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Abstract— We describe an embodied cognitive system based
on a three-level architecture that includes a sensorimotor layer,
a mid-level layer that stores and reasons about object-action
episodes, and a high-level symbolic planner that creates abstract
action plans to be realised and possibly further specified by the
lower levels. The system works in two modes, exploration and
plan execution, that both make use of the same architecture.
We give results of different sub-processes as well as their
interaction. In particular, we describe the generation and
execution of plans as well as a set of learning processes that
take place independently of, or in parallel with, plan execution.

I. INTRODUCTION

In this paper, we describe a cognitive system consisting of
three hierarchically nested layers: a low-level, sensorimotor
layer connecting sensory processors to motor procedures;
a mid-level layer that stores object-action episodes in the
form of Object-Action Complexes (OACs) and reasons about
memorised events; and a high-level symbolic planner that
creates abstract action plans to be realised, and possibly
further specified, by the lower levels. The cognitive system
works in two modes. In the first mode, the system explores
its environment and learns about object-action associations.
In the second mode, it constructs and performs directed
plans of actions. In both modes it is able to recover from
unexpected errors that arise through its interaction with
dynamic environments, and to learn from such events to
improve its future performance.

We introduce a software architecture and its application
in a concrete embodied system consisting of an industrial 6
degrees of freedom (DoF) robot with a two finger grasper,
haptic sensing by means of a force-torque sensor and a high
resolution stereo system in which a preliminary attention
system is realized (see Fig. 1). The system also includes
a symbolic planner, and is equipped with a memory of past
experiences that enables certain learning processes. The task
we address in this paper is a simple table cleaning scenario,

however, our proposed architecture allows for more general
tasks.

Fig. 1. Embodiment of the Cognitive System

The aim of this architecture is not only to solve certain
prescribed tasks with the best possible performance, but also
to define a set of cognitively rich processes in which the
robot is able to (i) construct a plan to solve the given task,
(ii) execute the plan in a dynamic environment, and (iii)
recognise and react to unexpected events that arise during ex-
ploration and plan execution. For (iii), in particular, the robot
can address such issues at either the robot-vision level (e.g.,
by withdrawing from collisions, see Fig. 2), the mid-level
(e.g., by reinspecting the scene at a higher resolution to gain
additional information about the worlde, see Fig. 3), or at the
planning level (e.g., by complete replanning). During all such
interactions with its environment, the robot represents its
experiences in terms of Object Action Complexes (OACs) [1]
that become stored and utilised by various learning processes



in the system.
In its early stages, this work focuses on a very limited

domain: objects become represented as 3D circles to which
grasps become associated (see Fig. 4). This limitation is
merely for development purposes and work is ongoing to ex-
tend the proposed system to arbitrary objects (see [2] and [3])
The only fundamental restriction of our proposed architecture
stems from limitations in the vision system (namely, pose
estimation of arbitrary objects [3]) and grasping modules (the
grasping device only allows up to grasp a limited range of
objects). In this paper we report on both our current progess
and proposed extension to our limited domain.

(a) (b) (c)

Fig. 2. Withdrawal after the detection of a collision. (a) Approaching the
object, (b) a collision is detected, (c) start of withdrawal action.

The paper is structured as follows: section II introduces
the system architecture, section III describes the system’s
embodiment and visual representation, section IV describes
the mid-level, and section V describes the planning level.
The relationship between our architecture and other cognitive
architectures is discussed in detail in section VI.

II. ARCHITECTURE

The architecture of our system consists of three levels:
a sensorimotor robot-vision level providing multi-sensorial
information and action options, a mid-level component at
which the robot’s past experiences in the world are stored
and made available to various learning processes in the
architecture, and a symbolic planning system that generates
plans based on the information provided by the robot-vision
and mid-level components, and which also monitors the
execution of these plans. This architecture integrates several
diverse approaches from computer science, artificial intelli-
gence, and cognitive psychology, and addresses a variety of
learning and adaptation problems at all three levels.

