVC. The similarity between the two pic-
tures indicates the soundness of our approach.

We have also evaluated the performance of the optimal

Figure 3: (a) Visual percepts corresponding to pictures of
the velocity gauge when s = —3, s = 0.5 and s = 1.5. (b)
Visual percepts returned by the position sensor. The region
framed with a white rectangle corresponds to the portion of
the ground that is returned by the sensor when p = 0.1.
This portion slides back and forth as the agent moves.

3

Velocity

2 0 1
(a) Position
3

Velocity

0

(b) Position

Figure 4: (a) The optimal value function, when the agent
has a direct access to its current (p, s) state, and when the
input space is discretized in a 13 x 13 grid. The brighter
the location, the greater its value. (b) The value function
obtained by RLVC.

Figure 5: Two composite features that were generated, in
green. The primitive features of which they are composed
are marked in yellow. The first feature triggers for velocities
around 0, whereas the second triggers around —2.

T T
—-©- RLVC
= = Direct perception (13x13 grid)

%)

Missed goal (

0 5 10 15 20 25 30 35 40

Iterations (k)

Figure 6: Evolution of the number of times the goal was
missed over the iterations of RLVC.

T T
—-©- RLVC
= = Direct perception (13x13 grid)

Mean length of an interaction

5 10 15 20 25 30 35 40

Iterations (k)

Figure 7: Evolution of the mean lengths of the successful
trials over the iterations of RLVC.

image-to-action mapping 7* = argmax,c, Q*((p,s),a)
obtained through RLVC. For this purpose, the agent was
placed randomly on the hill, with an initial velocity of 0.
Then, it used the mapping 7* to choose an action, until it
reached a final state. A set of 10,000 such trials were car-
ried out at each step k& of Algorithm 3. Figure 6 compares
the proportion of trials that missed the goal (either because
of leaving the hill on the left, or because of acquiring a too
high velocity) in RLVC and in the direct-perception prob-
lem. When k became greater than 27, the proportion of
missed trials was always smaller in RLVC than in the direct-
perception problem. This advantage in favor of RLVC is
due to the adaptive nature of its discretization. Figure 7
compares the mean lengths of the successful trials. The
mean length of RLVC trials clearly converges to that of the
direct-perception trials, while staying slightly larger.

To conclude, RLVC achieves a performance close to the
direct-perception scenario. However, the mapping built by
RLVC directly links visual percepts to the appropriate ac-
tions, without considering explicitly the physical variables.

6. Conclusions

We have presented new algorithms that allow the closed-
loop, reinforcement-driven generation of a hierarchy of
visual features, while simultaneously learning an optimal
image-to-action mapping. Highly distinctive spatial ar-
rangements of visual features are detected in a sequence
of attempts to iteratively remove perceptual aliasing. Our
algorithms are flexible and defined independently of any
given task, hence their potential field of application is broad.
They permit the solution of visual control problems in
which the use of individual point features alone would pro-
duce sub-optimal control policies.

Future directions include the demonstration of the ap-
plicability of our algorithms in a robotic application, such
as grasping objects by combining visual and haptic feed-
back [3]. This necessitates the extension of our techniques
to continuous action spaces, for which no fully satisfactory
solutions exist to date. Secondly, spatial arrangements do
not currently take into consideration the relative angles be-
tween the parts of a composite feature. Doing so would
further increase the discriminative power of the composite
features, but requires non-trivial techniques for clustering
in circular domains. Finally, it would be interesting to study
the behavior of our algorithms on tasks that require the con-
struction of a hierarchy with more than two levels.

References

[1] R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

[2] D.P. Bertsekas and J.N. Tsitsiklis.
gramming. Athena Scientific, 1996.

Neuro-Dynamic Pro-

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

[15]

(16]

(171

(18]
[19]
[20]

[21]

J. Coelho, J.H. Piater, and R. Grupen. Developing haptic
and visual perceptual categories for reaching and grasping
with a humanoid robot. Robotics and Autonomous Systems,
special issue on Humanoid Robots, 37(2-3):195-218, 2001.
D. Ernst, P. Geurts, and L. Wehenkel. Iteratively extending
time horizon reinforcement learning. In Proc. of the 14th
European Conference on Machine Learning, pages 96—107,
Dubrovnik, 2003.

E.J. Gibson and E.S. Spelke. The development of percep-
tion. Handbook of Child Psychology Vol. 111: Cognitive De-
velopment, chapter 1, pages 2-76. Wiley, 4th edition, 1983.
V. Gouet and N. Boujemaa. Object-based queries using
color points of interest. In IEEE Workshop on Content-
Based Access of Image and Video Libraries, pages 30-36,
Kauai, 2001.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 31(3):264-323, 1999.

S. Jodogne and J.H. Piater. Reinforcement learning of per-
ceptual classes using () learning updates. Proc. of the 23rd
IASTED International Multi-Conference on Artificial Intel-
ligence and Applications, pages 445—450, Innsbruck, 2005.
L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence, 101(1-2):99-134, 1998.

R.A. McCallum. Reinforcement Learning with Selective
Perception and Hidden State. PhD thesis, University
of Rochester, New York, 1996.

K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, volume 2, pages 257-263,
Madison, 2003.

A. Moore and C. Atkeson. The parti-game algorithm for
variable resolution reinforcement learning in multidimen-
sional state-spaces. Machine Learning, 21, 1995.

S.A. Nene, S.K. Nayar, and H. Murase. Columbia object
image library (COIL-100). Technical Report CUCS-006-96,
Columbia University, New York, 1996.

J.R. Quinlan. The effect of noise on concept learning. In Ma-
chine Learning: An Artificial Intelligence Approach: Vol-
ume 11, pages 149-166. Kaufmann, Los Altos, 1986.

C. Schmid and R. Mohr. Local greyvalue invariants for im-
age retrieval. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):530-535, 1997.

C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of in-
terest point detectors. [International Journal of Computer
Vision, 37(2):151-172, 2000.

P.G. Schyns and L. Rodet. Categorization creates functional
features. Journal of Experimental Psychology: Learning,
Memory and Cognition, 23(3):681-696, 1997.

R.S. Sutton and A.G. Barto. Reinforcement Learning, an
Introduction. MIT Press, 1998.

M.J. Tarr and Y.D. Cheng. Learning to see faces and objects.
Trends in Cognitive Sciences, 7(1):23-30, 2003.

C.J.C.H. Watkins. Learning From Delayed Rewards. PhD
thesis, King’s College, Cambridge, 1989.

S.D. Whitehead and D.H. Ballard. Learning to perceive and
act by trial and error. Machine Learning, 7:45-83, 1991.

	Select a link below
	Return to Main Menu
	Return to Previous View