The robot-vision level provides visual and tactile infor-
mation to the higher levels and manages robot-level action
commands. For instance, the robot-vision level is able to
perform operations such as “grasp object B using grasp type
A”, start an explorative action such as “poking”, or shift its
visual attention to a certain location in the scene. Moreover,
it has (pre-programmed) control mechanisms that allow it
to detect unexpected events, and avoid certain consequences
that would normally lead to emergency stops and/or damage
objects or the robot itself (see Fig. 2).

In its current (preliminary) state, the mid-level is respon-
sible for storing OACs in memory, controlling access to
this information by different learning processes, and for
refining grasping reflexes and object-action models based
on the stored OACs. It is also responsible for transforming

Fig. 3. Circle detection is not successful (left) because of the small number
of feature descriptors extracted from a downsampled version of the high
resolution images. It is successful (right) when the system focuses on the
object at full resolution.

A B C D

Fig. 4. Grasp types available in the example domain. They are defined
object centric and based on the upper circle.

transient sensorial input into messages that are passed on to
the planning level.

The planning level is responsible for constructing high-
level, goal-oriented plans and for feeding these plans to the
lower system levels for execution by the robot. To do so, the
planning system maintains an abstract model of the objects,
properties, and actions available to the robot. The planner
also receives regular updates on the state of the world from
the lower levels, which it uses to monitor the success of plans
being executed, to control resensing and replanning activities
in the system, and to update its internal models.

III. EMBODIMENT AND VISUAL REPRESENTATION

This section presents the robot-vision level of the archi-
tecture. The system’s embodiment is described in section
III-A. The visual representation used for object localisation,
learning, and the generation of grasping affordances is briefly
described in section III-B. Grasp part associations used in
planning and exploration are described in section III-C.

A. Embodiment

To enable interactions with the real world, we use a robot-
vision system with the components shown in Fig. 1. The
components are:



• The workspace is observed using a 2024× 2024 pixels
high resolution camera system. In normal working mode
downsampled images of the whole scene are used, but it
is also possible to get a full resolution image of a region
of interest. The camera system is calibrated relatively
to the robot.

• A 6-DoF industrial robot is used, together with a two
fingers grasper. This enables the system to grasp objects
at different locations in the scene.

• A 6-DoF force-torque sensor mounted between robot
and grasper allows for the measurement of forces at the
wrist. It is used to detect collisions and to back off when
a collision is detected (see Fig. 2). To limit the build up
of high forces during the reaction time of the system a
foam layer was placed on the floor of the scene.

B. Representation of visual information

This work uses the hierarchical representation presented
in [4]. An example is presented in Figure 5, which shows
what kind of information is processed on the different
representation levels. At the lowest level of the hierarchy is
the image’s pixel RGB values (Fig. 5(a)). The second level
processes the results of local filtering operations (Fig. 5(b)),
that give rise to the multi-modal 2D primitives at the third
level (Fig. 5(c)). This third level processes not only the 2D
primitives, but also 2D contours (Fig. 5(d)) created using
perceptual organisation (see [5]). The last level contains
3D primitives and 3D contours (Fig. 5(e-f)) created using
stereopsis on a pair of the previous level’s representations.

C. Grasp-Part Association

Objects that share common features (parts) often afford
the same actions (e.g., an object with an handle can be
picked up by grasping it through the handle). We exploit
these common parts to initiate learning by transferring the
previous experience with one object to another.

In [6], coplanar line-segments are used to predict different
grasp types — Fig. 6 shows more recent results on this
approach. This can be either seen as a complex reflex
— used for generating ground truth for grasp learning —
or as a basic form of part-action association. The circle-
grasp relation used in the scenario described herein uses
a more complex part (the circle). Currently, the associated
grasps/part associations are predefined. However, we aim at
a learning of these associations from experience. A first step
in this direction is described in section IV-A.

Note that our grasping strategy is very much based on
3D contour information. Hence, it is complementary to other
approaches that make use of 3D shape information (see, e.g.,
[7]). For a discussion of underlying neuronal mechanisms in
the context of grasping we refer the reader to, e.g., [8].

IV. MID-LEVEL

The mid-level is responsible for a number of tasks (from
which some are not yet or only rather naively implemented).
In our system, on the mid-level the storage of information
used for additional learning processes (as well as the learning

(a)

(b) (c)

Fig. 6. Coplanar primitives can predict a grasp (see [6]). (a) Different
grasp types based on coplanar primitives (marked as red dots). (b) Example
scene. (c) The (automaticly selected) best five grasping hypotheses in the
example scene.

as such) is organised (section IV-A and section IV-B).
Also the temporal consistency of the permanently varying
information on the raw signal level which is required by
the planning level is provided (section IV-C). It is partly
motivated by the idea that perceptual events and actions are
cognitively represented and integrated in a common store [9].
Apart from organising the storage of information (sections
IV-A and IV-B) the mid-level also provides episodic pointers
to perceptually available objects (i.e., a kind of working
memory: section IV-C).

A. Refinement of Grasping Strategy

The grasping affordances associated to the parts (see
section III-C) is initially hardwired and, in case of success,
give rise to an additional object learning process that requires
physical control over the object as achieved after a successful
grasp (this is described in section IV-B). Moreover, the
grasping behaviour linked to these part affordances generates
labelled data that can be used for further learning processes:
Since for each attempted grasp success or failure can be
measured by the distance between the hand’s two fingers
after a lifting operation, a large number of training data
becomes generated.

In case of the “circle-reflex”, it is a priori unclear which
grasp type can be used for which circle radius. Fig. 7(d)
shows distribution of successes and failures for grasp type A
generated over a large number of trials. The distributions in
real and artificial scenarios are rather different (as shown in
Fig. 7(a)). This is because grasps in a real scenario might fail,
due to external reasons such as collision before the grasp,
or imprecision in the 3D circle reconstruction. Also, grasps
might be successful by accident, e.g., when a planned grasp
of type A is in reality of another type. Nevertheless, the
experiences give valuable information and can be translated
into likelihoods of success depending on the radius (see
Fig. 7(f)) that can then be used by higher level processes
to decide what grasp type should be selected. Note that
learning can also be applied in the more difficult case of
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Fig. 5. The different types of visual information processed by the hierarchy of representations (a) Original image, (b) Filtering results, (c) 2D primitives,
(d) 2D contours, (e) 3D primitives, (f) 3D contours.

the coplanarity-based grasping reflex, since success can be
measured in the very same way. This, however, requires a
much more complex learning framework (see [3]).

B. Birth of the Object
In addition to the refinement of pre-wired reflex be-

haviours, the exploration behaviour allows the proposed
system to learn a three-dimensional visual representation of
shape. In [2] we have presented an algorithm that, based
on the initial grasping reflexes and on the knowledge of the
robot’s arm motion, learn models of 3D objects’ shape.

A successful grasp on an object endows the robot with
control over this object. The system will then manipulate
the object to visually inspect it from a variety of viewpoints.
The object’s motion during this inspection phase is known
to be the same as the robot’s arm’s. This knowledge of the
object’s motion allows to infer predictions on the visual rep-
resentation extracted at later stages. Tracking objects visual
representations allows to improve the internal representation
of their shape, in three respects:
• Because only the object moves as predicted by the

robot’s arm motion, tracking of visual primitives allows
to segment the object from the rest of the scene;

• The integration in the same coordinate system of visual
information gathered from multiple viewpoints allows to
generate a representation of the object’s full 3D shape;

• Tracking aspect’s of the object representation allows to
reduce inaccuracy in the shape representation.

The result of this process is a full 3D representation of
the object shape, with an associated knowledge of the grasp
that was successful.

Fig. 8 shows the results of object learning. Once the
object’s shape is known to a satisfying level, the planner
(see section V) is informed of the new object discovery and
of the associated grasp.

Current work endeavour to use the acquired representation
for object recognition and pose estimation, therefore extend-
ing the simplified ‘circle scenario’ into a more general object
context.

Fig. 8. Birth of the Object. On the left hand side, the dots on the
image shows the predicted structures. Spurious primitives and parts of the
background are not confirmed by the image, and are shown in grey. The
confirmed predictions are shown in green. The middle shows the shape
model learned from this object. The right hand side shows the shape model
learned from tow other objects. Note that the gap in the shape models
correspond to where the robot’s hand held the objects.

C. Temporal Consistency

The information provided by the robot-vision layer is
intrinsically noisy. This leads to

• phantom objects appearing (i.e., false positives),
• objects present in the scene not being detected,
• object labels not being consistent over time.

While the first two cases are not frequent, the third case is
a constant problem. The planning layer needs accurate state
information, therefore these problems need to be corrected
before the state information is sent to the planner.

These problems become solved by matching the last know
state with the sensed information. Objects that are detected
in the sensory data that are close in position, orientation, and
radius to one object in the last known state are assumed to
be the same. This solves the object labelling problem. When
no object in the old scene can be matched to a new object,
the new object is considered wrong. Undetected objects are
treated in the same way. This part of the system is still
in a very premature mode, and future work has to address
complex issues such as object permanency [10] under occlu-
sions or accidental displacements of objects under unplanned
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Fig. 7. Grasp experiences and success distributions. (a)-(c) show the results for artificial data, while (d)-(f) show data from real experiences. (a) and (d)
show grasping experiences made for grasp type A for different radiuses while (b) and (e) show the same for grasp type B. In these diagrams the green
crosses (in the upper row) represent a successfull grasp, while the red crosses (lower row) represent failures. (c) and (f) show success probabilities for the
two grasp in discrete radius bins. These can be used as a indicator which grasp to choose for a unknown grasping situation.

contacts of objects and robot.

V. PLANNING

The high-level planning component of the system is
responsible for constructing action plans that direct the
behaviour of the robot in order to achieve a specified set of
goals. (For instance, in our example scenario a plan might
be constructed to clear all the open objects from the table.)
The planning system consists of three main parts: the high-
level domain model, the planner itself (in this case, the
PKS planner [11], [12]), and the plan execution monitor. In
particular, we utilize a state of the art planning system, and
are motivated by learning high-level domain models through
the robot’s interaction with the environment. Together, these
components are responsible for the high-level representation
and reasoning in the system, and are connected to other sys-
tems through a communication architecture which controls
the flow of information between the system components.

A. High-level domain model

The high-level domain model consists of a formal repre-
sentation of the robot’s world, described in a STRIPS-like
[13] language used as input to the planner. In particular,
the domain model specifies the objects and properties in the
world, and the actions available to the planner for directing
the robot. Currently, some parts of the domain model are
automatically induced through the robot’s experiences in the
world, and we are investigating how other aspects of this
model can be learned through machine learning techniques.

1) Objects: Objects are simply labels (strings) that denote
actual objects in the real world. (E.g., obj1 may represent a
particular red block on the table in the robot’s workspace.)
Object names do not typically change over time and always
refer to the same world-level objects. As a result, planning-
level objects also act as indices to actual real-world object
information stored at the robot and memory levels, and can
be used by all system levels to refer to an object uniquely.

2) Properties: Properties are specified by predicates and
functions that denote particular qualities of the world, robot,
and objects. High-level properties are typically quite abstract
and correspond to combinations of concepts available at the
lower levels. For instance, we define the following properties
in our example scenario:
• open(x) - object x is open,
• gripperempty - the robot’s gripper is empty,
• ingripper(x) - the robot is holding x in its gripper,
• ontable(x) - object x is on the table,
• onshelf(x) - object x is on the shelf,
• isin(x, y) - object x is stacked in object y,
• clear(x) - no object is stacked in object x,
• instack(x, y) - object x is in a stack with y at its base,
• radius(x) = y - the radius of object x is y,
• shelfspace = x - there are x empty shelf spaces.

In this case, gripperempty closely corresponds to a sensor
that detects whether the gripper can be closed without
contact, while ontable requires a conjunction of data from
the visual sensors concerning object positions. Parametrized
properties can also be instantiated by specific domain objects.
Thus, ontable(obj1) means “object obj1 is on the table” and
ingripper(obj2) means “object obj2 is in the gripper.”

3) Actions: Actions represent high-level counterparts to
some of the motor programs available at the robot level.
Unlike low-level motor programs, high-level actions are
modelled with a high degree of abstraction that incorporates
state-specific elements into their operation. For instance, the
following actions are defined in our example domain:
• graspA-table(x) - grasp x from the table using grasp A,
• graspA-stack(x) - grasp x from a stack using grasp A,
• graspB-table(x) - grasp x from the table using grasp B,
• graspC-table(x) - grasp x from the table using grasp C,
• graspD-table(x) - grasp x from the table using grasp D,
• putInto-object(x, y) - put x into an object y on the table,
• putInto-stack(x, y) - put x into y at the top of a stack,
• putAway(x) - put object x away on the shelf,



• sense-open(x) - determine whether x is open or not.
Our high-level actions do not require 3D coordinates, joint

angles, or similar real-valued parameters. Instead, they are
defined in an object-centric manner, with parameters that can
be instantiated with specific objects. Two types of actions are
described: physical actions that change the state of the world,
and sensing actions that observe the state of the world.

The physical actions in our example domain include
actions for manipulating objects in the world. The first five
actions indicate the possible grasping options and correspond
to the four types of grasps available to the robot (see Fig. 4).
Grasp A is divided into two separate actions that account for
different object configurations (i.e., an object on the table
versus an object at the top of a stack). This avoids the need
for conditional action effects in our representation. The two
putInto actions similarly model different object destinations.
The putAway action is a generic operation for moving a
grasped object to a location on the shelf.

We also define a high-level sensing action, sense-open.
This action models an operation that provides the plan-
ner with specific information about an object’s “openness”,
without intentionally changing the object’s state. At the
robot/vision level, this action will ultimately be executed as
either a physical test (e.g., poking an object to check its
concavity) or a visual test (e.g., focusing on the object at a
higher resolution). The mid-level memory is responsible for
refining sense-open actions into robot/vision operations that
are appropriate for the given object and context.

4) Learning: One of the strengths of our approach is
that it enables us to learn certain aspects of the high-level
domain. For instance, the set of domain objects is not fixed
a priori but is induced through the robot’s birth-of-an-object
process: as objects are discovered in the world, the planner
is informed as to their existence and new object labels
are assigned. Newly learned objects are incorporated into
the domain model to be used in future plan construction.
We are also investigating machine learning techniques for
learning high-level action descriptions. In particular, a kernel
perceptron learning method is being tested to learn action
effects from snapshots of world states made up of high-level
properties. Preliminary results indicate efficient training with
low average error rates (<3%) when tested on the above
example domain [14]. Although the properties in our domain
are currently fixed, we are also exploring additional learning
processes whereby new properties can be introduced into the
domain model with the help of the middle level.

B. PKS planner

High-level plans are built using PKS (“Planning with
Knowledge and Sensing”) [11], [12], a state of the art planner
that can operate with incomplete information and sensing
actions. Unlike traditional approaches to AI planning, PKS
operates at a higher “knowledge level” of abstraction, by
modelling an agent’s knowledge state. By doing so, PKS
can reason efficiently about certain types of knowledge,
and make effective use of non-propositional features, like
functions, which often arise in real-world planning scenarios.

TABLE I
EXAMPLES OF PKS ACTIONS IN THE TABLE CLEARING TASK

Action Preconditions Effects
graspA-table(x) K(clear(x)) add(Kf , ingripper(x))

K(gripperempty) add(Kf ,¬gripperempty)
K(ontable(x) add(Kf ,¬ontable(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

sense-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(ontable(x))

PKS is based on a generalization of STRIPS [13]. In
STRIPS, a single database is used to represent the planner’s
complete world state. Actions update this database in a way
that corresponds to their effects on the world. In contrast,
PKS’s representation goes beyond that of traditional STRIPS.
In PKS, the planner’s knowledge state is represented by
five databases, each of which stores a particular type of
knowledge. Actions are described in terms of the changes
they make to the databases and, thus, to the planner’s
(typically incomplete) knowledge. Table I shows two PKS
actions, graspA-table and sense-open. Here, Kf refers to a
database that models knowledge of simple facts, while Kw

is a specialized database that stores the results of sensing
actions that return binary information.

Two different types of plans can be built in PKS: linear
plans that are simply sequences of actions, and conditional
plans that contain branches resulting from the inclusion of
sensing actions. For instance, in the table cleaning task PKS
can construct the simple plan:

graspA-table(obj1), putInto-object(obj1, obj2),
graspD-table(obj2), putAway(obj2), (1)

to put an object obj1 into another object obj2 before grasping
the stack of objects and removing them to the shelf. In this
case, the plan is linear since it only contains physical actions.

When a plan contains sensing actions, PKS can reason
about the possible outcomes of such actions by adding
conditional branches to the plan. For instance, if PKS is given
the goal of removing the “open” objects from the table, but
does not know whether an object obj1 is open or not, then
it can construct the conditional plan:

sense-open(obj1),
branch(open(obj1))
K+ : graspA-table(obj1), putAway(obj1)
K− : nil.

This plan first senses the truth value of the predicate
open(obj1) and then branches on the two possible outcomes.
When open(obj1) is true (the K+ branch), obj1 is grasped
and put away; when open(obj1) is false (the K− branch),
no further action is taken.

C. Plan construction, execution, and monitoring

The planning level interacts with the rest of the system
to construct and execute plans. For instance, the initial



(a) (b) (c) (d) (e)

Fig. 9. Performing of a Plan: (a) Initial scene. The small blue cup is obj1, while obj2 stands for the light-blue bowl. The blue rectangle represents the
shelf area. (b) Scene after executing graspD-table(obj1). (c) Scene after executing putInto-object(obj1, obj2). (d) Scene after executing graspB-table(obj2).
(e) Scene after executing the final command putAway(obj2).

world state—forming the planner’s initial knowledge state—
is supplied to the planner from the robot/vision system. Once
the planner has such information it constructs a high-level
plan and feeds it to the robot, one action at a time, upon
request from the lower levels. The planner can also send
complete plan structures to the mid-level memory, to help
it better direct the execution of robot-level actions. Upon
action completion, the lower levels inform the planner as
to any changes made to the world state, allowing the plan
execution cycle to continue until the end of the plan. For
instance, Fig. 9 shows the execution of the simple four step
plan in (1). This plan does not contain any sensing actions
and is constructed using objects in the initial scene.

A vital component in this architecture is the plan execution
monitor, which assesses action failure and unexpected state
information in order to control replanning and resensing
activities. In particular, the difference between predicted
and actual state information is used to decide between (i)
continuing the execution of an existing plan, (ii) asking the
vision system to resense a portion of a scene at a higher
resolution in the hope of producing a more detailed state
report, and (iii) replanning from the unexpected state.

The plan execution monitor also has the added task of
managing the execution of plans with conditional branches,
resulting from the inclusion of sensing actions, such as sense-
open. When a sensing action is executed at the robot level,
the results of the sensing will be passed to the planning level
as part of a state update. Using this information, the plan
execution monitor can then decide which branch of a plan it
should follow, and feed the correct sequence of actions to the
lower levels. If such information is unavailable, resensing or
replanning is triggered as above.

VI. DISCUSSION

Here we do not give a full description of other cognitive
architectures (for this, see, e.g., [15], [16]), but instead we
highlight some important relations to prior work. Cognitive
architectures often fall into one of two categories [16].
Some architectures are based on the notion of cognition
as symbol manipulation, such as ACT-R [17] or SOAR
[18], and focus on semantically-interpretable symbolic rep-
resentations. They are often richly structured, contain a
number of subsystems (e.g., workspaces and memory stores),
and are very powerful in simulating higher-order cognitive
processes, such as logical reasoning or constraint satisfaction.

By emphasizing symbolic processing only, such architectures
face serious grounding problems and are much better suited
to model abstract thinking than sensorimotor control in
changing environments [17]. Other architectures are based
on the notion of distributed parallel processing, such as [19],
[20], and focus on interactive subsymbolic representations,
like neural networks. Such approaches do not tend to have
dedicated subsystems or components, and are very powerful
in simulating online, environmentally-sensitive behaviour. As
a drawback, these approaches do not provide strong models
of higher-level cognition, and their representations are often
not well specified semantically [16].

Note that these two lines of thinking can be associated
to two oppposing ends of the bias/variance dilemma [21].
The bias/variance dilemma states on the one hand the limits
of any learnability without having sufficient prior knowledge
and on the other hand the problem of restricting the learning
space by too specific assumptions that would restrict any
generalization to new situations and domains. We are aware
that in our system a certain amount of structural prior is
existing from the beginning (e.g., a very derived vision
system, a rather explicit body knowledge, as well as different
state spaces in which learning takes place) which however
we find reasonable choices for the design a cognitive system
and also general enough to allow for efficient learning.

In this sense, our approach aims at developing a hybrid
cognitive architecture that takes the best of these two worlds,
which are often taken as incompatible. We claim that high-
level planning is not only easier to model using symbolic
representations and rule-based operations, but we believe
that a number of aspects of higher-order human cognition
are more appropriately captured by the symbolic approach.
At the same time, we consider a symbolic approach to
low-level sensorimotor processing to be biologically im-
plausible and too unreliable in a practical sense. Instead,
we combine a subsymbolic online sensorimotor processing
level with a symbolic level for abstract action planning and
communication. Thus, both high-level planning and low-
level exploration coexist within the same architecture. In
this sense, our work is related to approaches like [22], but
goes well beyond by allowing learning and adaptation at all
levels of the architecture. Since planning and exploration is
very much connected, we also extend on approaches that
focus on learning and development (as done, e.g., in [23]).
For instance, we give an example of symbol grounding (see,



e.g., [24], [25]) in the context of the concept of “objects”.
Our system (see section IV-B) is able to detect the cate-
gory “objectness” as well as important physical properties
by interacting with the world and by inducing predictable
correlations in the sensory data (see also [26], [27]).

Based on insights from cognitive neuroscience, we also
suggest that a mid-level system is necessary to mediate be-
tween the low-level and high-level components. In humans,
online visuomotor processing is mediated by the so-called
dorsal pathway, which is evolutionarily old, cognitively
rather inaccessible but fast and reliable [28]. In contrast,
offline processing, such as higher-order perception and action
selection, is carried out by the ventral pathway, which is
evolutionarily younger, cognitively penetrable, highly inter-
active and informed by memory contents but rather slow
[28]. Both pathways have particularly strong features and it
is their interaction that allows for goal-directed and highly
adaptive, yet fast and reliable, performance [29]. Obviously,
what we consider the low processing level of PACO+ shares
the main characteristics of the human dorsal pathway. At
the same time, however, it is difficult to see how purely
symbolic rule-based system can efficiently interact with on-
line processing the same way as the human ventral system
interacts with dorsal processing. Hence, we do not regard
the characteristics of ventral processing to be well captured
by our highest processing level but suggest a mid-level that
mediates between on-line processing and symbolic high-level
reasoning, and that interacts with the lowest level in a similar
way as ventral and dorsal visuomotor pathways in humans.

To conclude this paper, we introduced a three-level cogni-
tive architecture within an embodied system that facilitates
exploration, planning, and learning in dynamic environments.
In particular, our approach combines a low-level robot-vision
system, a mid-level memory component, and a high-level
symbolic planner. While some components of our proposed
system are still at an early state of development, we believe
that the described interactions between the different levels
and sub-modules illustrates the potential of our cognitive
system.
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